合并同类项PPT课件
合并同类项课件ppt课件(2024)

2024/1/28
5
代数式与整式概念
2024/1/28
代数式
由数和表示数的字母经有限次加、减、乘、除、乘方和开方 等代数运算所得的式子,或含有字母的数学表达式称为代数 式。
整式
在代数式中,若只含有加、减、乘、乘方四种运算,且对字 母只进行有限次的乘法和乘方运算,这样的代数式叫做整式 。
6
02
识别与判断同类项
讲解与点评
针对学生的练习情况进行 讲解与点评,帮助学生纠 正错误并加深对同类项的 理解。
10
03
合并同类项法则与方法
2024/1/28
11
合并同类项法则
所含字母相同,并且相同字母 的指数也相同的项叫做同类项 。
2024/1/28
合并同类项就是把同类项的系 数相加,所得的结果作为系数 ,字母和字母的指数不变。
判断指数是否为正整数
检查指数是否为正整数,避免出现非法表达式。
3
判断指数运算规则
遵循指数运算规则,如乘法法则和除法法则,确 保同类项的正确性。
2024/1/28
9
实例分析与练习
01
02
03
实例分析
通过具体实例分析如何识 别与判断同类项,加深学 生理解。
2024/1/28
练习题目
提供一定数量的练习题目 ,让学生在实际操作中掌 握识别与判断同类项的方 法。
忽视字母的指数
如 $2x^2$ 和 $3x$,虽然都含有字母 $x$,但由于指数不同,它 们不是同类项。
忽视字母前的系数
如 $2xy$ 和 $3xy$,虽然字母部分相同,但系数不同,因此它们 不是完全相同的同类项,但可以合并。
24
指数部分处理不当导致错误
2024版《合并同类项》PPT课件

PPT课件•合并同类项基本概念•一元一次方程中合并同类项•多元一次方程组中合并同类项•分式方程中合并同类项目•拓展应用:在其他数学问题中运用合并同类项•总结回顾与课堂互动录合并同类项基本概念01CATALOGUE同类项定义及性质同类项定义所含字母相同,并且相同字母的指数也相同的项叫做同类项。
同类项性质同类项的系数可以不同,但所含字母和字母的指数必须相同。
写出合并后的结果将合并后的系数与字母部分相乘,得到最终的多项式。
将提取出的公因子与剩余部分相加,得到合并后的系数。
提取公因子将同类项的系数提取出来,作为公因子。
合并同类项原则把同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
识别同类项根据同类项的定义,识别出多项式中的同类项。
合并同类项原则与方法示例解析与练习示例解析通过具体例子展示如何识别同类项、提取公因子、合并系数以及写出合并后的结果。
练习提供多个练习题,让学生实践并掌握合并同类项的方法。
注意在扩展内容时,需要确保内容的准确性和专业性,同时尽量丰富内容,以便更好地帮助学生理解和掌握合并同类项的概念和方法。
一元一次方程中合并同类项02CATALOGUE1 2 3只含有一个未知数,且未知数的最高次数为1的整式方程。
一元一次方程定义ax + b = 0(a ≠ 0)。
一元一次方程标准形式去分母、去括号、移项、合并同类项、系数化为1。
解一元一次方程的基本步骤一元一次方程概述03合并同类项在解一元一次方程中的作用简化方程,降低求解难度。
01合并同类项定义把多项式中的同类项合并成一项,叫做合并同类项。
02合并同类项法则同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。
合并同类项在解一元一次方程中应用通过具体的一元一次方程实例,展示如何运用合并同类项的方法解方程。
示例解析提供若干道一元一次方程练习题,让学生运用所学知识进行求解。
练习题目在解一元一次方程时,需要注意移项和合并同类项的步骤,确保计算正确。
合并同类项ppt课件

