高考数学 导数与函数核心考点
2024高考数学课件 导数与函数的单调性、极值和最值讲解册
例1
设函数f(x)=aln
x+x
x
1 1
,其中a为常数.讨论函数f(x)的单调性.
解析
函数f(x)的定义域为(0,+∞),
f
'(x)=
a x
+
(
x
2 1)2
=
ax2
(2a 2)x x(x 1)2
a
,
当a≥0时, f '(x)>0,函数f(x)在(0,+∞)上单调递增,
当a<0时,令g(x)=ax2+(2a+2)x+a,
3
3
3
, 1
1 3
3a
∪
1
1 3a ,+∞
3
时, f '(x)>0,当x∈
1 1 3a, 1 1 3a 时, f '(x)<0,所
3
3
以f(x)在 ,1
1 3
3a
和
1
1 3
3a
,
上单调递增,在
1
1 3a 1
3,
1 3a 3
上单调
递减.
(2)设过原点的切线与曲线y=f(x)相切于点P(x0,y0),则切线的斜率为f '(x0)=3x02-2x0+a,故
a
a
即练即清
1.(2024届湖南长沙一中基础测试,8)若函数g(x)=ln x+ 1 x2-(b-1)x存在单调递减区间,则
2
实数b的取值范围是 ( B ) A.[3,+∞) B.(3,+∞) C.(-∞,3) D.(-∞,3]
题型2 利用导数研究函数的极(最)值 1.解决函数极值问题的一般思路
高中数学函数与导数_高中数学函数与导数知识点汇总
高中数学函数与导数_高中数学函数与导数知识点汇总第一、求函数定义域题忽视细节函数的定义域是使函数有意义的自变量的取值范围,考生想要在考场上准确求出定义域,就要根据函数解析式把各种情况下的自变量的限制条件找出来,列成不等式组,不等式组的解集就是该函数的定义域。
在求一般函数定义域时,要注意以下几点:分母不为0;偶次被开放式非负;真数大于0以及0的0次幂无意义。
函数的定义域是非空的数集,在解答函数定义域类的题时千万别忘了这一点。
复合函数要注意外层函数的定义域由内层函数的值域决定。
第二、带绝对值的函数单调性判断错误带绝对值的函数实质上就是分段函数,判断分段函数的单调性有两种方法:第一,在各个段上根据函数的解析式所表示的函数的单调性求出单调区间,然后对各个段上的单调区间进行整合;第二,画出这个分段函数的图象,结合函数图象、性质能够进行直观的判断。
函数题离不开函数图象,而函数图象反应了函数的所有性质,考生在解答函数题时,要第一时间在脑海中画出函数图象,从图象上分析问题,解决问题。
对于函数不同的单调递增(减)区间,千万记住,不要使用并集,指明这几个区间是该函数的单调递增(减)区间即可。
第三、求函数奇偶性的常见错误求函数奇偶性类的题最常见的错误有求错函数定义域或忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等等。
判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域区间关于原点对称,如果不具备这个条件,函数一定是非奇非偶的函数。
在定义域区间关于原点对称的前提下,再根据奇偶函数的定义进行判断。
在用定义进行判断时,要注意自变量在定义域区间内的任意性。
第四、抽象函数推理不严谨很多抽象函数问题都是以抽象出某一类函数的共同“特征”而设计的,在解答此类问题时,考生可以通过类比这类函数中一些具体函数的性质去解决抽象函数。
多用特殊赋值法,通过特殊赋可以找到函数的不变性质,这往往是问题的突破口。
艺术生高考数学专题讲义:考点14 导数与函数的极值、最值
考点十四导数与函数的极值、最值知识梳理1.函数的极值的定义一般地,设函数f(x)在点x0及附近有定义,如果对x0附近的所有的点,都有f(x)<f(x0 ),就说f(x0)是函数的极大值,x0叫做函数的极大值点.如果对x0附近的所有的点,都有f(x)>f(x0 ),就说f(x0)是函数的极小值,x0叫做函数的极小值点.极大值与极小值统称为函数的极值.极大值点与极小值点统称为极值点.注意:可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,即f′(x0)=0是可导函数f(x)在x=x0处取得极值的必要不充分条件.例如函数y=x3在x=0处有y′=0,但x=0不是极值点.2.判断f(x0 )是极大、极小值的方法当函数f(x)在点x0处连续时,若x0满足f′(x0 )=0,且在x0的两侧f(x)的导数值异号,则x0是f(x)的极值点,f(x0 )是极值.如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.3.求可导函数f(x)的极值的步骤(1)确定函数的定义域,求导数f′(x) ;(2)求方程f′(x) =0的根;(3)检查f′(x)在x0两侧的符号①若f′(x)在x0两侧的符号“左正右负”,则x0为极大值点;②若f′(x)在x0两侧的符号“左负右正”,则x0为极小值点;③若f′(x)在x0两侧的符号相同,则x0不是极值点.4.函数的最值在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(1)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.(2)设函数f(x)在[a,b]上连续,在(a,b)内可导,求f(x)在[a,b]上的最大值和最小值的步骤如下:①求f(x)在(a,b)内的极值;②将f(x)的各极值与f(a),f(b)进行比较,其中最大的一个是最大值,最小的一个是最小值.5.函数的极值与最值的区别与联系极值是个“局部”概念,而函数最值是个“整体”概念.函数的极值表示函数在某一点附近的情况,是在局部对函数值的比较;函数的最值表示函数在一个区间上的情况,是对函数在整个区间上的函数值的比较.函数的极值不一定是最值,最值也不一定是极值.典例剖析题型一 利用导数求函数的极值例1 已知函数f (x )=x 3-2x 2e x.求f (x )的极大值和极小值.解析 函数f (x )的定义域为R ,f ′(x )=-x (x 2-5x +4)e x =-x (x -1)(x -4)e x ,当x 变化时,f (x )、f ′(x )的符号变化情况如下:∴f (x )的极大值为f (0)=0和f (4)=32e 4,f (x )的极小值为f (1)=-1e.变式训练 设f (x )=e x1+ax 2,其中a 为正实数.(1)当a =43时,求f (x )的极值点;(2)若f (x )为R 上的单调函数,求a 的取值范围. 解析 对f (x )求导得f ′(x )=e x·1+ax 2-2ax(1+ax 2)2.①(1)当a =43时,若f ′(x )=0,则4x 2-8x +3=0,解得x 1=32,x 2=12.结合①,可知所以x 1=32是极小值点,x 2=12是极大值点.(2)若f (x )为R 上的单调函数,则f ′(x )在R 上不变号,结合①与条件a >0,知ax 2-2ax +1≥0在R 上恒成立,即Δ=4a 2-4a =4a (a -1)≤0,由此并结合a >0,知0<a ≤1.所以a 的取值范围为{a |0<a ≤1}.题型二 利用极值求参数例2 设f (x )=ln(1+x )-x -ax 2,若f (x )在x =1处取得极值,则a 的值为________. 答案 -14解析 由题意知,f (x )的定义域为(-1,+∞), 且f ′(x )=11+x -2ax -1=-2ax 2-(2a +1)x 1+x,由题意得:f ′(1)=0,则-2a -2a -1=0,得a =-14,又当a =-14时,f ′(x )=12x 2-12x 1+x =12x (x -1)1+x ,当0<x <1时,f ′(x )<0;当x >1时,f ′(x )>0, 所以f (1)是函数f (x )的极小值,所以a =-14.变式训练 已知x =3是函数f (x )=a ln x +x 2-10x 的一个极值点,则实数a =________. 答案 12解析 f ′(x )=a x +2x -10,由f ′(3)=a3+6-10=0,得a =12,经检验满足条件.题型三 利用导数求函数的最值例3 设函数f (x )=x +ax 2+b ln x ,曲线y =f (x )过P (1,0),且在P 点处的切线斜率为2. (1)求a ,b 的值;(2)令g (x )=f (x )-2x +2,求g (x )在定义域上的最值. 答案 (1)a =-1,b =3 (2)最大值为0,无最小值 解析 (1)f ′(x )=1+2ax +bx(x >0),又f (x )过点P (1,0),且在点P 处的切线斜率为2,∴⎩⎪⎨⎪⎧ f (1)=0,f ′(1)=2,即⎩⎪⎨⎪⎧1+a =0,1+2a +b =2.解得a =-1,b =3. (2)由(1)知,f (x )=x -x 2+3ln x ,其定义域为(0,+∞), ∴g (x )=2-x -x 2+3ln x ,x >0.则g ′(x )=-1-2x +3x =-(x -1)(2x +3)x .当0<x <1时,g ′(x )>0;当x >1时,g ′(x )<0.所以g (x )在(0,1)上单调递增,在(1,+∞)上单调递减. ∴g (x )的最大值为g (1)=0,g (x )没有最小值. 变式训练 已知函数f (x )=ln x -ax (a ∈R ). (1)求函数f (x )的单调区间;(2)当a >0时,求函数f (x )在[1,2]上的最小值. 解析 (1)f ′(x )=1x-a (x >0),①当a ≤0时,f ′(x )=1x -a >0,即函数f (x )的单调增区间为(0,+∞).②当a >0时,令f ′(x )=1x -a =0,可得x =1a ,当0<x <1a 时,f ′(x )=1-ax x >0;当x >1a 时,f ′(x )=1-ax x<0,故函数f (x )的单调递增区间为⎝⎛⎦⎤0,1a ,单调递减区间为⎣⎡⎭⎫1a ,+∞. (2)①当1a ≤1,即a ≥1时,函数f (x )在区间[1,2]上是减函数,所以f (x )的最小值是f (2)=ln 2-2a .②当1a ≥2,即0<a ≤12时,函数f (x )在区间[1,2]上是增函数,所以f (x )的最小值是f (1)=-a .③当1<1a <2,即12<a <1时,函数f (x )在⎣⎡⎦⎤1,1a 上是增函数,在⎣⎡⎦⎤1a ,2上是减函数.又f (2)-f (1)=ln 2-a ,所以当12<a <ln 2时,最小值是f (1)=-a ;当ln 2≤a <1时,最小值为f (2)=ln 2-2a . 综上可知,当0<a <ln 2时,函数f (x )的最小值是-a ; 当a ≥ln 2时,函数f (x )的最小值是ln 2-2a .解题要点 求函数f (x )在[a ,b ]上的最大值和最小值的步骤: (1)求函数在(a ,b )内的极值;(2)求函数在区间端点处的函数值f (a ),f (b );(3)将函数f (x )的各极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.当堂练习1.已知函数y =f (x ),其导函数y =f ′(x )的图象如图所示,则y =f (x ) ________.①在(-∞,0)上为减函数② 在x =0处取极小值 ③ 在(4,+∞)上为减函数 ④ 在x =2处取极大值答案 ③解析 由f ′(x )的图象可知,f (x )在(-∞,0)上单调递增,在(0,2)上单调递减,∴f (x )在x =0处取得极大值,同理f (x )在x =2处取得极小值,故①,②,④均不正确 ,由f ′(x )的图象可知f (x )在(4,+∞)上单调递减.2.函数f (x )=(x 2-1)2+2的极值点是________.①x =1 ②x =-1 ③x =1或-1或0 ④x =0 答案 ③解析 ∵f (x )=x 4-2x 2+3,由f ′(x )=4x 3-4x =4x (x +1)(x -1)=0,得x =0或x =1或x =-1.又当x <-1时,f ′(x )<0,当-1<x <0时,f ′(x )>0,当0<x <1时,f ′(x )<0,当x >1时,f ′(x )>0, ∴x =0,1,-1都是f (x )的极值点.3. 若函数y =ax 3+bx 2取得极大值和极小值时的x 的值分别为0和13,则a 与b 的关系是________. 答案 a +2b =0解析 y ′=3ax 2+2bx ,据题意,0,13是方程3ax 2+2bx =0的两根,∴-2b 3a =13,∴a +2b =0.4.函数f (x )=xe x ,x ∈[0,4]的最大值是________.答案 1e5.若函数f (x )=x 2+ax +1在x =1处取极值,则a =________.答案 3解析 f ′(x )=x 2+2x -a(x +1)2,由f (x )在x =1处取得极值知f ′(1)=0,∴a =3.课后作业一、 填空题1.函数f (x )=x 33+x 2-3x -4在[0,2]上的最小值是________.答案 -173解析 f ′(x )=x 2+2x -3,令f ′(x )=0,得x =1(x =-3舍去), 又f (0)=-4,f (1)=-173,f (2)=-103,故f (x )在[0,2]上的最小值是f (1)=-173.2.函数f (x )=x 3-32x 2-6x 的极值点的个数是________.答案 2解析 f ′(x )=3x 2-3x -6=3(x 2-x -2)=3(x -2)(x +1).令f ′(x )=0,得x =-1或x =2.易知x =-1为f (x )的极大值点,x =2为f (x )的极小值点.故f (x )的极值点有2个. 3.函数f (x )=12x -x 3在区间[-3,3]上的最小值是________. 答案 -16解析 由f ′(x )=12-3x 2=0,得x =-2或x =2. 又f (-3)=-9,f (-2)=-16,f (2)=16,f (3)=9, ∴函数f (x )在[-3,3]上的最小值为-16.4.f (x )=e x -x (e 为自然对数的底数)在区间[-1,1]上的最大值是________. 答案 e -1解析 f ′(x )=e x -1,令f ′(x )=0,得x =0.令f ′(x )>0,得x >0,令f ′(x )<0,得x <0,则函数f (x )在(-1,0)上单调递减,在(0,1)上单调递增,f (-1)=e -1+1,f (1)=e -1,f (-1)-f (1)=1e +2-e<12+2-e<0,所以f (1)>f (-1).5.若商品的年利润y (万元)与年产量x (百万件)的函数关系式为y =-x 3+27x +123(x >0),则获得最大利润时的年产量为________. 答案 3百万件解析 依题意得,y ′=-3x 2+27=-3(x -3)(x +3),当0<x <3时,y ′>0;当x >3时,y ′<0.因此,当x =3时,该商品的年利润最大.6.已知函数f (x )=x 3+ax 2+bx -a 2-7a 在x =1处取得极大值10,则ab的值为________.答案 -23解析 由题意知,f ′(x )=3x 2+2ax +b ,f ′(1)=0,f (1)=10,即⎩⎪⎨⎪⎧3+2a +b =01+a +b -a 2-7a =10,解得⎩⎪⎨⎪⎧a =-2b =1或⎩⎪⎨⎪⎧a =-6b =9,经检验⎩⎪⎨⎪⎧a =-6b =9满足题意,故a b =-23.7.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图象如图所示,则下列结论中一定成立的是________.(填序号)①函数f (x )有极大值f (2)和极小值f (1) ②函数f (x )有极大值f (-2)和极小值f (1) ③函数f (x )有极大值f (2)和极小值f (-2) ④函数f (x )有极大值f (-2)和极小值f (2) 答案 ④解析 由题图可知,当x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值. 8.已知f (x )=2x 3-6x 2+m (m 为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值是________. 答案 -37解析 f ′(x )=6x 2-12x =6x (x -2),∴f (x )在(-2,0)上单调递增,在(0,2)上单调递减. ∴x =0为极大值点,也为最大值点. ∴f (0)=m =3,∴m =3. ∴f (-2)=-37,f (2)=-5. ∴最小值是-37.9.