相似三角形基本图形及练习题_绝对经典
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A D
B D A
B C
相似中的基本图形练习
相似三角形是初中数学中重要的内容,应用广泛,可以证明线段的比例式;也可证明线段相等、平行、垂直等;还可计算线段的长、比值,图形面积及比值。
而识别(或构造)A 字型、X 字型、母子相似型、旋转型等基本图形是解证题的关键。 1.A 字型及变形
△ABC 中 , AD=2,BD=3,AE=1 (1)如图1,若DE ∥BC , 求CE 的长
(2)如图2,若∠ADE=∠ACB , 求CE 的长
2.
X 字型及变形
(1)如图1,AB ∥CD ,求证:AO :DO=BO :CO
(2)如图2,若∠A=∠C ,求证:AO ×DO=BO ×CO
3. 母子相似型及变形
(1)如右图,在△ABC 中, AD 把△ABC 分成两个三角形△BCD 和△CAD ,当∠ACD =∠B 时,说明△CAD 与△ABC 相似。
说明:由于小三角形寓于大三角形中,恰似子依母怀,故被称为“母子三角形”
(2)如图, Rt △ABC 中 ,CD ⊥AB, 求证:AC ²=ADxAB,CD ²=ADxBD,
4. 旋转型 如图,若∠ADE=∠B ,∠BAD=∠CAE ,说明△ADE 与△ABC 相似
练习题
1、如图1,在△ABC 中,中线BE 、CD 相交于点G ,则BC
DE = ;S △GED :S △GBC = ;
2、如图2,在△ABC 中, ∠B=∠AED ,AB=5,AD=3,CE=6,则AE= ;
3、如图3,△ABC 中,M 是AB 的中点,N 在BC 上,BC=2AB ,∠BMN=∠C ,则△ ∽△ ,相似比为 ,
NC
BN
= ; 4、如图4,在梯形ABCD 中,AD ∥BC ,S △ADE :S △BCE =4:9,则S △ABD :S △ABC = ;
5、如图5,在△ABC 中,BC=12cm ,点D 、F 是AB 的三等分点,点E 、G 是AC 的三等分点,则DE+FG+BC= ; 二、选择题
6、如图,在△ABC 中,高BD 、CE 交于点O ,下列结论错误的是( ) A 、CO ·CE=CD ·CA B 、OE ·OC=OD ·OB C 、AD ·AC=AE ·AB D 、CO ·DO=BO ·EO
7、如图,D 、E 分别是△ABC 的边AB 、AC 上的点, AD BD =CE
AE
=3,
且∠AED=∠B ,则△AED 与△ABC 的面积比是( ) A 、1:2 B 、1:3 C 、1:4 D 、4:9
8、已知,如图, 在△ABC 中,DE ∥BC ,AD=5,BD=3,求S △ADE :S △ABC 的值。
9、如图,已知在△ABC 中,CD=CE ,∠A=∠ECB ,试说明CD 2
=AD ·BE 。
A
B C
D E G 图1
A
B
C
D E
图2
A
B C M N
图3
A
B
C
D
E 图4
A B
C
D F
图5
G
E A E B
C D
O
A B
C D
E C
A
B
D E A
B
C
D
E
F
E
D
C
B
A
一、运用新知,解决问题
1、已知两个三角形相似,请完成下列表格
2、如图,D 、E 分别是AC ,AB 上的点,∠ADE =∠B ,AG ⊥BC 于点G ,AF ⊥DE 于点F.若AD =3,AB
=5,求: (1)AG AF
;
(2)△ADE 与△ABC 的周长之比; (3)△ADE 与△ABC 的面积之比. 二、加强训练,巩固新知
1.若两个相似三角形的相似比是2∶3,则它们的对应高线的比是 ,对应中线的比是 ,对应角平分线的比是 ,周长比是 ,面积比是 。
2.两个等边三角形的面积比是3∶4,则它们的边长比是 ,周长是 。
3.某城市规划图的比例尺为1∶4000,图中一个氯化区的周长为15cm ,面积为12cm 2
,则这个氯化区的实际周长和面积分别为多少?
4、在△ABC 中,DE ∥BC ,E 、D 分别在AC 、AB 上,EC=2AE ,则S △ADE ∶S 四边形DBCE 的比为______
5、如图, △ABC 中,DE ∥FG ∥BC ,AD =DF =FB ,则S △ADE :S 四边形DFGE :S 四边形FBCG =______
三、变式训练,拓广研究
1、过E 作EF//AB 交BC 于F ,其他条件不变,则ΔEFC 的面积等于多少?四边形BDEF 面积为多少?
2.若设S S ABC =∆,1S S ADE =∆,2S S EFC =∆
请猜想:S 与S 1、S 2之间存在怎样的关系?你能加以验证吗?
3、类比猜想
如图,DE//BC ,FG//AB ,MN//AC ,且DE 、FG 、MN 交于点P 。若记
S S ABC =∆,1S S ADE =∆,2S S EFC =∆
请猜想:S 与S 1、S 2之间存在怎样的关系?你能加以验证吗?
A
B
C
D
E F
G A B
C
D
E F G M N
P
S 1
S 2
S 3
A
B
C
D
E
F