2
2
2
2
解: 3xy 5xy 0.5x y 3xy 4.5x y
5 xy 4 x 2 y.
当x=1,y=
3
2
原式= 5 1
时,
3
3 27
4 12 .
2
2
2
在通常情况下,先
化简,再求值比较
简单.
例2:某学校组织七、八年级全体同学参观革命老区西柏坡。
七年级租用45座大巴车x辆,60座大巴车y辆;八年级租
=9a2+ab-b2.
已知代数式5a2-5a+4-3a2+6a-5,
1
(1)将a= —
直接代入代数式中求值.
3
1
(2)先合并同类项,再将a= —
代入求值.
3
比较上面的两种解法,哪种方法更简单?
例3
当x=1,y=
的值.
3
2
时,求多项式
3xy 2 5 xy 0.5 x 2 y 3xy 2 4.5x 2 y
B. a=0
C. b=3
D. a=-2
(2)已知单项式2x6y2m+1与-3x3ny5的差仍是 单项
式,则mn的值为
4
2.【2023·廊坊四中月考】式子-3x2y-10x3+3x3+6x3y+
3x2y-6x3y+7x3-8的值( A )
A.与x,y的值都无关
B.只与x的值有关
C.只与y的值有关
D.与x,y的值都有关
用60座大巴车x辆,30座中巴车y辆(以上三种车型,座
位均不含司机)。当每辆车恰好坐满时:
(1)用含x,y的代数式表示该学校七、八年级共有多少学生?
(2)当x=4,y=7时,该学校七、八年级共有多少学生?
4.2 整式的加减第1课时 合并同类项 课件(共37张PPT)

-
1 3
+
1 3
c2
abc.
当a
-
1 6
,b
2,c
-3
时,原式
-
1 6
2
-3
=1.
3 合并同类项的应用
例5 一天,王村的小明奶奶提着一篮子土豆去换苹果,双方 商定的结果是:1千克土豆换0.5千克苹果.当称完带篮子的土 豆重量后,摊主对小明奶奶说:“别称篮子的重量了,称苹 果时也带篮子称,这样既省事又互不吃亏.”你认为摊主的话 有道理吗?请你用所学的有关数学知识加以判定.
周长为30x .当时 x 2cm ,周长为 60 cm.
5.合并同类项: (1)-a-a-2a=__-_4_a____; (2)-xy-5xy+6yx=__0____; (3)0.8ab2-a2b+0.2ab2=_a_b_2_-_a_2b_; (4)3a2b-4ab2-4+5a2b+2ab2+7=_8_a_2b_-_2_a_b_2_+_3_.
=- x2y+xy2
练一练
合并同类项: (1)6x+2x2-3x+x2+1; (2)-3ab+7-2a2-9ab-3.
先分组, 再合并
解:(1)原式=(6x-3x)+(2x2+x2)+1 =3x+3x2+1
(2)原式=(-3ab-9ab)-2a2+(7-3) =-12ab-2a2+4
归纳总结
“合并同类项”的方法: 一找,找出多项式中的同类项,不同类的同类项用不同 的标记标出; 二移,利用加法的交换律,将不同类的同类项集中到不 同的括号内; 三并,将同一括号内的同类项相加即可.
答案:下降1.5a
当堂练习
✓ 当堂反馈 ✓ 即学即用
5.2 解一元一次方程课时1-合并同类项 课件(共30张PPT)

420
书.
新课讲解
练一练
2. 某工厂的产值连续增长,2022年是2021年的1.5倍,2023年是2022年的2倍,
这三年的总产值为550万元.2021年的产值是多少万元?
解:设2021年的产值是x万元,则2022年的产值是1.5x万元,2023年的
13=-x
D. 由 6x-2-4x+2=0,得 2x=0.
当堂小练
2
2. 将方程− = 1的系数化为1时,下列做法正确的是( C )
3
A.方程两边同时加上
1
3
C.方程两边同时除以−
B.方程两边同时减去
2
3
2
3
D.方程两边同时乘以−
2
3
当堂小练
3. 解下列方程:
(1)2x + 3x + 4x = 18
解:合并同类项,得
9x = 18
系数化为1,得
x=2
(2)13x - 15x + x = -3
解:合并同类项,得
-x = -3
系数化为1,得
x=3
当堂小练
3. 解下列方程:
(3)2.5y + 10y - 6y = 15 - 21.5
解:合并同类项,得
6.5y = - 6.5
系数化为1,得
y = -1
解:设前年购买计算机x台,则去年购买计算机2x台,今年购买计算机4x台.
列得方程得 + 2 + 4 = 140.
把含有x的项合并同类项,得 7 = 140.
系数化为1,得x=20.
答:前年这所学校购买了20台计算机.
4.5 合并同类项 课件(共27张PPT) 2023-2024学年浙教版七年级数学上册