函数f (x )=x 3+ x 2-x +2在[0,2]上的最小值是________. 答案4927解析 f ′(x )=3x 3+2x -1,f ′(x )=0,x ∈[0,2],得x =13.比较f (0)=2,f (13)=4927,f (2)=12.可知最小值为4927.10.某商场从生产厂家以每件20元购进一批商品,若该商品零售价为p 元,销量Q (单位:件)与零售价p (单位:元)有如下关系:Q =8 300-170p -p 2,则该商品零售价定为__________ 元时利润最大,利润的最大值为__________. 答案 30 23 000解析 设商场销售该商品所获利润为y 元,则y =(p -20)Q =(p -20)(8 300-170p -p 2)=-p 3-150p 2+11 700p -166 000(p ≥20), ∴y ′=-3p 2-300p +11 700. 令y ′=0得p 2+100p -3 900=0,∴p =30或p =-130(舍去),则p ,y ,y ′变化关系如下表:∴当p =30时,y 取极大值为23 000元.又y =-p 3+150p 2+11 700p -166 000在(20,+∞)上只有一个极值,故也是最值. ∴该商品零售价定为每件30元,所获利润最大为23 000元.11.若y =a ln x +bx 2+x 在x =1和x =2处有极值,则a =________,b =________. 答案 -23 -16解析 y ′=ax+2bx +1.由已知⎩⎪⎨⎪⎧a +2b +1=0,a 2+4b +1=0,解得⎩⎨⎧a =-23,b =-16.二、解答题12. (2015北京文节选)设函数f (x )=x 22-k ln x ,k >0.求f (x )的单调区间和极值解析 函数的定义域为(0,+∞).由f (x )=x 22-k ln x (k >0)得f ′(x )=x -k x =x 2-kx.由f ′(x )=0解得x =k (负值舍去).f (x )与f ′(x )在区间(0,+∞)上的变化情况如下表:所以,f (x )f (x )在x =k 处取得极小值f (k )=k (1-ln k )2. 13.设函数f (x )=2x 3+3ax 2+3bx +8c 在x =1及x =2时取得极值. (1)求a 、b 的值;(2)若对于任意的x ∈[0,3],都有f (x )<c 2成立,求c 的取值范围. 解析 (1)f ′(x )=6x 2+6ax +3b ,因为函数f (x )在x =1及x =2处取得极值,则有f ′(1)=0,f ′(2)=0,即⎩⎪⎨⎪⎧6+6a +3b =0,24+12a +3b =0.解得a =-3,b =4. (2)由(1)可知,f (x )=2x 3-9x 2+12x +8c ,f ′(x )=6x 2-18x +12=6(x -1)(x -2). 当x ∈(0,1)时,f ′(x )>0;当x ∈(1,2)时,f ′(x )<0;当x ∈(2,3)时,f ′(x )>0. 所以,当x =1时,f (x )取得极大值f (1)=5+8c ,又f (0)=8c ,f (3)=9+8c . 则当x ∈[0,3]时,f (x )的最大值为f (3)=9+8c . 因为对于任意的x ∈[0,3],有f (x )<c 2恒成立, 所以9+8c <c 2,解得c <-1或c >9, 因此c 的取值范围为(-∞,-1)∪(9,+∞).。
高中数学高考热点导数与三角函数五大命题热点解析
高中数学高考热点导数与三角函数五大命题热点解析命题点一
借助导数研究三角函数的单调性
奇偶性,对称性问题
角度一:单调性
题目涉及到三角函数在某个区间上单调,求参数的取值范围。
可以利用导数与单调性的关系进行求解。
若f(x)在(a,b)上单调递增,则f'(x)≥0;若f(x)在(a,b)上单调递减,则f'(x)≤0
角度二:奇偶性问题
可导奇函数的导函数为偶函数,可导偶函数的导函数为奇函数。
角度三:对称性问题
三角函数的重要特征之一为:当x=x0为对称轴时,函数值取到最大值或者最小值。
结合图像不难发现此时函数在最高点或最低点处的切线斜率为0,则f'(x0)=0
命题点二
借助导数求三角函数的最值问题
试题借助导数考查三角函数的单调性,进而求出最值。
命题点三
借助导数求三角函数的极值点问题
试题结合三角函数的图象与性质,紧扣极值点的概念进行求解。
要求对极值点的概念有深刻的认识。
命题点四
借助导数求三角函数的零点问题
借助导数考查三角函数的零点问题,经常与零点存在性定理一起使用,证明在某个区间内存在唯一零点。
命题点五
借助导数求三角函数的交点问题
以三角函数和直线方程为载体,借助导数研究问题,综合性较强,凸显多思少算。
考点18导数与函数的极值、最值(2种核心题型)(学生版) 2025年高考数学大一轮复习(新高考版)
考点18导数与函数的极值、最值(2种核心题型+基础保分练+综合提升练+拓展冲刺练)【考试提醒】1.借助函数图象,了解函数在某点取得极值的必要和充分条件.2.会用导数求函数的极大值、极小值.3.掌握利用导数研究函数最值的方法.4.会用导数研究生活中的最优化问题.【知识点】1.函数的极值(1)函数的极小值函数y=f(x)在点x=a处的函数值f(a)比它在点x=a附近其他点处的函数值都小,f′(a)=0;而且在点x=a附近的左侧,右侧,则a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值函数y=f(x)在点x=b处的函数值f(b)比它在点x=b附近其他点处的函数值都大,f′(b)=0;而且在点x=b附近的左侧,右侧,则b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.(3)极小值点、极大值点统称为,极小值和极大值统称为.2.函数的最大(小)值(1)函数f(x)在区间[a,b]上有最值的条件:如果在区间[a,b]上函数y=f(x)的图象是一条的曲线,那么它必有最大值和最小值.(2)求函数y=f(x)在区间[a,b]上的最大(小)值的步骤:①求函数y=f(x)在区间(a,b)内的;②将函数y=f(x)的各极值与比较,其中最大的一个是最大值,最小的一个是最小值.常用结论对于可导函数f(x),“f′(x0)=0”是“函数f(x)在x=x0处有极值”的必要不充分条件【核心题型】题型一 利用导数求解函数的极值问题根据函数的极值(点)求参数的两个要领(1)列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解;(2)验证:求解后验证根的合理性.命题点1 根据函数图象判断极值【例题1】(2024·四川广安·二模)已知函数()()1e xf x ax =+,给出下列4个图象:其中,可以作为函数()f x 的大致图象的个数为( )A .1B .2C .3D .4【变式1】(23-24高三上·黑龙江·阶段练习)如图是函数()y f x =的导函数()y f x ¢=的图象,下列结论正确的是( )A .()y f x =在=1x -处取得极大值B .1x =是函数()y f x =的极值点C .2x =-是函数()y f x =的极小值点D .函数()y f x =在区间()1,1-上单调递减【变式2】(2023·河北·模拟预测)函数4211()f x x x =-的大致图象是( )A . B .C .D .【变式3】(2024高三·全国·专题练习)已知函数f (x )的导函数f ′(x )的图象如图所示,则下列结论正确的是( )A .曲线y =f (x )在点(1,f (1))处的切线斜率小于零B .函数f (x )在区间(-1,1)上单调递增C .函数f (x )在x =1处取得极大值D .函数f (x )在区间(-3,3)内至多有两个零点命题点2 求已知函数的极值【例题2】(2024·宁夏银川·一模)若函数()2()2e xf x x ax =--在2x =-处取得极大值,则()f x 的极小值为( )A .26e -B .4e-C .22e -D .e-【变式1】(2023·全国·模拟预测)函数()2tan πf x x x =--在区间ππ,22æö-ç÷èø的极大值、极小值分别为( )A .π12+,π12-+B .π12-+,3π12-+C .3π12-,π12-+D .π12--,3π12-+【变式2】(多选)(2024·全国·模拟预测)已知2e ,0,()41,0,xx f x x x x x ì>ï=íï---£î则方程2()(3)()30f x k f x k -++=可能有( )个解.A .3B .4C .5D .6【变式3】(2024·辽宁鞍山·二模)()2e xf x x -=的极大值为 .命题点3 已知极值(点)求参数【例题3】(2024·全国·模拟预测)设12,x x 为函数()()()2f x x x x a =--(其中0a >)的两个不同的极值点,若不等式()()120f x f x +³成立,则实数a 的取值范围为( )A .[]1,4B .(]0,4C .()0,1D .()4,+¥【变式1】(2024·四川绵阳·三模)若函数()()21ln 02f x ax x b x a =-+¹有唯一极值点,则下列关系式一定成立的是()A .0,0a b ><B .0,0a b <>C .14ab <D .0ab >【变式2】(2024·辽宁·一模)已知函数()322f x x ax bx a =+++在=1x -处有极值8,则()1f 等于 .【变式3】(2024·全国·模拟预测)已知函数()()2ln 2f x x x ax a =-+-ÎR .(1)若()f x 的极值为-2,求a 的值;(2)若m ,n 是()f x 的两个不同的零点,求证:()0f m n m n ¢+++<.题型二 利用导数求函数最值求含有参数的函数的最值,需先求函数的定义域、导函数,通过对参数分类讨论,判断函数的单调性,从而得到函数f (x )的最值.命题点1 不含参函数的最值【例题4】(2024·陕西·模拟预测)[]1,2x "Î,有22ln a x x x ³-+恒成立,则实数a 的取值范围为( )A .[)e,+¥B .[)1,+¥C .e ,2éö+¥÷êëøD .[)2e,+¥【变式1】(2024·四川·模拟预测)已知 ()()22ln f x x x a x x =-+-,若存在(]0,e 0x Î,使得()00f x £成立,则实数a 的取值范围是.【变式2】(2024·上海徐汇·二模)如图,两条足够长且互相垂直的轨道12,l l 相交于点O ,一根长度为8的直杆AB 的两端点,A B 分别在12,l l 上滑动(,A B 两点不与O 点重合,轨道与直杆的宽度等因素均可忽略不计),直杆上的点P 满足OP AB ^,则OAP △面积的取值范围是 .【变式3】(2024·全国·模拟预测)已知函数()ln f x x =.(1)求函数()()f xg x x=的最值.(2)证明:()2431e 3e e 044xx x x f x ---->(其中e 为自然对数的底数).命题点2 含参函数的最值【例题5】(2024·四川成都·模拟预测)已知函数21()e (R)2(1)xf x x bx a b a =--Î+,没有极值点,则1ba +的最大值为( )A B .e 2C .eD .2e 2【变式1】(23-24高三下·重庆·阶段练习)若过点(),a b 可以作曲线ln y x =的两条切线,则( )A .ln b a>B .ln b a<C .0a <D .e ab >【变式2】.(2024·全国·模拟预测)函数()()()2ln 1f x x x ax =++-只有3个零点1x ,2x ,3x ()1233x x x <<<,则2a x +的取值范围是 .【变式3】(2024·北京海淀·一模)已知函数12()e a x f x x -=.(1)求()f x 的单调区间;(2)若函数2()()e ,(0,)g x f x a x -=+Î+¥存在最大值,求a 的取值范围.【课后强化】基础保分练一、单选题1.(2023·广西·模拟预测)函数()3f x x ax =+在1x =处取得极小值,则极小值为( )A .1B .2C .2-D .1-2.(2024·四川凉山·二模)若()sin cos 1f x x x x =+-,π,π2x éùÎ-êúëû,则函数()f x 的零点个数为( )A .0B .1C .2D .33.(2024·黑龙江哈尔滨·一模)在同一平面直角坐标系内,函数()y f x =及其导函数()y f x =¢的图象如图所示,已知两图象有且仅有一个公共点,其坐标为()0,1,则( )A .函数()e xy f x =×的最大值为1B .函数()e xy f x =×的最小值为1C .函数()exf x y =的最大值为1D .函数()e xf x y =的最小值为14.(2024·陕西安康·模拟预测)已知函数()2e e 2x xf x a b x =++有2个极值点,则( )A .2016b a <<B .0b >C .4a b <D .2b a>5.(2024·全国·模拟预测)已知函数()()sin cos e xa f x x x x +=+在()0,π上恰有两个极值点,则实数a 的取值范围是( )A .π4e æöç÷ç÷èøB .()π,e-¥C .()π0,eD .π4e ,ö÷÷ø+¥二、多选题6.(2024·全国·模拟预测)已知函数()e xbf x a x=+在定义域内既存在极大值点又存在极小值点,则( )A .0ab > B .24e b a £C .24e 0a b ->D .对于任意非零实数a ,总存在实数b 满足题意7.(2024·湖北武汉·模拟预测)已知各项都是正数的数列{}n a 的前n 项和为n S ,且122n n na S a =+,则下列结论正确的是( )A .当()*m n m n >ÎN ,时,m na a >B .212n n n S S S +++<C .数列{}2n S 是等差数列D .1ln n nS n S -³三、填空题8.(2024·上海黄浦·二模)如图是某公园局部的平面示意图,图中的实线部分(它由线段,CE DF 与分别以,OC OD 为直径的半圆弧组成)表示一条步道.其中的点,C D 是线段AB 上的动点,点O 为线段,AB CD 的中点,点,E F 在以AB 为直径的半圆弧上,且,OCE ÐODF Ð均为直角.若1AB =百米,则此步道的最大长度为百米.9.(2023·江西赣州·模拟预测)当0x =时,函数()e x f x a bx -=+取得极小值1,则a b +=.四、解答题10.(2023·河南洛阳·一模)已知函数()211122f x x x =++.(1)求()f x 的图像在点()()22f ,处的切线方程;(2)求()f x 在1,22éùêúëû上的值域.11.(2024·上海静安·二模)已知R k Î,记()x x f x a k a -=+×(0a >且1a ¹).(1)当e a =(e 是自然对数的底)时,试讨论函数()y f x =的单调性和最值;(2)试讨论函数()y f x =的奇偶性;(3)拓展与探究:① 当k 在什么范围取值时,函数()y f x =的图象在x 轴上存在对称中心?请说明理由;②请提出函数()y f x =的一个新性质,并用数学符号语言表达出来.(不必证明)综合提升练一、单选题1.(2024·全国·模拟预测)若函数()()1ln 1f x x x ax =+-+是()0,¥+上的增函数,则实数a 的取值范围是( )A .(],2ln 2-¥B .(]0,2ln 2C .(],2-¥D .(]0,22.(2024·陕西渭南·模拟预测)已知函数()e x f x x a =+在区间[]0,1上的最小值为1,则实数a 的值为( )A .-2B .2C .-1D .13.(23-24高三下·内蒙古赤峰·开学考试)已知函数()ln f x x x ax =-有极值e -,则=a ( )A .1B .2C .eD .34.(2024·广东佛山·二模)若函数()24ln bf x a x x x =++(0a ¹)既有极大值也有极小值,则下列结论一定正确的是( )A .a<0B .0b <C .1ab >-D .0a b +>5.(2023·甘肃兰州·一模)已知函数()2e ln 2xx f x x =+-的极值点为1x ,函数()ln 2x h x x =的最大值为2x ,则( )A .12x x >B .21x x >C .12x x ³D .21x x ³6.(2024·全国·模拟预测)记函数()y f x =的导函数为y ¢,y ¢的导函数为y ¢¢,则曲线()y f x =的曲率()3221y K y ¢¢=éù+ëû¢.则曲线ln y x =的曲率的极值点为( )ABCD7.(2024·北京朝阳·一模)已知n 个大于2的实数12,,,n x x x ×××,对任意()1,2,,i x i n =×××,存在2i y ³满足i i y x <,且i i y x i i x y =,则使得12115n n x x x x -++×××+£成立的最大正整数n 为( )A .14B .16C .21D .238.(2023·河南洛阳·模拟预测)已知函数()f x 及其导函数()f x ¢的定义域均为R ,且()()()22e ,00x f x f x x f ¢-==,则()f x ( )A .有一个极小值点,一个极大值点B .有两个极小值点,一个极大值点C .最多有一个极小值点,无极大值点D .最多有一个极大值点,无极小值点二、多选题9.(2023·全国·模拟预测)对函数()f x ,()g x 公共定义域内的任意x ,若存在常数M ÎR ,使得()()f x g x M -£恒成立,则称()f x 和()g x 是M -伴侣函数,则下列说法正确的是( )A .存在常数M ÎR ,使得()()2log 5f x x =与()125log g x x=是M -伴侣函数B .存在常数M ÎR ,使得()13x f x +=与()13x g x -=是M -伴侣函数C .()ln f x x =与()2g x x =+是1-伴侣函数D .若()()f x g x ¢¢=,则存在常数M ÎR ,使得()f x 与()g x 是M -伴侣函数10.(2024·全国·模拟预测)已知函数()()2e =++xf x ax bx c 的极小值点为0,极大值点为()0m m >,且极大值为0,则( )A .2m =B .4b a=C .存在0x ÎR ,使得()00f x >D .直线3y a =与曲线()y f x =有3个交点11.(2024·全国·模拟预测)已知函数()()2ln e e x f x a b a x =+-,其中e 为自然对数的底数,则( )A .若()f x 为减函数,则()00f <B .若()f x 存在极值,则e 1b a >C .若()10f =,则ln2b >D .若()0f x ³,则b a³三、填空题12.(2022·广西·模拟预测)已知函数()21xx x f x e++=,则()f x 的极小值为 .13.(2023·广东汕头·一模)函数()36f x ax x =-的一个极值点为1,则()f x 的极大值是 .14.(2024·上海闵行·二模)对于任意的12x x ÎR 、,且20x >,不等式1122e ln x x x x a -+->恒成立,则实数a 的取值范围为 .四、解答题15.(2024·安徽·二模)已知函数2()103(1)ln f x x x f x ¢=-+.(1)求函数()f x 在点(1,(1))f 处的切线方程;(2)求()f x 的单调区间和极值.16.(2024·海南·模拟预测)已知函数()2ln 1,f x x a x a =-+ÎR .(1)当1a =时,求曲线()y f x =在点()()1,1f 处的切线方程;(2)当0a >时,若函数()f x 有最小值2,求a 的值.17.(2024·陕西西安·模拟预测)已知函数ln 1()ex f x x =-.(1)求()f x 的最大值;(2)证明:当0x >时,()e x f x x <.18.(2024·福建·模拟预测)已知函数()ln f x a x bx =-在()()1,1f 处的切线在y 轴上的截距为2-.(1)求a 的值;(2)若()f x 有且仅有两个零点,求b 的取值范围.19.(2024·全国·模拟预测)已知函数()()21e 2e 22xx f x a ax =+--.(1)若曲线()y f x =在30,2a æö-ç÷èø处的切线方程为4210ax y ++=,求a 的值及()f x 的单调区间.(2)若()f x 的极大值为()ln2f ,求a 的取值范围.(3)当0a =时,求证:()2535e ln 22x f x x x x +->+.拓展冲刺练一、单选题1.(2023·湖南衡阳·模拟预测)若曲线()(0)kf x k x=<与()e x g x =有三条公切线,则k 的取值范围为( )A .1,0e æö-ç÷èøB .1,eæö-¥-ç÷èøC .2,0e æö-ç÷èøD .2,e æö-¥-ç÷èø2.(2023·河南·三模)已知函数2()ln f x x x =,则下列结论正确的是( )A .()f x 在=x 12e -B .()f x 在x =e2C .()f x 在=x 12e -D .()f x 在x =e 23.(2023·湖北·模拟预测)设函数3()22f x x x =-,若正实数a 使得存在三个两两不同的实数b ,c ,d 满足(,())a f a ,(,())b f b ,(,())c f c ,(,())d f d 恰好为一个矩形的四个顶点,则a 的取值范围为( )A .10,2æùçúèûB .1,12éùêúëûC .æçèD .ùúû4.(2024·湖北·二模)已知函数()1e e e x x xaxf x x +=++(e 为自然对数的底数).则下列说法正确的是( )A .函数()f x 的定义域为RB .若函数()f x 在()()0,0P f 处的切线与坐标轴围成的三角形的面积为2e 2e 2-,则1a =C .当1a =时,()f x m =可能有三个零点D .当1a =时,函数的极小值大于极大值二、多选题5.(2023·安徽·一模)已知函数()()3R f x x x x =-Î,则( )A .()f x 是奇函数B .()f x 的单调递增区间为,æ-¥ççè和ö¥÷÷ø+C .()f xD .()f x 的极值点为,æççè6.(2024·浙江杭州·二模)过点()2,0P 的直线与抛物线C :24y x =交于,A B 两点.抛物线C 在点A 处的切线与直线2x =-交于点N ,作NM AP ^交AB 于点M ,则( )A .直线NB 与抛物线C 有2个公共点B .直线MN 恒过定点C .点M 的轨迹方程是()()22110x y x -+=¹D .3MN AB的最小值为三、填空题7.(2024·全国·模拟预测)函数()()2ln ln f x x k x x k =-++在定义域内为增函数,则实数k的取值范围为 .8.(2023·江苏淮安·模拟预测)已知函数()2ln f x x ax =-有三个零点,则a 的取值范围是 .四、解答题9.(23-24高三下·山东菏泽·阶段练习)已知函数()()21e x f x x ax =--,R a Î.(1)当e2a =时,求()f x 的单调区间;(2)若方程()0f x a +=有三个不同的实根,求a 的取值范围.10.(2024·山西吕梁·二模)已知函数()()2ln 20a f x a x x a x =--¹.(1)当1a =时,求()f x 的单调区间和极值;(2)求()f x 在区间(]0,1上的最大值.。
如何备考高考数学函数与导数部分重点知识点及解题思路
如何备考高考数学函数与导数部分重点知识点及解题思路高考数学是每位学生备战高考的关键科目之一,其中函数与导数部分作为数学的重点内容之一,需要我们充分理解其中的知识点和解题思路。
本文将详细介绍备考高考数学函数与导数部分的重点知识点和解题思路,帮助同学们在备考过程中更好地准备这一部分考试内容。
一、函数的基本概念与性质在备考高考数学函数与导数部分,首先要掌握函数的基本概念与性质。
函数是两个集合之间的一种对应关系,其中自变量和因变量之间存在确定的对应关系。
在学习函数的过程中,需要掌握函数的定义域、值域、图像和性质等相关概念。
在解题时,常用的函数有线性函数、二次函数、指数函数、对数函数等。
每种函数都有自己的特点和主要的解题方法。
在备考过程中,我们需要深入理解每种函数的定义及其特点,同时掌握它们的常用解题方法。
例如,对于一元一次方程,可以通过求解方程组或消元法来确定方程的解。
二、函数的运算与复合函数函数的运算与复合函数也是备考高考数学函数与导数部分的重点内容。
在函数的运算中,我们常遇到的有函数的加减乘除、复合函数的概念和求导法则等。
同学们要熟练掌握函数的运算方法,能够熟练解答相关题目。
复合函数是由两个或多个函数按照一定的顺序组成的新函数。
在解题时,常用的方法是利用函数之间的复合关系求导,根据链式法则将复合函数的导数转化为基本函数的导数。
通过反复练习和掌握相关的解题技巧,我们能够更好地应对高考中的相关题目。
三、导数的基本概念和运算规则导数是函数在某一点的变化速率,也是备考高考函数与导数部分需要掌握的重点内容之一。
在备考过程中,我们需要理解导数的定义和运算规则,并能够熟练计算导数。
导数的定义是函数变化率的极限值,也可以理解为函数曲线在某一点的切线斜率。
计算导数时,常用的方法有基本导数法则、导数的四则运算法则和复合函数求导法则等。
在备考过程中,我们要掌握这些法则的使用方法,能够熟练计算各种函数的导数。
四、函数的应用数学函数在实际问题中有着广泛的应用,备考高考数学函数与导数部分也需要理解其中的应用题。
掌握高考数学中的导数与极限运算技巧有哪些关键点
掌握高考数学中的导数与极限运算技巧有哪些关键点导数与极限是高考数学中的重要内容,对于理工科考生来说尤其重要。
掌握导数与极限运算的关键点能够帮助考生提高解题效率,下面将介绍几个关键点。
一、理解导数的定义导数是描述函数在某一点的变化率的指标。
在掌握导数运算的关键点之前,我们需要先理解导数的定义。
导数的定义是函数的极限,即函数在某一点的导数等于该点处函数的极限。
这个定义非常重要,理解了这个定义之后才能更好地应用导数进行运算。
二、掌握导数基本运算法则在高考数学中,常见的导数基本运算法则有常数倍法则、和差法则、乘积法则、商法则等。
掌握这些法则是解题的基础,可以帮助考生更快速地求导数。
以乘积法则为例,乘积的导数等于一项的导数乘以另一项,再加上另一项的导数乘以一项,即(d(uv)/dx = u'v + uv')。
熟练掌握这些法则能够帮助考生迅速解题。
三、学会运用导数的性质导数具有一些特殊的性质,掌握这些性质可以简化计算过程。
比如,导数的和的导数等于各项导数的和,导数的差的导数等于各项导数的差,导数的幂的导数等于指数乘以底数的导数等等。
掌握这些性质可以在解题过程中灵活运用,提高解题效率。
四、了解常见的导数公式在高考数学中,有一些常见的函数的导数公式是需要掌握的,比如常数函数、幂函数、指数函数、对数函数、三角函数等的导数公式。
熟悉这些公式能够帮助考生更快地求出函数的导数。
需要注意的是,在使用这些公式时,要注意各种函数的复合运算,灵活运用链式法则。
五、熟练掌握极限运算的技巧极限是导数的基础,因此对极限运算的技巧的掌握也是非常重要的。
在高考数学中,常见的极限运算技巧有利用夹逼定理、利用等价无穷小、利用洛必达法则等。
熟练掌握这些技巧可以帮助考生更快地求解极限问题,尤其是在计算极限时遇到不确定型的问题。
综上所述,掌握高考数学中的导数与极限运算技巧的关键点主要包括理解导数的定义、掌握导数基本运算法则、学会运用导数的性质、了解常见的导数公式以及熟练掌握极限运算的技巧。
考点17导数与函数的单调性(3种核心题型)(学生版) 2025年高考数学大一轮复习核心题型(新高考版
考点17导数与函数的单调性(3种核心题型+基础保分练+综合提升练+拓展冲刺练)【考试提醒】1.结合实例,借助几何直观了解函数的单调性与导数的关系.2.能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).3.会利用函数的单调性判断大小,求参数的取值范围等简单应用【知识点】1.函数的单调性与导数的关系条件恒有结论f ′(x )>0f (x )在区间(a ,b )上________f ′(x )<0f (x )在区间(a ,b )上________函数y =f (x )在区间(a ,b )上可导f ′(x )=0f (x )在区间(a ,b )上是________2.利用导数判断函数单调性的步骤第1步,确定函数的 ;第2步,求出导数f ′(x )的;第3步,用f ′(x )的零点将f (x )的定义域划分为若干个区间,列表给出f ′(x )在各区间上的正负,由此得出函数y =f (x )在定义域内的单调性.常用结论1.若函数f (x )在(a ,b )上单调递增,则当x ∈(a ,b )时,f ′(x )≥0恒成立;若函数f (x )在(a ,b )上单调递减,则当x ∈(a ,b )时,f ′(x )≤0恒成立.2.若函数f (x )在(a ,b )上存在单调递增区间,则当x ∈(a ,b )时,f ′(x )>0有解;若函数f (x )在(a ,b )上存在单调递减区间,则当x ∈(a ,b )时,f ′(x )<0有解【核心题型】题型一 不含参函数的单调性确定不含参数的函数的单调性,按照判断函数单调性的步骤即可,但应注意两点,一是不能漏掉求函数的定义域,二是函数的单调区间不能用并集,要用“逗号”或“和”隔开.【例题1】(2023·全国·模拟预测)已知函数()()()ln 2ln 4f x x x =-+-,则()f x 的单调递增区间为( )A .()2,3B .()3,4C .(),3-¥D .()3,+¥【变式1】(2024·四川成都·三模)已知函数()f x 是定义在R 上的奇函数,且当0x >时,()()1ln f x x x =-,则当0x <时,()f x 的单调递增区间为( )A .(),e -¥-B .()e,0-C .(),0¥-D .()1,0-【变式2】(2024·四川巴中·一模)已知奇函数()f x 的导函数为()f x ¢,若当0x <时()2af x x x=-,且()10f ¢-=.则()f x 的单调增区间为 .【变式3】(2024·河南开封·三模)已知函数()33ln f x x x =-,()f x ¢为()f x 的导函数.(1)求曲线()y f x =在点()()1,1f 处的切线方程;(2)求函数()()()9g x f x f x x¢=--的单调区间和极值.题型二 含参数的函数的单调性(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.(2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为零的点和函数的间断点【例题2】(多选)(23-24高三上·海南省直辖县级单位·阶段练习)函数()322f x x ax x=++(R a Î)的大致图象可能为( )A .B .C .D .【变式1】(2024·天津·二模)已知()()ln R f x x ax x a =+×Î,(1)当2a =时,求()f x 在点()()e e f ,处的切线方程;(2)讨论()f x 的单调性;(3)若函数()f x 存在极大值,且极大值为1,求证:()2e xf x x -£+.【变式2】(2024·陕西商洛·三模)已知函数()()2212ln 2f x a x x ax a =--ÎR .(1)求函数()f x 的单调区间;(2)当0a >时,若函数()2e e 2x x g x a =+和()22h x a x =的图象在()0,1上有交点,求实数a 的取值范围.【变式3】(2024·全国·模拟预测)已知函数()(2)ln f x a x a x =+-.(1)讨论()f x 的单调性;(2)证明:当0a >时,()9ln f x a >.(参考数据:ln 20.693»)题型三 函数单调性的应用由函数的单调性求参数的取值范围的方法(1)函数在区间(a ,b )上单调,实际上就是在该区间上f ′(x )≥0(或f ′(x )≤0)恒成立.(2)函数在区间(a ,b )上存在单调区间,实际上就是f ′(x )>0 (或f ′(x )<0)在该区间上存在解集命题点1 比较大小或解不等式【例题3】(2024·四川成都·模拟预测)若函数()f x 对任意的x ÎR 都有()()f x f x ¢<恒成立,则2(2)f 与2e (ln 2)f 的大小关系正确的是( )A .2(2)f >2e (ln 2)fB .2(2)f =2e (ln 2)fC .2(2)f <2e (ln 2)f D .