当a= - ,b=2,c=-3时,原式= −
1
6
× 2 × (−3) = 1
当堂检测
9、(1)水库中水位第一天连续下降了a小时,每小时平均下降2cm;第二天连
续上升了a小时,每小时平均上升0.5cm,这两天水位总的变化情况如何?
(2)某商店原有5袋大米,每袋大米为x千克,上午卖出3袋,下午又购进同样
-4y2x
6xy
5n
2xy2
-3xy
-3xy
讲授新课
8n
-4y2x
6xy
5n
2xy2
-3xy
它们有什么共同特点?
1.所含字母相同.
2.相同字母的指数也相同.
讲授新课
8n
-4y2x
6xy
5n
2xy2
-3xy
所含字母相同,而且相同字母的指数也相同的项,叫做同类项。
如:32
、−2
1
、2 2
C.5ab2c与-b2ac D.-ab2和4ab2c
2.下列运算中正确的是( A ).
A.3a2-2a2=a2
B.3a2-2a2=1
C.3x2-x2=3
D.3x2-x=2x
3.三角形三边长分别为 5x,12x,13x,则这个三角形的周长为 30x .当时 x 2cm ,
周长为 60 cm.
当堂检测
(3)-3xy与2xy是同类项,因为所含字母相同,并且相同字母
的指数也相同.
(4)abc与3ac不是同类项,因为所含字母不相同.
(5)abd与bc不是同类项,因为所含字母不相同.
(6)-1与0.12是同类项, 因为所有的常数项都是同类项.
讲授新课
知识点二 合并同类项
4.2 第1课时 合并同类项 课件(共23张PPT)

同步精品课件
人教版七年级上册
人教2024新版七(上)数学精彩课堂精品课件
第1课时 合并同类项
知识关联
探究与应用
课堂小结与检测
旧知回顾
知
识
关
联
1.单项式-34a2b5的系数是
,次数是
.
2.多项式1+xy-xy2的次数及最高次项的系数是
A.2,1
B.2,-1
1
2
C.3,-1
3. 多项式a3+ ab4-a6-6的项为
原式 =(
=1
- ,
- )×2×(-3)
例题精讲
探
究
与
应
用
例3
(1)水库水位第一天连续下降了a h,平均每小时下降2
cm;第二天连续上升了a h,平均每小时上升0.5 cm.这两天水
位总的变化情况如何?
解:(1)把下降的水位变化量记为负,上升的水位变化量记为正,
则第一天水位的变化量是一2a cm,第二天水位的变化量是
0.5a cm,由
-2a十0.5a=(-2+0.5)a =-1.5a
可知,这两天水位总的变化情况为下降了1.5a cm.
例题精讲
探
究
与
应
用
例3
(2)某商店原有5袋大米,每袋大米为x kg,上午售出3袋,下午又
购进同样包装的大米4袋.进货后这个商店有大米多少千克?
(2)把进货的数量记为正,售出的数量记为负,则上午大米质量
堂
小
结
与
检
测
4.合并同类项:
(1)2a+3b+6a+9b-8a+12b;
《合并同类项》课件