无法比较大小【变式1】(2023·全国·模拟预测)比较11101011a =-,ln1.2b =,0.115ec =的大小关系为( )A .a c b >>B .b c a >>C .b a c>>D .a b c>>【变式2】(23-24高三上·湖南衡阳·期末)已知函数()()21e ln 12xf x x a x =--+.(1)证明:当1a £时,()1f x ≥对[)0,x Î+¥恒成立.(2)若存在()1212,x x x x ¹,使得()()12f x f x =,比较()()1211x x ++与2e e a的大小,并说明理由.【变式3】(23-24高三上·河北保定·阶段练习)已知函数()()2ln 12x f x x =++.(1)当[)0,x Î+¥时,比较()f x 与x 的大小;(2)若函数()2cos 2x g x x =+,且()()2e 10,0a f g b a b æö=->>ç÷èø,证明:()()211f b g a +>+.命题点2 根据函数的单调性求参数【例题4】(2023·全国·模拟预测)若对任意的1x ,2(,)x m Î+¥,且12x x <,122121ln ln 2x x x x x x -<-,则实数m 的取值范围是( )A .1,e e æöç÷èøB .1,e e éùêúëûC .1,e ¥éö+÷êëøD .1,e æö+¥ç÷èø【变式1】(23-24高三上·广东汕头·期中)设()0,1a Î,若函数()(1)x xf x a a =++在()0,¥+递增,则a 的取值范围是( )A.B.ö÷÷øC.ö÷÷øD.æççè【变式2】(多选)(23-24高三上·河南·阶段练习)已知函数()2ln f x x ax x =--,下列命题正确的是( )A .若1x =是函数()f x 的极值点,则1a =B .若()10f =,则()f x 在[]0,2x Î上的最小值为0C .若()f x 在()1,2上单调递减,则1a ≥D .若()()l ln x x f x -≥在[]1,2x Î上恒成立,则2a ≥【变式3】(23-24高三上·山东青岛·期末)若函数2()e 1x f x a x =+-在(0,)+¥上单调递增,则a 的取值范围是 .【课后强化】基础保分练一、单选题1.(2023·全国·高考真题)已知函数()e ln x f x a x =-在区间()1,2上单调递增,则a 的最小值为( ).A .2e B .eC .1e -D .2e -2.(23-24高三上·山西大同·阶段练习)设()af x x a x=-+在()1,+¥上为增函数,则实数a 取值范围是( )A .[)0,¥+B .[)1,+¥C .[)2,-+¥D .[)1,-+¥3.(2024·云南楚雄·一模)若a b >,则函数()2()y a x a x b =--的图象可能是( )A .B .C .D .4.(2024高三下·全国·专题练习)已知函数()()ln 224(0)f x x a x a a =+--+>,若有且只有两个整数12,x x 使得1()0>f x ,且2()0f x >,则实数a 的取值范围为( )A .[ln 3,2)B .(0,2ln 3]-C .(0,2ln 3)-D .[2ln 3,2)-5.(2024·全国·模拟预测)已知8sin 15a =,3ln 2b =,25c =,则,,a b c 的大小关系为( )A .a b c >>B .a c b>>C .b a c>>D .c b a>>二、多选题6.(2023·全国·模拟预测)已知函数()33f x x x =-,则( )A .函数()()()'g x f x f x =× 是偶函数B .y x =-是曲线()y f x =的切线C .存在正数(),a f x 在(),a a -不单调D .对任意实数a ,()(f a f a £+7.(23-24高三上·江西宜春·期中)下列函数中,是奇函数且在区间()0,1上是减函数的是( )A .()exf x =B .()sin f x x =-C .()1f x x=D .3()2f x x x=-三、填空题8.(2024·云南大理·模拟预测)函数()12ln f x x x =--的最大值为.9.(2024·全国·模拟预测)已知函数()2e e e x x x g x x x =--,若方程()g x k =有三个不同的实根,则实数k 的取值范围是 .四、解答题10.(2024·江西南昌·一模)已知函数()()2ln2ln f x x x x =+-.(1)求()f x 的单调递减区间;(2)求()f x 的最大值.11.(2024·江苏盐城·模拟预测)已知函数()2ln f x ax x x =--.(1)讨论()f x 的单调性;(2)若不等式()0f x ≥恒成立,求a 的取值范围.综合提升练一、单选题1.(2023·贵州毕节·一模)给出下列命题:①函数2()2x f x x =-恰有两个零点;②若函数()4a af x x x =-+在(1,)+¥上单调递增,则实数a 的取值范围是[1,)-+¥;③若函数()f x 满足()(1)4f x f x +-=,则12918101010f f f æöæöæö+++=ç÷ç÷ç÷èøèøèøL ;④若关于x 的方程20x m -=有解,则实数m 的取值范围是(0,1].其中正确的是( )A .①③B .②④C .③④D .②③2.(2023·江西·模拟预测)已知函数()32f x ax bx cx d =+++的大致图象如图所示,则( )A .0,0,0a b c >><B .0,0,0a b c ><<C .0,0,0a b c ><>D .a 0,b 0,c 0<>>3.(2024·云南昆明·模拟预测)已知函数()()()1e x f x x a =-+在区间()1,1-上单调递增,则a 的最小值为( )A .1e -B .2e -C .eD .2e 4.(2024·全国·模拟预测)已知函数2()4e e 2e x x xf x x =--,()f x ¢为()f x 的导函数,()()e xf xg x ¢=,则( )A .()g x 的极大值为24e 2-,无极小值B .()g x 的极小值为24e 2-,无极大值C .()g x 的极大值为4ln22-,无极小值D .()g x 的极小值为4ln22-,无极大值5.(2024·全国·模拟预测)已知13,,ln2e 14a b c ===-,则它们之间的大小关系是( )A .a b c <<B .a c b <<C .c a b<<D .c b a<<6.(2023·贵州遵义·模拟预测)若函数()2e x axf x -=在区间()1,3上单调递增,则a 的可能取值为( )A .2B .3C .4D .57.(2024·全国·模拟预测)若22ln 2e a -=,12e b =,ln 24c =,则a ,b ,c 的大小顺序为( )A .a c b<<B .c a b <<C .a b c <<D .b a c<<8.(2023·吉林通化·模拟预测)已知函数()e ln xf x a x =-有两个大于1的零点,则a 的取值范围可以是( )A .(]0,1B .1e 1,e æùçúèûC .1ee ,e æùçúèûD .)e 12e e ,e +éë二、多选题9.(22-23高三上·云南昆明·阶段练习)已知函数21e 1xx y x -=×-,则( )A .函数的极大值点为=0x B .函数的极小值点为=0x C .函数在(1,)+¥上单调递增D .函数在31,2æöç÷èø上单调递减10.(2023·云南昆明·模拟预测)已知函数3()f x x mx n =--,其中,m n ÎR ,下列选项中,能使函数()y f x =有且仅有一个零点的是( )A .1m =-,1n =B .0m =,1n =C .3m =,2n =D .3m =,3n =-11.(2023·山东泰安·一模)已知函数()()()ln f x x x ax a =-ÎR 有两个极值点1x ,2x ()12x x <,则( )A .102a <<B .2112x a<<C .21112x x a->-D .()10<f x ,()212f x >-三、填空题12.(2024·四川成都·三模)已知函数()f x 是定义在R 上的奇函数,且当0x >时,()()1ln f x x x =-,则当0x <时,()f x 的单调递增区间为 .13.(2023·湖南·模拟预测)已知函数()sin esin a xf x a x =-,对于任意12,x x ÎR ,都有()()12e 2f x f x -£-,则实数a 的取值范围为 .14.(2023·广东广州·模拟预测)已知函数()()()222e 22e 0x xf x a x a x a =--->恰有两个零点,则=a .四、解答题15.(2024·全国·模拟预测)已知函数2()ln f x x ax bx =+-.(1)当1a =,3b =时,求()f x 的单调区间;(2)若函数()f x 在2x =处取得极值ln 2,求曲线()y f x =在点(1,(1))f 处的切线方程.16.(2024·全国·模拟预测)已知函数()2()e x f x a a x =+-.(1)讨论()f x 的单调性;(2)证明:当0a >时,()4ln 2f x a ≥+.17.(2024·全国·模拟预测)已知函数()()21ln 12f x x x a x =+++,a ÎR .(1)讨论()f x 的单调性;(2)证明:当1a <-时,()21a f x +>.18.(2024·青海·模拟预测)已知函数()()3211132f x x mx m x =+-+.(1)讨论()f x 的单调性;(2)若()f x 有3个不同的零点,求m 的取值范围.19.(2023·全国·模拟预测)已知函数()e xf x ax b =+-,其中e 为自然对数的底数.(1)若()f x 在区间(]1,2上不是单调函数,求a 的取值范围.(2)当0x ≥时,()2112f x x b ≥+-恒成立,求a 的取值范围.拓展冲刺练一、单选题1.(2024·全国·模拟预测)下列函数是奇函数且在()0,¥+上单调递减的是( )A .()32xxf x -=+B .()2222x xxxf x ---=+C .()3f x x x=-D .()(12log f x x =2.(2024·全国·模拟预测)已知函数()32()log 2(0a f x x ax x a a =-+->且1)a ¹在区间(1,)+¥上单调递减,则a 的取值范围是( )A .20,3æùçúèûB .2,13éö÷êëøC .(1,2]D .[2,)+¥3.(2024·甘肃兰州·三模)函数()21ln f x x ax x =-++-,若()f x 在0,12æöç÷èø是减函数,则实数a 的取值范围为( )A .(,2]-¥B .(,2)-¥C .(,3]-¥D .(3),-¥4.(2024·全国·模拟预测)已知 2.012.0111110312,ln ,1001011021001015a b c æöæö=++==+ç÷ç÷èøèø,则( )A .a b c <<B .c b a <<C .<<b c aD .<<c a b二、多选题5.(2024·云南昆明·模拟预测)已知函数()321f x x ax ax =+-+,则下列说法正确的是( )A .若()f x 为R 上的单调函数,则3a <-B .若2a =时,()f x 在()1,1-上有最小值,无最大值C .若()1f x -为奇函数,则0a =D .当0a =时,()f x 在1x =处的切线方程为310x y --=6.(2024·云南曲靖·一模)下列不等式正确的是( )A .πe e π>B .1ln 0.99-<C .15sin 15<D .11sin 3π<三、填空题7.(2024·全国·模拟预测)已知1a >,0b >,1c >,且e e ln a b a b --==a ,b ,c 的大小关系为 .(用“<”连接)8.(2023·安徽·二模)若不等式2ln 23x ax a -£-对(0,)"Î+¥x 恒成立,则实数a 的取值范围为 .四、解答题9.(2024·湖南衡阳·二模)已知函数()()321f x ax bx a =++ÎR ,当2x =时,()f x 取得极值3-.(1)求()f x 的解析式;(2)求()f x 在区间[]1,3-上的最值.10.(2024·陕西西安·三模)已知函数1()ln ()m f x mx x m x-=--ÎR ,函数1π()ln ,[0,cos 2g x x x q q =+Î在区间[1,)+¥上为增函数.(1)确定q 的值,求3m =时曲线()y f x =在点(1,(1))f 处的切线方程;(2)设函数()()()h x f x g x =-在,()0x Î+¥上是单调函数,求实数m 的取值范围.11.(2024·辽宁丹东·一模)已知函数()ln 1f x x mx =++.(1)讨论函数()f x 的单调性;(2)当1m =时,数列{}n a 满足11a =,1()n n a f a +=①求证:12n n a -£;②求证:22223111(1)(1(1e na a a +++<L .。
山东高考数学导数知识点
山东高考数学导数知识点导数是高中数学中的重要概念之一,也是高考数学中常考的知识点。
了解导数的定义、性质以及应用是解决相关题目的关键。
本文将为您介绍山东高考数学中涉及的导数知识点。
一、导数的定义导数的定义是指函数在某一点处的变化率。
设函数y=f(x),若当自变量x在某一点x₀的附近取得增量Δx时,相应的函数值的增量Δy=f(x₀+Δx)-f(x₀),如果下式极限存在:lim(Δx→0) [f(x₀+Δx)-f(x₀)]/Δx则称函数在点x₀处可导,并称这个极限值为函数f(x)在点x₀处的导数,记作f'(x₀)或dy/dx|x=x₀。
二、导数的计算方法1. 基本导数法则高中数学中我们常用的函数的导数公式有:常数函数导数为0;幂函数导数为幂次乘以系数,即(d/dx)[xⁿ]=n*xⁿ⁻¹;指数函数eˣ的导数为eˣ;对数函数ln(x)的导数为1/x。
2. 利用基本导数法则计算复合函数的导数若y=f[u(x)]是由函数u(x)与函数f(x)复合而成,则y'(x)=f'[u(x)]*u'(x)。
3. 隐函数求导法当函数关系式不能简便地表示成y=f(x)的形式时,即为隐函数。
求隐函数的导数一般使用隐函数求导法。
三、导数的性质1. 导数与函数的连续性相关若函数f(x)在某点x₀处可导,则f(x)在该点处连续;若函数f(x)在某点x₀处连续,则不一定可导。
2. 导数与函数的单调性相关若函数f(x)在某区间内的导数大于0,则f(x)在该区间内单调递增;若函数f(x)在某区间内的导数小于0,则f(x)在该区间内单调递减。
3. 导数与函数的极值相关设函数f(x)在点x₀处可导,若在x₀的左侧有f'(x)>0,在x₀的右侧有f'(x)<0,则f(x)在点x₀处达到极大值;若在x₀的左侧有f'(x)<0,在x₀的右侧有f'(x)>0,则f(x)在点x₀处达到极小值。
导数与函数的极值、最值-重难点题型精讲 高考数学(新高考地区专用)(解析版)
专题3.5 导数与函数的极值、最值1.函数的极值与导数条件f ′(x 0)=0x 0附近的左侧f ′(x )>0,右侧f ′(x )<0x 0附近的左侧f ′(x )<0,右侧f ′(x )>0图象极值 f (x 0)为极大值 f (x 0)为极小值 极值点x 0为极大值点x 0为极小值点2.函数的最值(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值.【题型1 根据函数图象判断极值】【方法点拨】由图象判断函数y=f(x)的极值,要抓住两点:(1)由y=f′(x)的图象与x轴的交点,可得函数y=f(x)的可能极值点;(2)由导函数y=f′(x)的图象可以看出y=f′(x)的值的正负,从而可得函数y=f(x)的单调性.两者结合可得极值点.【例1】(2022春•杨浦区校级期末)已知函数y=f(x)(a<x<b)的导函数是y=f'(x)(a<x<b),导函数y=f'(x)的图象如图所示,则函数y=f(x)在(a,b)内有()A.3个驻点B.4个极值点C.1个极小值点D.1个极大值点【解题思路】由题意结合导函数图像即可确定函数的性质.【解答过程】解:由导函数的图象可知,原函数存在4个驻点,函数有3个极值点,其中2个极大值点,1个极小值点.故选:C.【变式1-1】(2022春•纳雍县期末)已知函数f(x)的导函数的图像如图所示,则下列结论正确的是()A.﹣1是f(x)的极小值点B.曲线y=f(x)在x=2处的切线斜率小于零C.f(x)在区间(﹣∞,3)上单调递减D.﹣3是f(x)的极小值点【解题思路】根据题意,由函数导数与单调性的关系依次分析选项,即可得答案.【解答过程】解:根据题意,依次分析选项:对于A,在x=﹣1左右都有f′(x)<0,﹣1不是f(x)的极值,A错误;对于B,f′(x)的图象在(﹣3,3)上,f′(x)<0,f(x)为减函数,则曲线y=f(x)在x=2处的切线斜率即f′(2)小于零,B正确;对于C,f′(x)的图象在(﹣∞,﹣3)上,f′(x)>0,f(x)为增函数,C错误;对于D,f′(x)的图象在(﹣∞,﹣3)上,f′(x)>0,在(﹣3,3)上,f′(x)<0,则﹣3是f (x)的极大值点,D错误;故选:B.【变式1-2】(2022春•朝阳区校级月考)如图,可导函数y=f(x)在点P(x0,f(x0))处的切线方程为y=g(x),设h(x)=g(x)﹣f(x),h'(x)为h(x)的导函数,则下列结论中正确的是()A.h'(x0)=0,x0是h(x)的极大值点B.h'(x0)=0,x0是h(x)的极小值点C.h'(x0)≠0,x0不是h(x)的极大值点D.h'(x0)≠0,x0是h(x)的极值点【解题思路】由图判断函数h(x)的单调性,结合y=g(x)为y=f(x)在点P处的切线方程,则有h'(x0)=0,由此可判断极值情况.【解答过程】解:由题得,当x∈(﹣∞,x0)时,h(x)单调递减,当x∈(x0,+∞)时,h(x)单调递增,又h'(x0)=g'(x0)﹣f'(x0)=0,则有x0是h(x)的极小值点,故选:B.【变式1-3】(2022春•南阳期末)函数f(x)的导函数是f'(x),下图所示的是函数y=(x+1)•f'(x)(x∈R)的图像,下列说法正确的是()A.x=﹣1是f(x)的零点B.x=2是f(x)的极大值点C.f(x)在区间(﹣2,﹣1)上单调递增D.f(x)在区间[﹣2,2]上不存在极小值【解题思路】根据函数y=(x+1)•f'(x)(x∈R)的图像判断f′(x)的符号,进而判断f(x)的单调性和极值即可.【解答过程】解:由函数y=(x+1)•f'(x)(x∈R)的图像知,当﹣2<x<﹣1时,x+1<0,y>0,∴f'(x)<0,f(x)在(﹣2,﹣1)上减函数,当﹣1<x<2时,x+1>0,y>0,∴f'(x)>0,f(x)在(﹣1,2)上增函数,当x>2时,x+1>0,y<0,f'(x)<0,f(x)在(2,+∞)上减函数,∴x=﹣1、x=2分别是f(x)的极小值点、极大值点.∴选项A、C、D错误,选项B正确,故选:B.【题型2 求已知函数的极值(点)】【方法点拨】求函数f(x)极值的一般解题步骤:①确定函数的定义域;②求导数f′(x);③解方程f′(x)=0,求出函数定义域内的所有根;④列表检验f′(x)在f′(x)=0的根x0左右两侧值的符号.【例2】(2022•扬中市校级开学)已知函数f(x)=12x−sinx在[0,π2]上的极小值为()A .π12−√32B .π12−12C .π6−12D .π6−√32【解题思路】根据极小值的定义,结合导数的性质进行求解即可. 【解答过程】解:由f(x)=12x −sinx ⇒f′(x)=12−cosx , 当x ∈(0,π3)时,f ′(x )<0,f (x )单调递减,当x ∈(π3,π2)时,f ′(x )>0,f (x )单调递增,所以π3是函数的极小值点,极小值为:f(π3)=π6−√32, 故选:D .【变式2-1】(2022春•资阳期末)函数f (x )=x 3﹣3x 的极大值为( ) A .﹣4B .﹣2C .1D .2【解题思路】求导,利用导数确定f (x )的单调区间,从而即可求极大值. 【解答过程】解:因为f (x )=x 3﹣3x ,x ∈R , 所以f ′(x )=3x 2﹣3=3(x +1)(x ﹣1), 令f ′(x )=0,得x =﹣1或x =1,所以当x <﹣1时,f ′(x )>0,f (x )单调递增;当﹣1<x <1时,f ′(x )<0,f (x )单调递减;当x >1时,f ′(x )>0,f (x )单调递增;所以f (x )的单调递增区间为:(﹣∞,﹣1),(1,∞);单调递减区间为(﹣1,1). 所以f (x )极大值=f (﹣1)=2. 故选:D .【变式2-2】(2022春•平谷区期末)函数f (x )=x +2cos x 在[0,π]上的极小值点为( ) A .π3B .π6C .5π6D .2π3【解题思路】分析函数导数的符号变化,由此可得函数的单调性,由单调性得出结论即可. 【解答过程】解:对于函数f (x )=x +2cos x ,f ′(x )=1﹣2sin x , 因为x ∈[0,π],当0<x <π6时,f ′(x )>0, 当π6<x <5π6时,f ′(x )<0,当5π6<x <π时,f ′(x )>0,所以f (x )在区间[0,π6]上是增函数,在区间[π6,5π6]上是减函数,在[5π6,π]是增函数. 因此,函数f (x )=x +2cos x 在[0,π]上的极小值点为5π6.故选:C .【变式2-3】(2022春•新乡期末)已知函数f (x )=(x ﹣1)2(2﹣x )3,则f (x )的极大值点为( ) A .1B .75C .﹣1D .2【解题思路】解:因为f '(x )=2(x ﹣1)(2﹣x )3﹣3(x ﹣1)2(2﹣x )2=(x ﹣1)(2﹣x )2(7﹣5x ),所以f (x )在(﹣∞,1),(75,+∞)上单调递减,在(1,75)上单调递增, 所以f (x )的极大值点为75,故选:B .【解答过程】解:f '(x )=2(x ﹣1)(2﹣x )3﹣3(x ﹣1)2(2﹣x )2=(x ﹣1)(2﹣x )2(7﹣5x ), 令f ′(x )=0得x =1或x =75,所以f (x )在(﹣∞,1),(75,+∞)上单调递减,在(1,75)上单调递增, 所以f (x )的极大值点为75,故选:B .【题型3 由函数的极值(点)求参数】 【方法点拨】根据函数极值情况求参数的两个要领:①列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解. ②验证:求出参数后,验证所求结果是否满足题意.【例3】(2022春•龙海市校级期末)函数f (x )=4x 3﹣ax 2﹣2bx +2在x =1处有极大值﹣3,则a ﹣b 的值等于( ) A .0B .6C .3D .2【解题思路】对函数求导,利用f (1)=﹣3以及f ′(1)=0解出a ,b ,进而得出答案. 【解答过程】解:由题意得f ′(x )=12x 2﹣2ax ﹣2b ,因为f (x )在x =1处有极大值﹣3, 所以f ′(1)=12﹣2a ﹣2b =0,f (1)=4﹣a ﹣2b +2=﹣3,解得a =3,b =3, 所以a ﹣b =0. 故选:A .【变式3-1】(2022春•哈尔滨期末)若函数f(x)=6alnx +12x 2−(a +6)x 有2个极值点,则实数a 的取值范围是()A.(﹣∞,6)∪(6,+∞)B.(0,6)∪(6,+∞)C.{6}D.(0,+∞)【解题思路】根据条件函数f(x)有两个极值点,转化为方程f′(x)=0有两个不等正实数根,得到求解.【解答过程】解:函数f(x)的定义域(0,+∞),f′(x)=6ax+x−(a+6)=(x−6)(x−a)x,令f′(x)=0得,x=6或x=a,∵函数f(x)有2个极值点,∴f'(x)=0有2个不同的正实数根,∴a>0且a≠6,故选:B.【变式3-2】(2022春•淄博期末)已知x=2是函数f(x)=ax3﹣3x2+a的极小值点,则f(x)的极大值为()A.﹣3B.0C.1D.2【解题思路】先对函数求导,然后结合极值存在条件可求a,进而可求函数的极大值.【解答过程】解:因为f′(x)=3ax2﹣6x,由题意可得,f′(2)=12a﹣12=0,故a=1,f′(x)=3x2﹣6x,当x>2或x<0时,f′(x)>0,函数单调递增,当0<x<2时,f′(x)<0,函数单调递减,故当x=0时,函数取得极大值f(0)=1.故选:C.【变式3-3】(2022春•赣州期末)已知函数f(x)=x3+a2x2+(2b2﹣7)x+1(a>0,b>0)在x=1处取得极值,则a+b的最大值为()A.1B.√2C.2D.2√2【解题思路】根据题意,对函数求导,令f′(1)=0可求得a2+b2=2,利用基本不等式可求a+b的最大值.【解答过程】解:函数f(x)=x3+a2x2+(2b2﹣7)x+1(a>0,b>0)的导数为f′(x)=3x2+2a2x+2b2﹣7,因为函数在x=1处取得极值,所以f′(1)=3+2a2+2b2﹣7=0,即a2+b2=2,因为a 2+b 2=(a +b )2﹣2ab =2,即(a +b )2﹣2=2ab , 因为ab ≤(a+b 2)2,所以(a +b)2−2≤2(a+b 2)2, 整理得(a +b )2≤4,所以a +b ≤2,当且仅当a =b =1时等号成立,此时f ′(x )=3x 2+2x ﹣5=(3x +5)(x ﹣1),满足函数在x =1处取得极值, 所以a +b 的最大值为2, 故选:C .【题型4 利用导数求函数的最值】 【方法点拨】(1)若函数f (x )在闭区间[a ,b ]上单调递增或单调递减,f (a )与f (b )一个为最大值,一个为最小值. (2)若函数f (x )在闭区间[a ,b ]内有极值,要先求出[a ,b ]上的极值,与f (a ),f (b )比较,最大的是最大值, 最小的是最小值,可列表完成.(3)函数f (x )在区间(a ,b )上有唯一一个极大(或极小)值点,这个极值点就是最大(或最小)值点,此结论在导 数的实际应用中经常用到.【例4】(2022•河南开学)函数f(x)=x 2−2x +8x 在(0,+∞)上的最小值为( ) A .2B .3C .4D .5【解题思路】由题意求导,从而确定函数的单调性,从而求函数的最值.【解答过程】解:因为f ′(x)=2x −2−8x 2=(x 3−2x 2)+(x 3−8)x 2=(x−2)(2x 2+2x+4)x 2,所以f (x )在(0,2)上单调递减,在(2,+∞)上单调递增, 故f (x )min =f (2)=4. 故选:C .【变式4-1】(2022春•中山市校级月考)函数y =x ﹣2sin x 在区间[0,2]上的最小值是( ) A .π6−√3B .−π3−√3C .−π6−√3D .π3−√3【解题思路】利用导数研究函数区间单调性,进而求其最小值即可. 【解答过程】解:由y ′=1﹣2cos x , 当0≤x <π3时,y ′<0,即y 递减; 当π3<x ≤2时,y ′>0,即y 递增;所以y min =π3−2sin π3=π3−√3.【变式4-2】(2022春•乐山期末)已知函数f (x )=x 2﹣lnx ,则函数f (x )在[1,2]上的最小值为( ) A .1B .√22C .18+12ln2 D .12+12ln2【解题思路】求导确定函数在[1,2]上的单调性,求出最小值即可.【解答过程】解:因为f (x )=x 2﹣lnx (x >0),所以f ′(x )=2x −1x =2x 2−1x ,所以当x ∈[1,2]时,f ′(x )=2x 2−1x >0,则f (x )在[1,2]上单调递增,则f (x )在[1,2]上的最小值为f (1)=1. 故选:A .【变式4-3】(2022•绿园区校级开学)函数f (x )=lnx +1x −12与g (x )=xe x ﹣lnx ﹣x 的最小值分别为a ,b ,则( ) A .a =b B .a >bC .a <bD .a ,b 的大小不能确定【解题思路】根据函数的单调性分别求出函数f (x ),g (x )的最小值,比较a ,b 即可. 【解答过程】解:f (x )的定义域是(0,+∞), f ′(x)=1−1x =x−1x, 令f ′(x )<0,解得:0<x <1,令f ′(x )>0,解得:x >1, f (x )在(0,1)递减,在(1,+∞)递增, f (x )的最小值是f (1)=1,故a =1, g (x )=xe x ﹣lnx ﹣x ,定义域(0,+∞), g ′(x)=(x +1)e x −1x −1=x+1x (xe x −1),令h (x )=xe x ﹣1,则h ′(x )=(x +1)e x >0,x ∈(0,+∞),则可得h (x )在(0,+∞)上单调递增,且h (0)=﹣1<0,h (1)=e ﹣1>0, 故存在x 0∈(0,1)使得h (x )=0即x 0e x 0=1,即x 0+lnx 0=0, 当x ∈(0,x 0)时,h (x )<0,g ′(x )<0,函数g (x )单调递减, 当x ∈(x 0,+∞)时,g ′(x )>0,函数g (x )单调递增,故当x =x 0时,函数取得最小值g(x 0)=x 0e x 0−lnx 0−x 0=1−lnx 0−x 0=1,即b =1, 所以a =b ,【题型5 由函数的最值求参数】【例5】(2022春•烟台期末)若函数f(x)=x 3−3a 2x 2+4在区间[1,2]上的最小值为0,则实数a 的值为( ) A .﹣2B .﹣1C .2D .103【解题思路】对函数求导后,分a ≤0和a >0两种情况求出函数的单调区间,从而可求出函数的最小值,使最小值等于零,从而可出实数a 的值. 【解答过程】解:由f(x)=x 3−3a 2x 2+4,得f '(x )=3x 2﹣3ax =3x (x ﹣a ), 当a ≤0时,f '(x )>0在[1,2]上恒成立, 所以f (x )在[1,2]上递增,所以f(x)min =f(1)=1−3a2+4=0,解得a =103(舍去), 当a >0时,由f '(x )=0,得x =0或x =a , 当0<a ≤1时,f '(x )>0在[1,2]上恒成立, 所以f (x )在[1,2]上递增, 所以f(x)min =f(1)=1−3a 2+4=0,解得a =103(舍去), 当1<a <2时,当1<x <a 时,f '(x )<0,当a <x <2时,f '(x )>0, 所以f (x )在(1,a )上递减,在(a ,2)上递增,所以当x =a 时,f (x )取得最小值,所以f(a)=a 3−3a2a 2+4=0,解得a =2(舍去), 当a ≥2时,当1≤x ≤2时,f '(x )<0,所以f (x )在[1,2]上递减, 所以f(x)min =f(2)=23−3a2×4+4=0,解得a =2, 综上,a =2, 故选:C .【变式5-1】(2022春•贵阳期末)若函数f(x)=e x +lnx +x √x −1+a 在x ≤20222021上的最小值为e +1,则a 的值为( ) A .0B .1C .20202021D .20212020【解题思路】判断函数f (x )的定义域,可知函数f (x )在定义域上单调递增,由此可建立关于a 的方程,解出即可得到答案.【解答过程】解:函数的定义域为[1,20222021],而函数y =e x ,y =lnx ,y =x √x −1在[1,+∞)上均为增函数,∴函数f(x)=e x +lnx +x √x −1+a 在[1,20222021]单调递增, ∴f (x )min =f (1)=e +a =e +1,解得a =1. 故选:B .【变式5-2】(2022春•江北区校级期末)若函数f (x )=x 3﹣3x 在区间(2a ,a +3)上有最小值,则实数a 的取值范围是( ) A .(−2,12)B .(﹣2,1)C .[−1,12)D .(﹣2,﹣1]【解题思路】由导数性质得f (x )的增区间是(﹣∞,﹣1),(1,+∞),减区间是(﹣1,1),x =1时,f (x )min =﹣2.由此利用函数性质列不等式即可求解a 的范围. 【解答过程】解:∵f (x )=x 3﹣3x ,∴f ′(x )=3x 2﹣3, 由f ′(x )=0,得x =±1,x ∈(﹣∞,﹣1)时,f ′(x )>0;x ∈(﹣1,1)时,f ′(x )<0;x ∈(1,+∞)时,f ′(x )>0, ∴f (x )的增区间是(﹣∞,﹣1),(1,+∞),减区间是(﹣1,1), ∴x =1时,f (x )min =﹣2. f (x )=x 3﹣3x =﹣2时, x 3﹣3x +2=0,x 3﹣x ﹣2x +2=0, x (x 2﹣1)﹣2x +2=0,x (x +1)(x ﹣1)﹣2(x ﹣1)=0, (x 2+x )(x ﹣1)﹣2(x ﹣1)=0, (x ﹣1)(x 2+x ﹣2)=0, (x ﹣1)(x +2)(x ﹣1)=0, (x ﹣1)2(x +2)=0, 解得x =1,x =﹣2,∴﹣2≤2a <1<a +3,∴﹣1≤a <12. 