详细描述:通过解决实际问题,如面积、周长和实际生活中物品价格的计算等,展示合并同类项在实际问题中的应用和重要 性。
合并同类项的练习
04
题
基础练习题
总结词:巩固基础
详细描述:基础练习题主要针对合并同类项的基本规则和概 念,包括识别同类项、合并同类项的简单计算等。这些题目 适合刚接触合并同类项的学生,帮助他们熟悉和理解基本概 念和规则。
02
例如,对于代数式 $2x^2 + 3x^2 4x^2$,合并同类项后 得到 $(2+3-4)x^2 = x^2$。
03
如果代数式中有多个同 类项,可以一次性将它 们合并。
04
在合并同类项时,需要 注意符号和系数的变化 ,确保运算的正确性。
合并同类项的步骤
02
ห้องสมุดไป่ตู้
识别同类项
总结词
识别同类项是合并同类项的第一步, 需要判断项是否属于同一类型。
同类项的字母部分完 全相同,包括字母和 字母的指数。
合并同类项的意义
合并同类项是简化代数式的一种 重要方法。
通过合并同类项,可以减少代数 式的项数,简化代数式的结构。
合并同类项有助于理解和解决代 数问题,提高数学运算的效率。
合并同类项的规则
01
合并同类项时,将同类 项的系数相加或相减, 字母和字母的指数保持 不变。
总结词:基础概念
详细描述:通过简单的代数式,如$2x+2x$,展示如何合并同类项,即把系数相 加,字母和字母的指数不变。
复杂的合并同类项实例
总结词:进阶应用
详细描述:通过复杂的代数式,如$3x^2y+5x^2y+7xy^2$,展示如何正确识别、分组和合并同类项 ,以简化表达式。
整式的概念 第2课时 合并同类项 课件 (共23张PPT)湘教版(2024)数学七年级上册

要点梳理
引言:一辆汽车从香港口岸行驶到东人工岛的平均速度
为 96 km/h. 在海底隧道和主桥上行驶的平均速度分别为 72 km/h 和 92 km/h. 请根据这些效据回答下列问题:
路程=速度×时间
如果汽车通过海底隧道需要 a h,从香港口岸行驶到东人工 岛的时间是通过海底隧道时间 的 1.25 倍,你能用含 a 的代数 式表示香港口岸到西人工岛的 全长吗?
练一练 1. 在 x4-3x2y+5x+7x2y+4 中 -3x2y 与 7x2y 是同类项.
2. 如果 2a2bn+1 与 -4amb3 是同类项,那么 m = 2 , n= 2 .
2 合并同类项
探究3 计算:x4-3x2y+5x3+7x2y+4.
解:原式=x4-3x2y+7x2y+5x3+4
知识要点
合并完后,多项式的次数和项数分别是几,则称 此多项式为几次几项式. 例如,x4+4x2y+5x3+4 是为四次四项式.
把只有一个字母的多项式的各项按照该字母的指数由 大到小 (或由小到大) 排列,称为降幂 (或升幂) 排列. 降幂:x4+5x3+4x2y+4 升幂:4+4x2y+5x3+x4
说一说
分别将多项式 x3-4x2+7x2-2x-5 与多项式 x3+ 3x2-6x+4x-5 合并同类项,你会发现什么?
x3-4x2+7x2-2x-5= x3+3x2-2x-5 x3+3x2-6x+4x-5= x3+3x2-2x-5
知识要点
两个多项式分别合并同类项后,如果它们的对 应项系数都相等,那么称这两个多项式相等.
练一练 1.求多项式 3a + abc - c2 - 3a + c2 的值,其中
合并同类项优秀课件pptx

合并同类项优秀课件pptx•合并同类项基本概念•代数式中的合并同类项•几何图形中的合并同类项•三角函数中的合并同类项•数列中的合并同类项•概率统计中的合并同类项01合并同类项基本概念同类项定义及性质同类项定义所含字母相同,并且相同字母的指数也相同的项叫做同类项。
同类项性质同类项的系数可以不同,但所含字母及相同字母的指数必须相同。
合并同类项方法找出多项式中的同类项。
合并同类项时,如果两个同类项的系数互为相反数,合并后系数为0,这时两项互相抵消,结果为0。
利用分配律,把同类项的系数加在一起(或减去),消去该项中互为相反数的部分。
合并同类项原则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
合并同类项原则与方法在多项式的加减运算中,经常需要合并同类项,以简化计算过程。
应用场景计算多项式$3x^2 + 4xy -2x^2 + 5xy$ 的值。
举例$3x^2$ 和$-2x^2$ 是同类项,$4xy$ 和$5xy$ 是同类项。
首先识别出多项式中的同类项$(3x^2 -2x^2) + (4xy + 5xy) = x^2 + 9xy$。
然后分别合并这两组同类项实际应用举例02代数式中的合并同类项一元一次方程中合并同类项定义:一元一次方程是只识别方程中的同类项。
含有一个未知数,且未知数的最高次数为1的方程。
示例:$3x + 2x = 5x$合并同类项步骤将同类项的系数相加,字母及字母的指数不变。
二元一次方程组中合并同类项在每个方程中分别识别同类项。
合并同类项步骤定义:二元一次方程组是包含两个未知数,且每个方程中未知数的最高次数为1的方程组。
将同类项的系数相加,字母及字母的指数不变。
示例:$begin{cases} x + y = 52x + y = 7 end{cases}$ 可化简为$begin{cases} x = 2 y = 3end{cases}$将同类项的系数相加,字母及字母的指数不变。
合并同类项步骤定义:多项式是由常数、变量、加法、减法和乘法运算组成的代数表达式。
2024版合并同类项公开课PPT课件

D
05 图形问题中合并同类项思路
图形面积和周长计算中应用
识别并提取相同或相似图形
在复杂图形中,识别出相同或相似的图形元素,如相同的三角形、 矩形等。
合并计算相同图形元素
将识别出的相同图形元素进行合并,以便统一计算其面积或周长。
应用公式进行计算
根据合并后的图形元素类型,选择相应的面积或周长公式进行计算。
首先观察各项的字母部分,找出所 含字母完全相同的项;再比较这些 项的指数部分,若指数也相同,则 这些项就是同类项。
示例演练
通过具体例题展示观察法的应用, 引导学生掌握识别同类项的方法。
系数比较法分类讨论
系数比较法原理
通过比较各项的系数来判断是否为同 类项。
示例演练
通过具体例题展示系数比较法的应用, 引导学生掌握分类讨论的方法。
性质
合并后的项,系数是原各同类项的 系数之和,字母部分不变。
数学中作用与重要性
简化计算
通过合并同类项,可以将复杂的数学 表达式简化为更简单的形式,便于计 算和理解。
解决实际问题
在实际问题中,往往需要将具有相同特 征的量进行合并,以便更好地分析和解 决问题。
常见应用场景举例
01
代数式化简
在代数运算中,经常需要将复杂的代数式化简为最简形式, 其中合并同类项是重要的一步。
注意符号问题
在整理同类项时,要注意各项的符号,确保符号正确。
运用运算法则简化计算
01
02
03
合并同类项法则
将同类项的系数相加,字 母及字母的指数不变,得 到一个新的项,这个新项 即为合并后的结果。
简化计算
通过合并同类项,可以将 复杂的式子简化为更简单 的形式,便于后续的计算 和求解。
数学45合并同类项图片ppt课件