即实数a 的取值范围是[﹣1,12),故选:C.【变式5-3】(2022春•公安县校级月考)已知函数f(x)=x2e ax+1﹣2lnx﹣ax﹣2,若f(x)的最小值为0对任意x>0恒成立,则实数a的最小值为()A.2√eB.−2e C.1√eD.√e【解题思路】把f(x)转化为f(x)=e2lnx+ax+1﹣(2lnx+ax+1)﹣1,证明e x﹣1≥x恒成立,得到f(x)≥0恒成立,从而得到a=−2lnx−1x,令g(x)=−2lnx−1x,利用导数求出函数g(x)的最小值即可求出结果.【解答过程】解:∵函数f(x)=x2e ax+1﹣2lnx﹣ax﹣2,∴f(x)=e lnx2+ax+1−(lnx2+ax+1)−1,令t=lnx2+ax+1,则h(t)=e t﹣t﹣1,f′(t)=e t﹣1,当t∈(﹣∞,0)时h′(t)<0,h(t)单调递减,当t∈(0,+∞)时,h′(t)>0,h(t)单调递增,∴h(t)≥h(0)=0,∴f(x)=e lnx2+ax+1−(lnx2+ax+1)−1≥0,等号成立的条件是lnx2+ax+1=0,即a=−1−2lnxx在(0,+∞)上有解,设g(x)=−2lnx+1x,则g′(x)=−2−(2lnx+1)x2=2lnx−1x2,令g′(x)=0,解得x=√e,∴当x∈(0,√e)时,g′(x)<0,g(x)单调递减,当x∈(√e,+∞)时,g′(x)>0,g(x)单调递增,∴g(x)min=g(√e)=2√e,即a的最小值为2√e.故选:A.【题型6 极值和最值的综合问题】【方法点拨】解决函数极值、最值综合问题的策略:(1)求极值、最值时,要求步骤规范,含参数时,要讨论参数的大小.(2)求函数最值时,不可想当然地认为极值点就是最值点,要通过比较才能下结论.(3)函数在给定闭区间上存在极值,一般要将极值与端点值进行比较才能确定最值.【例6】(2022春•城厢区校级期末)已知函数f(x)=x3−32(k+1)x2+3kx+1,其中k∈R.(1)当k=3时,求函数f(x)在(0,3)内的极值点;(2)若函数f(x)在[1,2]上的最小值为3,求实数k的取值范围.【解题思路】(1)首先求得导函数,然后利用导函数研究函数的单调性,据此可求得函数的值域;(2)求得函数的解析式,然后结合导函数的符号确定函数的单调性,分类讨论即可求得实数k的取值范围.【解答过程】解:(1)k=3时,f(x)=x3﹣6x2+9x+1,则f'(x)=3x2﹣12x+9=3(x﹣1)(x﹣3),令f'(x)=0得x1=1,x2=3,当x<1时,f′(x)>0,f(x)单调递增;当1<x<3时,f′(x)<0,f(x)单调递减;当x>3时,f′(x)>0,f(x)单调递增;所以f(x)的单调递增区间为(﹣∞,1),(3,+∞),单调递减区间为(1,3);所以f(x)在(0,1)上单调递增,在(1,3)上单调递减.故f(x)在(0,3)内的极大值点为x=1,无极小值点;(2)方法一:f'(x)=3x2﹣3(k+1)x+3k=3(x﹣1)(x﹣k),①当k≤1时,∀x∈[1,2],f'(x)≥0,函数f(x)在区间[1,2]单调递增,所以f(x)min=f(1)=1−32(k+1)+3k+1=3,即k=53(舍);②当k≥2时,∀x∈[1,2],f'(x)≤0,函数f(x)在区间[1,2]单调递减,所以f(x)min=f(2)=8﹣6(k+1)+3k⋅2+1=3,符合题意;③当1<k<2时,当x∈[1,k)时,f'(x)≤0,f(x)区间在[1,k)单调递减,当x∈(k,2]时,f'(x)>0,f(x)区间在(k,2]单调递减,所以f(x)min=f(k)=k3−32(k+1)k2+3k2+1=3,化简得:k3﹣3k2+4=0,即(k+1)(k﹣2)2=0,所以k=﹣1或k=2(都舍);综上所述:实数k取值范围为k≥2.【变式6-1】(2022春•德州期末)已知函数f(x)=x3−3ax+1(a>12 ).(1)若函数f(x)在x=﹣1处取得极值,求实数a的值;(2)当x∈[﹣2,1]时.求函数f(x)的最大值.【解题思路】(1)利用导数求得函数极值,代入计算即可得到a的值;(2)f'(x)=0的根分类讨论,然后列表表示f'(x)的正负,极值点,同时注意比较端点处函数值,从而得最大值.【解答过程】解:(1)由题意可知f'(x)=3x2﹣3a,因为函数f(x)在x=﹣1处取得极值,所以f'(﹣1)=0,即3﹣3a=0,解得a=1,经检验a=1,符合题意,所以a=1;(2)由(1)知f'(x)=3x2﹣3a,令f'(x)=0,x=±√a,当0<√a<1,即0<a<1时,f(x)和f'(x)随x的变化情况如下表:x﹣2(−2,−√a)−√a(−√a,√a)√a(√a,1)1 f'(x)+0﹣0+f(x)﹣7+6a单调递增单调递减单调调增2﹣3a由表格可知f(x)在x=−√a取极大值,此时f(−√a)=2a√a+1>2−3a,所以f(x)在[﹣2,1]的最大值为2a√a+1.当1≤√a<2,即1≤a<4时,f(x)和f'(x)随x的变化情况如下表:x﹣2(−2,−√a)−√a(−√a,1)1f'(x)+0﹣f(x)﹣7+6a单调递增单调递减2﹣3a由表格可知f(x)在x=−√a取极大值,此时f(−√a)=2a√a+1>2−3a,所以f(x)在[﹣2,1]的最大值为2a√a+1.当√a≥2即a≥4时,f'(x)=3x2﹣3a≤0恒成立,即f(x)在[﹣2,1]上单调递减,所以f(x)的最大值为f (﹣2)=﹣7+6a ,综上所述,当12<a <4时,f (x )的最大值为2a √a +1;当a ≥4时,f (x )的最大值为﹣7+6a .【变式6-2】(2022春•漳州期末)已知函数f(x)=(x −1)e x −t2x 2−2x ,f '(x )为f (x )的导函数,函数g (x )=f '(x ).(1)当t =1时,求函数g (x )的最小值;(2)已知f (x )有两个极值点x 1,x 2(x 1<x 2)且f(x 1)+52e −1<0,求实数t 的取值范围. 【解题思路】(1)当t =1时,根据题意可得g (x )=xe x ﹣tx ﹣2,求导得g '(x )=(x +1)e x ﹣1,分析g (x )的单调性,进而可得g (x )min .(2)问题可化为t =e x −2x,有两个根x 1,x 2,令ℎ(x)=e x −2x,则ℎ′(x)=e x +2x 2>0,求导分析单调性,又x →﹣∞时,h (x )→0;x →+∞时,h (x )→+∞且ℎ(12)<0,推出t >0且t =e x 1−2x 1=e x 2−2x 2(x 1<0<x 2),分析f (x 1)的单调性,又φ(−1)=−52e +1,推出﹣1<x 1<0,即可得出答案.【解答过程】解:g (x )=f '(x )=xe x ﹣tx ﹣2,(1)当t =1时,g (x )=xe x ﹣x ﹣2,g '(x )=(x +1)e x ﹣1, 当x ≤﹣1时,x +1≤0,e x >0, 所以g '(x )=(x +1)e x ﹣1≤0﹣1<0, 当﹣1<x <0时,0<x +1<1,0<e x <1, 所以g '(x )=(x +1)e x ﹣1<1×1﹣1=0, 当x >0时,x +1>1,e x >1,所以g '(x )=(x +1)e x ﹣1>1×1﹣1=0.综上g (x )在(﹣∞,0)上为减函数,在(0,+∞)上为增函数, 所以g (x )min =g (0)=﹣2.(2)依题有:方程g (x )=0有两个不同的根x 1,x 2, 方程g (x )=0可化为t =e x −2x , 令ℎ(x)=e x −2x ,则ℎ′(x)=e x +2x 2>0, 所以h (x )在(﹣∞,0)和(0,+∞)都是增函数,因为x →﹣∞时,h (x )→0;x →+∞时,h (x )→+∞且ℎ(12)<0, 所以t >0且t =e x 1−2x 1=e x 2−2x 2(x 1<0<x 2), 所以f(x 1)=(x 1−1)e x 1−t2x 12−2x 1 =(x 1−1)e x 1−12(e x 1−2x 1)x 12−2x 1=(−x 122+x 1−1)e x 1−x 1<−52e +1,令φ(x)=(−x 22+x −1)e x −x(x <0),则φ′(x)=−12x 2e x −1<0,所以φ(x )在(﹣∞,0)上为减函数,又因为φ(−1)=−52e +1, 所以﹣1<x 1<0, 所以t =e x 1−2x 1>1e+2. 【变式6-3】(2022春•潞州区校级期末)有三个条件: ①函数f (x )在x =1处取得极小值2; ②f (x )在x =﹣1处取得极大值6; ③函数f (x )的极大值为6,极小值为2.这三个条件中,请任意选择一个填在下面的横线上(只要填写序号),并解答本题. 题目:已知函数f (x )=x 3﹣3ax +b (a >0),并且 _____. (1)求f (x )的解析式;(2)当x ∈[﹣3,1]时,求函数f (x )的最值.【解题思路】(1)求出函数f (x )的导数f ′(x ),选择条件①,②,利用给定的极值点及对应的极值列式求解并验证作答;选择条件③,判断极大值与极小值列式求解并验证作答. (2)利用(1)的结论,利用导数求出给定区间上的最值作答. 【解答过程】解:(1)选条件①:求导得f ′(x )=3x 2﹣3a ,由{f ′(1)=0f(1)=2,得{a =1b =4,此时f ′(x )=3(x +1)(x ﹣1),当﹣1<x <1时,f ′(x )<0,当x >1时,f ′(x )>0, 则f (x )在x =1处取得极小值2, 所以f (x )=x 3﹣3x +4;选条件②:求导得f ′(x )=3x 2﹣3a ,由{f ′(−1)=0f(−1)=6,得{a =1b =4,此时f ′(x )=3(x +1)(x ﹣1),当x <﹣1时,f ′(x )>0,当﹣1<x <1时,f ′(x )=<0,则f(x)在x=﹣1处取得极大值6,所以f(x)=x3﹣3x+4.选条件③:求导得f′(x)=3x2﹣3a,令f′(x)=3x2﹣3a=0,得x=±√a,当x<−√a或x>√a时,f′(x)>0,当−√a<x<√a时时,f′(x)<0,因此,当x=−√a时,f(x)取得极大值f(−√a),当x=√a时,f(x)取得极小值f(√a),于是得{(−√a)3−3a(−√a)+b=6(√a)3−3a√a+b=2,解得{a=1b=4,此时f′(x)=3(x+1)(x﹣1),当x<﹣1或x>1时,f′(x)>0,当﹣1<x<1时,f′(x)<0,则f(x)在x=1处取得极小值2,在x=﹣1处取得极大值6,所以f(x)=x3﹣3x+4;(2)由(1)知,f(x)=x3﹣3x+4,当x∈[﹣3,1]时,f′(x)=3(x+1)(x﹣1),当﹣3<x<﹣1时,f′(x)>0,当﹣1<x<1时,f′(x)<0,则f(x)在[﹣3,﹣1)上递增,在(﹣1,1]上递减,而f(﹣3)=﹣14,f(1)=2,所以f(x)max=f(﹣1)=6,f(x)min=f(﹣3)=﹣14.。
新高考数学必考知识点归纳
新高考数学必考知识点归纳新高考数学作为高中数学教育的重要组成部分,其必考知识点覆盖了基础数学的多个领域。
以下是对新高考数学必考知识点的归纳:一、函数与导数- 函数的定义、性质、图像- 一次函数、二次函数、幂函数、指数函数、对数函数、三角函数- 函数的单调性、奇偶性、周期性- 导数的定义、几何意义、运算法则- 基本导数公式、复合函数的求导法则- 高阶导数、隐函数求导、参数方程求导二、三角函数与解三角形- 三角函数的定义、图像、性质- 正弦定理、余弦定理、正切定理- 三角恒等变换、和差化积、积化和差- 三角函数的反函数、同角三角函数关系三、不等式与方程- 不等式的基本性质、解法- 一元一次不等式、一元二次不等式- 分式不等式、绝对值不等式- 线性方程组、非线性方程组的解法- 一元高次方程的解法四、数列- 数列的概念、分类- 等差数列、等比数列的定义、通项公式、求和公式- 数列的极限、无穷等比数列的求和- 数列的单调性、有界性五、解析几何- 点、线、面的基本性质- 直线的方程、圆的方程、椭圆、双曲线、抛物线的方程- 直线与圆的位置关系、圆与圆的位置关系- 圆锥曲线的参数方程、极坐标方程六、立体几何- 空间直线、平面的基本性质- 空间向量、向量积- 空间直线与平面的位置关系- 多面体、旋转体的体积、表面积七、概率与统计初步- 随机事件的概率、概率的加法公式、乘法公式- 条件概率、独立事件- 离散型随机变量及其分布列、期望、方差- 统计数据的收集、整理、描述八、复数- 复数的概念、复数的运算- 复数的几何意义、复平面- 复数的共轭、模、辐角九、逻辑推理与证明- 逻辑推理的基本形式、演绎推理- 直接证明、反证法、数学归纳法十、数学思想与方法- 数学建模、数学思维- 解题策略、数学方法论新高考数学的备考需要对这些知识点有深入的理解和熟练的运用能力。
通过不断的练习和总结,考生可以提高解题速度和准确率,为高考取得优异成绩打下坚实的基础。
高考数学总复习考点知识专题讲解9---导数与函数的极值、最值
角度2:已知函数求极值
【例1-2】
(1)(2020·广东深圳质检)已知函数f(x)=
1 2
x2
-(a+1)x+alnx+1,a∈R.若x=3是f(x)的极值点,求f(x)的
极大值.
(2)(2020·泉州质检)已知函数f(x)=x-1+
a ex
(a∈R,e为
自然对数的底数),求函数f(x)的极值.
[思路引导] (1)由f′(3)=0求出a→确定f′(x)的符号→
已知函数 求极值
求f′(x)→求方程f′(x)=0的根→列 表检验f′(x)在f′(x)=0的根的附近 两侧的符号→下结论.
若函数f(x)在x=x0处取得极 已知极值求 值,则f′(x0)=0,且在该
点左、右两侧的导数值符 参数值或范
号相反,求出参数后要检 围
验所求参数值是否满足x0的 极值点特征.
(2)f′(x)=ex(cosx-sinx)-1, 设h(x)=ex(cosx-sinx)-1,则 h′(x)=ex(cosx-sinx-sinx-cosx)=-2exsinx. 当x∈0,π2时,h′(x)<0, 所以h(x)在区间0,π2上单调递减.
所以对任意x∈0,π2有h(x)<h(0)=0,即f ′(x)<0. 所以函数f(x)在区间0,π2上单调递减. 因此f(x)在区间 0,π2 上的最大值为f(0)=1,最小值为 fπ2=-π2.
3ax2+bx-2a2在x=2时有极值0,那么a+b的值为( B )
A.14
B.40
C.14或40
D.52
(2)(2019·沈阳模拟)已知函数f(x)=x(lnx-ax)有两个极值 点,则实数a的取值范围是__0_,__12___.
2025年高考数学总复习课件19第三章第一节导数的概念及运算
(2)求f ′(x0)时,可先求f (x0),再求f ′(x0).( × )
(3)曲线y=f (x)在点P(x0,y0)处的切线与过点P(x0,y0)的切线相同.( × )
第一节
导数的概念及运算
必备知识
落实“四基”
2.已知函数f (x)在x=x0处的导数为12,则 lim
变化的方向,其大小|f ′(x)|反映了变化的快慢,|f ′(x)|越大,曲线在这点处的切线
越“陡峭”.
第一节
导数的概念及运算
必备知识
落实“四基”
核心考点
提升“四能”
自查自测
知识点二 导数的运算
1.(多选题)(教材改编题)下列导数的运算中正确的是( ABD )
A.(3x)′=3x ln 3
x sin x- cos x
导数的概念及运算
考向3
必备知识
落实“四基”
核心考点
提升“四能”
课时质量评价
求参数的值或取值范围
【例3】(1)(2024·江门模拟)若曲线y=e2ax在点(0,1)处的切线与直线x+2y+1=0
-sin x
f ′(x)=_________
f (x)=cos x
f (x)=ex
f (x)=ax(a>0,且a≠1)
f (x)=ln x
f (x)=log x(a>0,且a≠1)
ex
f ′(x)=____
ax ln a
f ′(x)=_________
1
f ′(x)=____
x
1
x ln a
f ′(x)=____
在点(0,f (0))处的切线方程为y-1=x,即y=x+1.