教师点评和总结陈述
点评1
01
对学生的操作练习进行点评,指出其中的优点和不足,并提供
改进建议。
点评2
02
总结学生在小组讨论中的表现,强调分享和交流在学习数学中
的重要性。
总结陈述
03
总结本节课的内容,强调合并同类项在数学运算中的重要性,
并鼓励学生在今后的学习中多加练习,掌握这一技能。
06
课程回顾与拓展延伸
寻找规律并分类
在观察代数式的过程中,可以寻找其中的规律,并根据规律 将同类项进行分类。这样可以更快速地定位和合并同类项。
利用公式法进行批量处理
利用分配律进行合并
分配律是合并同类项的重要工具。通 过利用分配律,可以将多个同类项合 并为一个项,从而简化代数式。
掌握公式并灵活运用
除了分配律外,还有一些其他的公式 可以用于合并同类项。学生需要掌握 这些公式,并能够灵活运用它们进行 批量处理。
2. 在解决实际问题如面积、体积等计算时,也常涉及到多项式的加减运算及合并同类项的过 程。例如,计算一个矩形的面积时,若长和宽分别为 a+b 和 a-b,则面积为 (a+b)(a-b) = a^2 - b^2,其中就涉及到了合并同类项的过程。
02
图形表示法在合并同类项中应用
柱状图表示法
柱状图的高度表示同 类项的系数大小,宽 度可表示同类项的次 数或变量。
识别方法
观察两个项,若所含字母及对应 指数均相同,则可判断为同类项 。
合并同类项原则与步骤
合并原则:把同类项的系数相加,所得 结果作为系数,字母和字母的指数不变 。
3. 合并同类项的系数,得到新的多项式 。
2. 利用交换律、结合律将同类项合并在 一起。
同类项与合并同类项课件(共29张PPT)

(2)根据分配律完成下面的运算,并说明其中的道理: 72a+120a=__1_9_2_a_
点拨:是多项式72a与120a两项的和,并且字母a代表的是一个
乘数,因此根据分配律也有:72a+120a=(72+120)a=192a.
探究
填空 : (1) 72a - 120a = ( -48 )a; (2) 3m2 + 2m2 = ( 5 )m2; (3) 3xy2 - 4xy2 = ( - )xy2.
33
= abc
尝试用直接代入数值的 方法计算,你觉得哪种 方法更简单?
当a=
-
1 6
,b=2,c=
-3时,原式=
-
16×2×(-3)=1.
例3 (1)水库水位第一天连续下降了a h,平均每小时下降2 cm;第 二天连续上升了a h,平均每小时上升0.5 cm,这两天水位总的变化情 况如何?
解:把下降的水位变化量记为负,上升的水位变化量记为正. 第一天水位的变化量是-2a cm,第二天水位的变化量是0.5a cm. 两天水位的总变化量是
同类项的系数在加减运算中可以单独进行加减, 而同类项本身保持不变.
把多项式中的同类项合并成一项,叫做合并同类项.
合并同类项的法则:
合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母
连同它的指数不变.
系数相加 2+(-6)
2 ab²-6 ab²= -4 ab²
字母连同指数不变
因为多项式中的字母表示的是数,所以我们也可以运用交换律、结合
2
解:(1) 方法一 直接代值计算:
2x2-5x+x2+4x-3x2 -2
=2×
1 2
《合并同类项与移项》课件

移项的步骤
01
02
03
04
确定需要移项的项
根据解题需要,确定需要移动 的项。
改变该项的符号
将该项从等式的这一边移动到 另一边,需要改变该项的符号
。
移动该项
将该项从等式的这一边移动到 另一边。
合并同类项
移动项后,如果等式两边有同 类项,需要进行合并同类项的
操作,使等式更加简洁。
移项的注意事项
注意符号的变化
《合并同类项与移项 》ppt课件
目录
• 合并同类项 • 移项 • 合并同类项与移项的应用 • 合并同类项与移项的练习题 • 总结与回顾
01 合并同类项
合并同类项的定义
定义
合并同类项是指将代数式中相同 或相似类型的项进行合并的过程 。
目的
简化代数式,使其更易于计算和 化简。
合并同类项的规则
01
05 总结与回顾
合并同类项
A
合并同类项的概念
将代数式中相同或相似的项合并在一起的过程 。
合并同类项的方法
通过移动项的位置,将相同或相似的项放 在同一边,并合并它们的系数和字母因数 。
B
C
合并同类项的步骤
识别代数式中的同类项,将它们放在同一边 ,合并它们的系数和字母因数。
合并同类项的注意事项
在合并同类项时,需要注意符号和字母因数 的系数。
正确运算
合并同类项时,要确保执 行正确的加法或减法运算 。
化简代数式
合并同类项后,应进一步 化简代数式,使其更简洁 。
移项
02
移项的定义
移项
将等式中的某一项从一边 移动到另一边的过程。
移项的规则
移动项时,需要改变该项 的符号。
合并同类项PPT免费