函数与导数知识点总结高考必备)
函数与导数知识点总结高考必备)一、函数的概念与性质1.函数:函数是一种将一个数域的数值和另一个数域的数值结合起来的关系。
记作y=f(x),其中y是函数值,x是自变量。
2.定义域和值域:函数的定义域是自变量x的取值范围,值域是函数所有可能的函数值的集合。
3.奇偶性:如果对于函数f(x),有f(-x)=f(x),则函数是偶函数;如果对于函数f(x),有f(-x)=-f(x),则函数是奇函数。
4.单调性:函数在定义域上的取值随着自变量的增大而增大,或随着自变量的减小而减小,则函数是单调递增的;函数在定义域上的取值随着自变量的增大而减小,或随着自变量的减小而增大,则函数是单调递减的。
二、导数的定义与性质1.导数的定义:函数y=f(x)在点x处的导数记作f'(x),定义为当自变量x的增量趋近于0时,函数值的增量与自变量增量的比值的极限。
2.导数的几何意义:导数表示函数曲线在该点处的切线斜率。
切线斜率越大,函数曲线越陡峭;切线斜率越小,函数曲线越平缓。
3.导函数:函数的导数也被称为导函数。
函数f(x)的导函数记作f'(x),如果导数存在。
4.导数的四则运算:(常数乘以函数)导数等于常数乘以函数的导数;(两个函数的和)导数等于两个函数的导数之和;(两个函数的差)导数等于两个函数的导数之差。
5.高阶导数:函数的导数的导数叫做高阶导数。
高阶导数也可以通过导数的定义来求解。
6.导数与函数图像的性质:函数在特定点处可导,则在该点处函数图像的切线与曲线相切;函数在特定点处导数不存在,则在该点处函数图像可能有尖点、垂直切线或间断点。
三、导数的求法1.基本初等函数的导数:常数函数、幂函数、指数函数、对数函数、三角函数、反三角函数的导数可以通过一些公式来求解。
2.利用导数的四则运算:通过导数的四则运算性质,可以求得由基本初等函数组成的复合函数的导数。
3.链式法则:如果y=f(g(x))是由两个函数复合而成的复合函数,则其导数可以通过链式法则求解:f(g(x))'=f'(g(x))*g'(x)。
高考数学知识点归纳(完整版)
高考数学知识点归纳(完整版)高考数学知识点归纳第一,函数与导数主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
第二,平面向量与三角函数、三角变换及其应用这一部分是高考的重点但不是难点,主要出一些基础题或中档题。
第三,数列及其应用这部分是高考的重点而且是难点,主要出一些综合题。
第四,不等式主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。
是高考的重点和难点。
第五,概率和统计这部分和我们的生活联系比较大,属应用题。
第六,空间位置关系的定性与定量分析主要是证明平行或垂直,求角和距离。
主要考察对定理的熟悉程度、运用程度。
第七,解析几何高考的难点,运算量大,一般含参数。
高考数学知识点高考数学必考知识点归纳必修一:1、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解) 高考数学必考知识点归纳必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角。
这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。
这部分知识高考占22---27分2、直线方程:高考时不单独命题,易和圆锥曲线结合命题3、圆方程高考数学必考知识点归纳必修三:1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分。
高考数学必考知识点归纳必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查。
2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。
09年理科占到5分,文科占到13分。
高考数学必考知识点归纳必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。
新高考数学试卷考点分布
新高考改革以来,我国高考数学试卷的考点分布发生了很大的变化。
本文将针对新高考数学试卷的考点分布进行详细分析,以帮助考生更好地备考。
一、基础考点1. 集合与常用逻辑用语:这一部分主要考查集合的概念、运算、关系,以及逻辑用语的基本用法。
在历年高考中,这一部分的考题占比约为25%。
2. 函数:函数是高考数学的核心考点,包括函数的概念、性质、图像、运算等。
在历年高考中,这一部分的考题占比约为35%。
3. 三角函数与解三角形:这一部分主要考查三角函数的概念、性质、图像、运算,以及解三角形的相关知识。
在历年高考中,这一部分的考题占比约为20%。
4. 导数及其应用:这一部分主要考查导数的概念、性质、运算,以及导数在解决实际问题中的应用。
在历年高考中,这一部分的考题占比约为20%。
5. 不等式:这一部分主要考查不等式的概念、性质、解法,以及不等式在实际问题中的应用。
在历年高考中,这一部分的考题占比约为10%。
二、提高考点1. 平面向量:这一部分主要考查向量的概念、运算、性质,以及向量在解决实际问题中的应用。
在历年高考中,这一部分的考题占比约为10%。
2. 平面解析几何:这一部分主要考查直线、圆、圆锥曲线等图形的性质、方程、运算,以及解析几何在实际问题中的应用。
在历年高考中,这一部分的考题占比约为15%。
3. 立体几何:这一部分主要考查空间几何体的性质、方程、运算,以及立体几何在实际问题中的应用。
在历年高考中,这一部分的考题占比约为10%。
4. 数列:这一部分主要考查数列的概念、性质、运算,以及数列在实际问题中的应用。
在历年高考中,这一部分的考题占比约为10%。
5. 统计与概率:这一部分主要考查统计的基本概念、方法,以及概率的计算。
在历年高考中,这一部分的考题占比约为5%。
三、综合考点1. 实际应用问题:新高考数学试卷越来越注重考查考生解决实际问题的能力。
这类题目往往涉及多个知识点的综合运用,要求考生具备较强的逻辑思维能力和分析能力。
高考数学:函数与导数知识点
高考数学:函数与导数知识点1.函数恒成立问题【知识点的认识】恒成立指函数在其定义域内满足某一条件(如恒大于0等),此时,函数中的参数成为限制了这一可能性(就是说某个参数的存在使得在有些情况下无法满足要求的条件),因此,适当的分离参数能简化解题过程.例:要使函数f(x)=ax^2+1恒大于0,就必须对a进行限制﹣﹣令a≥0,这是比较简单的情况,而对于比较复杂的情况时,先分离参数的话做题较简单【解题方法点拨】一般恒成立问题最后都转化为求最值得问题,常用的方法是分离参变量和求导.例:f(x)=x2+2x+3≥ax,(x>0)求a的取值范围.解:由题意可知:a≤恒成立即a≤x++2⇒a≤2+2【命题方向】恒成立求参数的取值范围问题是近几年高考中出现频率相当高的一类型题,它比较全面的考查了导数的应用,突出了导数的工具性作用.2.函数的零点【函数的零点】一般地,对于函数y=f(x)(x∈R),我们把方程f(x)=0的实数根x叫作函数y=f (x)(x∈D)的零点.即函数的零点就是使函数值为0的自变量的值.函数的零点不是一个点,而是一个实数.【解法﹣﹣二分法】①确定区间[a,b],验证f(a)*f(b)<0,给定精确度;②求区间(a,b)的中点x1;③计算f(x1);④若f(x1)=0,则x1就是函数的零点;⑤若f(a)f(x1)<0,则令b=x1(此时零点x0∈(a,x1));⑥若f(x1)f(b)<0,则令a=x1.(此时零点x0∈(x1,b)⑦判断是否满足条件,否则重复(2)~(4)【总结】零点其实并没有多高深,简单的说,就是某个函数的零点其实就是这个函数与x轴的交点的横坐标,另外如果在(a,b)连续的函数满足f(a)•f(b)<0,则(a,b)至少有一个零点.这个考点属于了解性的,知道它的概念就行了.3.函数零点的判定定理【知识点的知识】1、函数零点存在性定理:一般地,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f (a)•f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=O,这个c也就是f(x)=0的根.特别提醒:(1)根据该定理,能确定f(x)在(a,b)内有零点,但零点不一定唯一.(2)并不是所有的零点都可以用该定理来确定,也可以说不满足该定理的条件,并不能说明函数在(a,b)上没有零点,例如,函数f(x)=x2﹣3x+2有f(0)•f(3)>0,但函数f(x)在区间(0,3)上有两个零点.(3)若f(x)在[a,b]上的图象是连续不断的,且是单调函数,f(a).f(b)<0,则f (x)在(a,b)上有唯一的零点.2、函数零点个数的判断方法:(1)几何法:对于不能用求根公式的方程,可以将它与函数y=f(x)的图象联系起来,并利用函数的性质找出零点.特别提醒:①“方程的根”与“函数的零点”尽管有密切联系,但不能混为一谈,如方程x2﹣2x+1=0在[0,2]上有两个等根,而函数f(x)=x2﹣2x+1在[0,2]上只有一个零点;②函数的零点是实数而不是数轴上的点.(2)代数法:求方程f(x)=0的实数根.4.利用导数研究函数的单调性【知识点的知识】1、导数和函数的单调性的关系:(1)若f′(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数,f′(x)>0的解集与定义域的交集的对应区间为增区间;(2)若f′(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数,f′(x)<0的解集与定义域的交集的对应区间为减区间.2、利用导数求解多项式函数单调性的一般步骤:(1)确定f(x)的定义域;(2)计算导数f′(x);(3)求出f′(x)=0的根;(4)用f′(x)=0的根将f(x)的定义域分成若干个区间,列表考察这若干个区间内f′(x)的符号,进而确定f(x)的单调区间:f′(x)>0,则f(x)在对应区间上是增函数,对应区间为增区间;f′(x)<0,则f(x)在对应区间上是减函数,对应区间为减区间.【典型例题分析】题型一:导数和函数单调性的关系典例1:已知函数f(x)的定义域为R,f(﹣1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为()A.(﹣1,1)B.(﹣1,+∞)C.(﹣∞,﹣1)D.(﹣∞,+∞)解:f(x)>2x+4,即f(x)﹣2x﹣4>0,设g(x)=f(x)﹣2x﹣4,则g′(x)=f′(x)﹣2,∵对任意x∈R,f′(x)>2,∴对任意x∈R,g′(x)>0,即函数g(x)单调递增,∵f(﹣1)=2,∴g(﹣1)=f(﹣1)+2﹣4=4﹣4=0,则由g(x)>g(﹣1)=0得x>﹣1,即f(x)>2x+4的解集为(﹣1,+∞),故选:B题型二:导数和函数单调性的综合应用典例2:已知函数f(x)=alnx﹣ax﹣3(a∈R).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数在区间(t,3)上总不是单调函数,求m的取值范围;(Ⅲ)求证:.解:(Ⅰ)(2分)当a>0时,f(x)的单调增区间为(0,1],减区间为[1,+∞);当a<0时,f(x)的单调增区间为[1,+∞),减区间为(0,1];当a=0时,f(x)不是单调函数(4分)(Ⅱ)得a=﹣2,f(x)=﹣2lnx+2x﹣3∴,∴g'(x)=3x2+(m+4)x﹣2(6分)∵g(x)在区间(t,3)上总不是单调函数,且g′(0)=﹣2∴由题意知:对于任意的t∈[1,2],g′(t)<0恒成立,所以有:,∴(10分)(Ⅲ)令a=﹣1此时f(x)=﹣lnx+x﹣3,所以f(1)=﹣2,由(Ⅰ)知f(x)=﹣lnx+x﹣3在(1,+∞)上单调递增,∴当x∈(1,+∞)时f(x)>f(1),即﹣lnx+x﹣1>0,∴lnx<x﹣1对一切x∈(1,+∞)成立,(12分)∵n≥2,n∈N*,则有0<lnn<n﹣1,∴∴【解题方法点拨】若在某区间上有有限个点使f′(x)=0,在其余的点恒有f′(x)>0,则f(x)仍为增函数(减函数的情形完全类似).即在区间内f′(x)>0是f(x)在此区间上为增函数的充分条件,而不是必要条件.5.函数在某点取得极值的条件【知识点的知识】极值的判断首先要求:1、该处函数值有意义,2、该处函数连续.求极值的时候F'(X)=0是首先考虑的,但是对于F'(X)无意义的点也要讨论,只要该点有函数值且函数连续、两边导函数值异号,就可以确定该点是极值点.具备了这些条件,我们进一步判定极大值和极小值:当这个点左边的导函数大于0时,即左边单调递增,右边的导函数小于0时,即右边单调递减,此时这个点就是极大值,你可以把他理解成波峰的那个点;那么波谷的那个点就是极小值,情况相反.【典型例题分析】例1:求函数f(x)=3x5﹣5x3﹣9的极值点的个数.解:∵函数f(x)=3x5﹣5x3﹣9∴f'(x)=15x4﹣15x2令f'(x)=0则x=﹣1,x=0或x=1又∵当x∈(﹣∞,﹣1)时,f'(x)>0;当x∈(﹣1,0)时,f'(x)<0;当x∈(0,1)时,f'(x)<0;当x∈(1,+∞)时,f'(x)>0故函数f(x)=3x5﹣5x3﹣9的极值点的个数有2个.这个例题中首先判断的是其是否连续,然后在求导函数为0的点有几个,即它的极值点有几个.例2:已知实数a,b,c,d成等比数列,且曲线y=3x﹣x3的极大值点的坐标为(b,c),则ad等于.解:已知实数a,b,c,d成等比数列,∴ad=bc,∵y′=3﹣3x2=0,则x=±1,经检验,x=1是极大值点.极大值为2.∴b=1,c=2由等比数列的性质可得:ad=bc=2.这个有两个极值点,但要求的是极大值,这个时候我们可以联想到波峰,即在这个点的左边必须要大于0,要是单调递增的,右边必须小于0,既是单调递减的,这样这个点才处于波峰的位置,这个时候就是极大值,这里的验证其实就是做这个工作.【考点动向】这也是导数里面很重要的一个点,可以单独出题,也可以作为大题的一个小问,还可以隐含在条件中作为隐含信息,大家务必理解,并灵活运用.6.利用导数研究函数的极值【知识点的知识】1、极值的定义:(1)极大值:一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x)<f(x0),就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0),x0是极大值点;(2)极小值:一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f (x)>f(x0),就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点.2、极值的性质:(1)极值是一个局部概念,由定义知道,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小;(2)函数的极值不是唯一的,即一个函数在某区间上或定义域内极大值或极小值可以不止一个;(3)极大值与极小值之间无确定的大小关系,即一个函数的极大值未必大于极小值;(4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点,而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点.3、判别f(x0)是极大、极小值的方法:若x0满足f′(x0)=0,且在x0的两侧f(x)的导数异号,则x0是f(x)的极值点,f(x0)是极值,并且如果f′(x)在x0两侧满足“左正右负”,则x0是f(x)的极大值点,f(x0)是极大值;如果f′(x)在x0两侧满足“左负右正”,则x0是f(x)的极小值点,f(x0)是极小值.4、求函数f(x)的极值的步骤:(1)确定函数的定义区间,求导数f′(x);(2)求方程f′(x)=0的根;(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查f′(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号即都为正或都为负,则f(x)在这个根处无极值.【解题方法点拨】在理解极值概念时要注意以下几点:(1)按定义,极值点x0是区间[a,b]内部的点,不会是端点a,b(因为在端点不可导).(2)极值是一个局部性概念,只要在一个小领域内成立即可.要注意极值必须在区间内的连续点取得.一个函数在定义域内可以有许多个极小值和极大值,在某一点的极小值也可能大于另一个点的极大值,也就是说极大值与极小值没有必然的大小关系,即极大值不一定比极小值大,极小值不一定比极大值小.(3)若f(x)在(a,b)内有极值,那么f(x)在(a,b)内绝不是单调函数,即在区间上单调的函数没有极值.(4)若函数f(x)在[a,b]上有极值且连续,则它的极值点的分布是有规律的,相邻两个极大值点之间必有一个极小值点,同样相邻两个极小值点之间必有一个极大值点,一般地,当函数f(x)在[a,b]上连续且有有限个极值点时,函数f(x)在[a,b]内的极大值点、极小值点是交替出现的,(5)可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,不可导的点也可能是极值点,也可能不是极值点.7.利用导数研究函数的最值【利用导数求函数的最大值与最小值】1、函数的最大值和最小值观察图中一个定义在闭区间[a,b]上的函数f(x)的图象.图中f(x1)与f(x3)是极小值,f(x2)是极大值.函数f(x)在[a,b]上的最大值是f(b),最小值是f(x1).一般地,在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.