之间的关系等,简化证明步骤。
04
三角函数中的合并同 类项
三角函数基本公式回顾
三角函数的定义
正弦、余弦、正切等基本三角函数的定义及性质。
三角函数的和差公式
如sin(a+b)、cos(a+b)等公式的推导和应用。
三角函数的倍角公式
如sin2a、cos2a等公式的推导和应用。
三角函数化简过程中的合并
合并同类项的基本方法
通过识别相同的三角函数项,将其系数相加或相减,从而简化表 达式。
常见的三角函数化简技巧
如利用三角函数的和差公式、倍角公式等进行化简。
化简实例分析
通过具体实例展示如何运用合并同类项的方法化简三角函数表达式 。
三角函数求值问题中的合并应用
已知三角函数值求角度
通过合并同类项,将复杂的三角函数表达式化简为单一三角函数 ,进而求出角度值。
同类项性质
同类项的系数可以不同,但所含 字母和字母的指数必须相同。
合并同类项原则与方法
识别同类项
根据同类项的定义,识别出多 项式中的同类项。
合并系数
将提取出的公因子进行相加或 相减,得到新的系数。
合并同类项原则
把同类项的系数相加,所得结 果作为系数,字母和字母的指 数不变。
提取公因子
将同类项的系数提取出来,作 为公因子。
合并同类项PPT免费
目录
• 合并同类项基本概念 • 代数式中的合并同类项 • 几何图形中的合并同类项 • 三角函数中的合并同类项 • 数列与数学归纳法中的合并同类项 • 实际应用问题中的合并同类项
01
合并同类项基本概念
同类项定义及性质
同类项定义
所含字母相同,并且相同字母的 指数也相同的项叫做同类项。
合并同类项ppt课件

同类项是指次数相同的单项式, 它们的字母部分(包括字母和指 数)必须完全相同。
代数式中合并同类项作用
简化代数式
通过合并同类项,可以将复杂的代数 式化简为更简单的形式,便于计算和 理解。
解决实际问题
在解决实际问题时,往往需要将多个 相同类型的项目合并在一起进行计算 ,这时就需要用到合并同类项的方法 。
通过合并同类项的训练,可以培养学生的分类思想,提高他们对事 物的归纳和整理能力。
增强代数运算能力
合并同类项需要进行代数运算,通过训练可以提高学生的代数运算 能力。
培养综合运用能力
合并同类项是数学知识体系中的一个重要环节,通过训练可以培养学 生的综合运用能力,提高他们解决实际问题的能力。
06
复习总结与提高建议
列出方程
根据已知条件列出方程,注意 方程的等量关系。
求解方程
利用数学运算求解方程,得出 未知数的值。
验证结果
将所求结果代入原方程进行验 证,确保答案的准确性。
解答题:完整呈现解题思路和步骤
仔细审题
明确题目要求和所给条件,确 定解题思路。
求解问题
按照解题步骤逐步求解问题, 得出最终答案。
列出步骤
根据解题思路列出详细的解题 步骤,注意逻辑性和条理性。
检查结果
对所求答案进行检查和验证, 确保答案的正确性和完整性。
05
实际应用场景举例说明
在数学学科中其他知识点联系
代数式化简
合并同类项是代数式化简的基础 ,与整式加减、因式分解等知识
点紧密相关。
方程求解
在解一元一次方程、二元一次方程 组等问题时,合并同类项是简化方 程的重要步骤。
不等式求解
在解不等式问题时,也需要通过合 并同类项来简化不等式。
合并同类项ppt课件