说明:(1)在开区间(a,b)内连续的函数f(x)不一定有最大值与最小值.如函数f(x)=在(0,+∞)内连续,但没有最大值与最小值;(2)函数的最值是比较整个定义域内的函数值得出的;函数的极值是比较极值点附近函数值得出的.(3)函数f(x)在闭区间[a,b]上连续,是f(x)在闭区间[a,b]上有最大值与最小值的充分条件而非必要条件.(4)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个2、用导数求函数的最值步骤:由上面函数f(x)的图象可以看出,只要把连续函数所有的极值与定义区间端点的函数值进行比较,就可以得出函数的最值了.设函数f(x)在[a,b]上连续,在(a,b)内可导,则求f(x)在[a,b]上的最大值与最小值的步骤如下:(1)求f(x)在(a,b)内的极值;(2)将f(x)的各极值与f(a)、f(b)比较得出函数f(x)在[a,b]上的最值.【解题方法点拨】在理解极值概念时要注意以下几点:(1)按定义,极值点x0是区间[a,b]内部的点,不会是端点a,b(因为在端点不可导).(2)极值是一个局部性概念,只要在一个小领域内成立即可.要注意极值必须在区间内的连续点取得.一个函数在定义域内可以有许多个极小值和极大值,在某一点的极小值也可能大于另一个点的极大值,也就是说极大值与极小值没有必然的大小关系,即极大值不一定比极小值大,极小值不一定比极大值小.(3)若f(x)在(a,b)内有极值,那么f(x)在(a,b)内绝不是单调函数,即在区间上单调的函数没有极值.(4)若函数f(x)在[a,b]上有极值且连续,则它的极值点的分布是有规律的,相邻两个极大值点之间必有一个极小值点,同样相邻两个极小值点之间必有一个极大值点,一般地,当函数f(x)在[a,b]上连续且有有限个极值点时,函数f(x)在[a,b]内的极大值点、极小值点是交替出现的,(5)可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,不可导的点也可能是极值点,也可能不是极值点.8.利用导数研究曲线上某点切线方程【考点描述】利用导数来求曲线某点的切线方程是高考中的一个常考点,它既可以考查学生求导能力,也考察了学生对导数意义的理解,还考察直线方程的求法,因为包含了几个比较重要的基本点,所以在高考出题时备受青睐.我们在解答这类题的时候关键找好两点,第一找到切线的斜率;第二告诉的这点其实也就是直线上的一个点,在知道斜率的情况下可以用点斜式把直线方程求出来.【实例解析】例:已知函数y=xlnx,求这个函数的图象在点x=1处的切线方程.解:k=y'|x=1=ln1+1=1又当x=1时,y=0,所以切点为(1,0)∴切线方程为y﹣0=1×(x﹣1),即y=x﹣1.我们通过这个例题发现,第一步确定切点;第二步求斜率,即求曲线上该点的导数;第三步利用点斜式求出直线方程.这种题的原则基本上就这样,希望大家灵活应用,认真总结.9.数列与不等式的综合【知识点的知识】证明与数列求和有关的不等式基本方法:(1)直接将数列求和后放缩;(2)先将通项放缩后求和;(3)先将通项放缩后求和再放缩;(4)尝试用数学归纳法证明.常用的放缩方法有:,,,=[]﹣=<<=﹣(n≥2),<=()(n≥2),,2()=<=<=2().…+≥…+==<.【解题方法点拨】证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材.这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种:(1)添加或舍去一些项,如:>|a|;>n;(2)将分子或分母放大(或缩小);(3)利用基本不等式;<;(4)二项式放缩;(5)利用常用结论;(6)利用函数单调性.(7)常见模型:①等差模型;②等比模型;③错位相减模型;④裂项相消模型;⑤二项式定理模型;⑥基本不等式模型.【典型例题分析】题型一:等比模型典例1:对于任意的n∈N*,数列{a n}满足=n+1.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求证:对于n≥2,.解答:(Ⅰ)由①,当n≥2时,得②,①﹣②得.∴.又,得a1=7不适合上式.综上得;(Ⅱ)证明:当n≥2时,.∴=.∴当n≥2时,.题型二:裂项相消模型典例2:数列{a n}的各项均为正数,S n为其前n项和,对于任意n∈N*,总有a n,S n,a n2成等差数列.(1)求数列{a n}的通项公式;(2)设,数列{b n}的前n项和为T n,求证:.分析:(1)根据a n=S n﹣S n﹣1,整理得a n﹣a n﹣1=1(n≥2)进而可判断出数列{a n}是公差为1的等差数列,根据等差数列的通项公式求得答案.(2)由(1)知,因为,所以,从而得证.解答:(1)由已知:对于n∈N*,总有2S n=a n+a n2①成立∴(n≥2)②①﹣②得2a n=a n+a n2﹣a n﹣1﹣a n﹣12,∴a n+a n﹣1=(a n+a n﹣1)(a n﹣a n﹣1)∵a n,a n﹣1均为正数,∴a n﹣a n﹣1=1(n≥2)∴数列{a n}是公差为1的等差数列又n=1时,2S1=a1+a12,解得a1=1,∴a n=n.(n∈N*)(2)解:由(1)可知∵∴【解题方法点拨】(1)放缩的方向要一致.(2)放与缩要适度.(3)很多时候只对数列的一部分进行放缩法,保留一些项不变(多为前几项或后几项).(4)用放缩法证明极其简单,然而,用放缩法证不等式,技巧性极强,稍有不慎,则会出现放缩失当的现象.所以对放缩法,只需要了解,不宜深入.。
导数高考必背知识点
导数高考必背知识点在高中数学中,导数是一个重要的概念,也是高考数学中的必考内容之一。
掌握好导数的相关知识点,不仅可以帮助我们更好地理解数学,还可以提高我们解决实际问题的能力。
下面,我们来一起回顾一下导数的一些必备知识。
一、导数的定义导数的定义是导数概念的基石,也是进一步研究导数的核心。
导数可以理解为函数在某一点上的变化率或者斜率。
导数的定义可以表达为:如果函数f(x)在点x=a处的导数存在,那么导数f'(a)表示函数f(x)在该点的切线的斜率。
导数的定义可以用极限的思想来解释,即导数f'(a)等于函数f(x)在点x=a处的极限。
二、导数的性质导数具有一些重要的性质,这些性质在理解和运用导数的过程中非常关键。
1. 函数f(x)的导数存在的充分必要条件是f(x)在该点连续。
2. 如果函数f(x)在某点x=a处的导数存在,那么在该点附近,函数f(x)可以用导数来近似表示,即f(x)≈f(a)+f'(a)(x-a)。
3. 如果函数f(x)在某区间上的导数f'(x)恒大于0,那么函数f(x)在该区间上是递增的;如果函数f(x)在某区间上的导数f'(x)恒小于0,那么函数f(x)在该区间上是递减的。
三、导数的基本运算法则导数的基本运算法则也是解决导数题型的关键。
它包括以下几个方面的内容:1. 常数的导数恒为0:即如果y=k是一个常数,那么y'=0。
2. 变量的幂次方的导数:如果y=x^n,其中n为任意常数,那么y'=nx^(n-1)。
3. 基本初等函数的导数:例如y=sin(x)的导数是y'=cos(x),y=cos(x)的导数是y'=-sin(x),y=e^x的导数是y'=e^x,以及y=ln(x)的导数是y'=1/x。
4. 和、差、积的导数:如果函数y=f(x)和g(x)的导数均存在,那么它们的和、差、积的导数可以有相应的公式来表达。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数与函数核心考点目录题型一切线型1.求在某处的切线方程2.求过某点的切线方程3.已知切线方程求参数题型二单调型1.主导函数需“二次求导”型2.主导函数为“一次函数”型3.主导函数为“二次函数”型4.已知函数单调性,求参数范围题型三极值最值型1.求函数的极值2.求函数的最值3.已知极值求参数4.已知最值求参数题型四零点型1.零点(交点,根)的个数问题2.零点存在性定理的应用3.极值点偏移问题题型五恒成立与存在性问题1.单变量型恒成立问题2.单变量型存在性问题3.双变量型的恒成立与存在性问题4.等式型恒成立与存在性问题题型六与不等式有关的证明问题1.单变量型不等式证明2.含有e x与l n x的不等式证明技巧3.多元函数不等式的证明4.数列型不等式证明的构造方法题型一切线型1.求在某处的切线方程例1.【2015重庆理20】求函数f (x )=3x ²ex 在点(1,f (1))处的切线方程.解:由f (x )=3x ²e x ,得f ′(x )=6x -3x ²ex,切点为(1,3e ),斜率为f ′(1)=3e 由f (1)=3e ,得切点坐标为(1,3e ),由f ′(1)=3e ,得切线斜率为3e;∴切线方程为y -3e =3e(x -1),即3x -e y =0.例2.求f (x )=e x (1x+2)在点(1,f (1))处的切线方程.解:由f (x )=e x (1x +2),得f ′(x )=e x(-1x ²+1x+2)由f (1)=3e ,得切点坐标为(1,3e ),由f ′(1)=2e ,得切线斜率为2e ;∴切线方程为y -3e =2e (x -1),即2e x -y +e =0.例3.求f (x )=l n 1-x 1+x 在点(0,f (0))处的切线方程.解:由f (x )=l n 1-x 1+x =l n (1-x )-l n (1+x ),得f ′(x )=-11-x -11+x由f (0)=0,得切点坐标为(0,0),由f ′(0)=-2,得切线斜率为-2;∴切线方程为y =-2x ,即2x +y =0.例4.【2015全国新课标理20⑴】在直角坐标系x o y 中,曲线C :y =x ²4与直线l :y =k x +a (a >0)交于M ,N 两点,当k =0时,分别求C 在点M 与N 处的切线方程.解:由题意得:a =x ²4,则x =±2a ,即M (-2a ,a ),N (2a ,a ),由f (x )=x ²4,得f ′(x )=x2,当切点为M (-2a ,a )时,切线斜率为f ′(-2a )=-a ,此时切线方程为:a x +y +a =0;当切点为N (2a ,a )时,切线斜率为f ′(2a )=a ,此时切线方程为:a x -y -a =0;解题模板一求在某处的切线方程⑴写出f (x );⑵求出f ′(x );⑶写出切点(x 0,f (x 0));⑷切线斜率k =f ′(x 0);⑸切线方程为y -f (x 0)=f ′(x 0)(x -x 0).2.求过某点的切线方程S t e p 1设切点为(x 0,f (x 0)),则切线斜率f ′(x 0),切线方程为:y -f (x 0)=f ′(x 0)(x -x 0)S t e p 2因为切线过点(a ,b ),所以b -f (x 0)=f ′(x 0)(a -x 0),解得x 0=x 1或x 0=x 2S t e p 2当x 0=x 1时,切线方程为y -f (x 1)=f ′(x 0)(x -x 1)当x 0=x 2时,切线方程为y -f (x 2)=f ′(x 0)(x -x 2)例1.求f (x )=13x 3+43过点P (2,4)的切线方程.解:设切点为(x 0,13x 03+43),则切线斜率f ′(x 0)=x 0²,所以切线方程为:y -13x 03+43=x 0²(x -x 0),由切线经过点P (2,4),可得4-13x 03+43=x 0²(2-x 0),整理得:x 03-3x 0²+4=0,解得x 0=-1或x 0=2当x 0=-1时,切线方程为:x -y +2=0;当x 0=2时,切线方程为:4x -y -4=0.例2.求f (x )=x 3-4x ²+5x -4过点(2,-2)的切线方程.解:设切点为(x 0,x 03-4x 0²+5x 0-4),则切线斜率f ′(x 0)=3x 0²-8x 0+5,所以切线方程为:y -(x 03-4x 0²+5x 0-4)=(3x 0²-8x 0+5)(x -x 0),由切线经过点P (2,4),可得4-(x 03-4x 0²+5x 0-4)=(3x 0²-8x 0+5)(2-x 0),解得x 0=1或x 0=2当x 0=1时,切线方程为:2x +y -2=0;当x 0=2时,切线方程为:x -y -4=0.例3.过A (1,m )(m ≠2)可作f (x )=x 3-3x 的三条切线,求m 的取值范围.解:设切点为(x 0,x 03-3x 0),则切线斜率f ′(x 0)=3x 0²-3,切线方程为y -(x 03-3x 0)=(3x 0²-3)(x -x 0)∵切线经过点P (1,m ),∴m -(x 03-4x 0²+5x 0-4)=(3x 0²-8x 0+5)(1-x 0),OOOPPP点P 不在曲线上不是切点点P 在曲线上不确定是切点点P 在曲线上切点即:-2x 03+3x 0²-3-m =0,即m =-2x 03+3x 0²-3∵过点A (1,m )(m ≠2)可作f (x )=x 3-3x 的三条切线,∴方程m =-2x 03+3x 0²-3,有三个不同的实数根.∴曲线H (x 0)=-2x 03+3x 0²-3与直线y =m 有三个不同交点,H ′(x 0)=-6x 0²+6x 0=-6x 0(x 0-1)令H ′(x 0)>0,则0<x 0<1;令H ′(x 0)<0,则x 0<0或x 0>1∴H (x 0)在(-∞,0)递减,在(0,1)递增,在(1,+∞)递减,∴H (x 0)的极小值=H (0)=-3,H (x 0)的极大值=H (1)=-2,由题意得-3<x <-2.例4.由点(-e ,e -2)可向曲线f (x )=l n x -x -1作几条切线,并说明理由.解:设切点为(x 0,l n x 0-x 0-1),则切线斜率f ′(x 0)=1x 0-1,切线方程为y -(l n x 0-x 0-1)=(1x 0-1)(x -x 0),∵切线经过点(-e ,e -2),∴e -2-(l n x 0-x 0-1)=(1x 0-1)(-e -x 0),即l n x 0=e x 0∵y =l n x 与y =ex 只有一个交点∴方程l n x 0=ex 0有唯一的实数根∴由点(-e ,e -2)可向曲线f (x )=l n x -x -1作一条切线.解题模板二求过某点的切线方程⑴设切点为(x 0,f (x 0)),则切线斜率f ′(x 0),切线方程为:y -f (x 0)=f ′(x 0)(x -x 0)⑵因为切线过点(a ,b ),所以b -f (x 0)=f ′(x 0)(a -x 0),解得x 0=x 1或x 0=x 2⑶当x 0=x 1时,切线方程为y -f (x 1)=f ′(x 0)(x -x 1)当x 0=x 2时,切线方程为y -f (x 2)=f ′(x 0)(x -x 2)3.已知切线方程求参数解题模板三已知切线方程求参数已知直线A x +B y +C =0与曲线y =f (x )相切⑴设切点横坐标为x 0,则切点纵坐标=切点纵坐标切线斜率=切线斜率{即f (x 0)=-A x 0+C B f ′(x 0)=-AB{⑵解方程组得x 0及参数的值.例1.函数f (x )=a l n x x +1+bx在(1,f (1))处的切线方程为x +2y -3=0,求a ,b 的值.解:∵f (x )=a l n x x +1+b x ,∴f ′(x )=a (x +1)x-a l n x(x +1)²-b x ²由题意知:f (1)=1f ′(1)=-12{,即b =1a 2-b =-12{∴a =b =1例2.f (x )=a e xl n x +b ex -1x在(1,f (1))处的切线方程为y =e (x -1)+2,求a ,b 的值.解:∵f (x )=a e xl n x +b e x -1x ,∴f ′(x )=a e x (1x +l n x )+b e x -1(-1x ²+1x)由题意知:f (1)=2f ′(1)=-e {,即b =2a e =e{∴a =1,b =2例3.若直线y =k x +b 是y =l n x +2的切线,也是y =l n (x +1)的切线,求b .解:设y =k x +b 与y =l n x +2相切的切点横坐标为x 1,y =k x +b 与y =l n (x +1)相切的切点横坐标为x 2,l n x 1+2=k x 1+b ①1x 1=k ②l n (x 2+1)=k x 2+b ③1x 2+1=k ④{,由②③得:x 1=x 2+1,由①-③得:l n x 1-l n (x 2+1)+2=k (x 1-x 2),将上式代入得:k =2∴x 1=12,代入①得:-l n 2+2=1+b ∴b =1-l n 2.例4.若f (x )=x 与g (x )=a l n x 相交,且在交点处有共同的切线,求a 和该切线方程.解:设切点横坐标为x 0,则x 0=a l n x 0①12x 0=a x 0②{,由②得x 0=2a ,代入①得:x 0=e ²,∴a =e2∵切点为(e ²,e ),切线斜率为12e ,∴切线方程为x -2e y +e ²=0.例5.已知函数f (x )=x 3+a x +14,当a 为何值时,x 轴为曲线方程y =f (x )的切线.例6.已知函数f (x )=x ²+a x +b 和g (x )=e x(c x +d )都过点P (0,2)且在P 处有相同切线y =4x +2,求a ,b ,c ,d 的值.题型二单调型1.主导函数需“二次求导”型I 不含参求单调区间例1.求函数f (x )=x (e x -1)-12x ²的单调区间.解:f (x )的定义域为Rf ′(x )=e x (1+x )-1-x =(x +1)(e x+1)令f ′(x )>0,得x <-1或x >0;令f ′(x )<0,得-1<x <0f (x )的增区间为(-∞,-1)和(0,+∞),减区间为(-1,0)。