(2)上述多项式的运算有什么共同特点?
你能从中得出什么规律?
2.类比探究,学习新知
(1)上述各多项式的项有什么共同特点? ①每个式子的项含有相同的字母; ②并且相同字母的指数也相同.
(2)上述多项式的运算有什么共同特点? ①根据分配律把多项式各项的系数相加; ②字母部分保持不变.
多项式有 ①
,
整式有 ①②③⑤ .
(只填序号)
讲授新课
数能进行加减运算,整式中的每个字 母都表示数,这样,整式与数一样,也可 以进行加减运算.
讲授新课
我们来看本章引言中的问题(2):
汽车从香港口岸到西人工岛包含两段路程,一
段为香港口岸到东人工岛另一段为海底隧道.如果汽
车通过海底隧道需要a h,那么从香港口岸到东人
2
例2 (2) 求多项式 3a+abc- 1 c2-3a十 1 c2的值,
3
3
其中a=- 1 ,b=2,c=-3.
6
填空:练习:
1.如果2a2bn+1与-4amb3是同类项,则 m=_2___,n=_2___;
2.若5xy2+axy2=-2xy2,则a=__-7_;
3.在6xy-3x2-4x2y-5yx2+x2中没有同类项 的项是_6_x_y___;
带着符号移 系数相加,字母部分不变
共勉
科学家爱因斯坦在谈成功的秘诀时,写
下了一个公式:A=X+Y+Z,
他解释道:A代表成功, X代表艰苦的劳动, Y代表正确的方法, Z代表少说空话.
课堂小结
(1)本节课学了哪些主要内容? (2)你能举例说明同类项的概念吗? (3)举例说明合并同类项的方法. (4)本节课主要运用了什么思想方法研究问
合并同类项ppt课件

[延伸拓展] B [解析] 因为(xyz2-4yx-1)+(3xy+z2yx-3)-(2xyz2+xy) =xyz2-4yx-1+3xy+z2yx-3-2xyz2-xy=-2xy-4, 所以此代数式的值只与x,y的值有关,而与z的值无关, 故应选B.
谢 谢 观 看!
(3)求值:按指定的运算顺序进行计算.
探 【延伸拓展】 究 整式加减中的“无关”型问题
与
应 代数式(xyz2-4yx-1)+(3xy+z2yx-3)-(2xyz2+xy)的值 ( B ) 用 A.与x,y,z的值都无关
B.与x,y的值有关,而与z的值无关
C.与x的值有关,与y,z的值无关
D.与x,y,z的值都有关
2(a+b)2-3(a+b)-5(a-b) .
探 细 琢磨 究 合并同类项的“四点注意”
与
应 (1)不是同类项的不能合并; 用 (2)系数互为相反数的同类项,合并同类项的结果为0;
(3)有时可以把多项式看作一个整体进行合并;
(4)若合并后的系数为带分数,要把它化为假分数.
探
应用二 对多项式进行化简求值
检 测
解:(1)2x2+x-6 (2)-a2b-ab
4.先化简,再求值:-3a2+4-a2+3a-5+4a-a2,其中a=-3.
解:原式=-5a2+7a-1. 当a=-3时,原式=-5×(-3)2+7×(-3)-1=-45-21-1=-67.
相关解析
例2 (1)4(a+b)-7(a-b) (2)2(a+b)2-3(a+b)-5(a-b) [解析] (1)在3(a+b)-5(a-b)-2(a-b)+(a+b)中,3(a+b)与(a+b), -5(a-b)与-2(a-b)分别为同类项,可以分别合并; (2)在3(a+b)2+(a+b)-2(a-b)-(a+b)2-4(a+b)-3(a-b)中,3(a+b)2与 -(a+b)2,(a+b)与-4(a+b),-2(a-b)与-3(a-b)分别是同类项,可以 分别合并.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 8
πn2
2020年10月2日
2
问题(一):
(1)、一辆火车以V千米/小时的速度匀速行驶,1.5小时 后火车行驶的路程是 1.5v 千米
2020年10月2日
3
(2)、圆锥的底面半径为r,高为h,这个圆
锥的体积是
1
3 πr2h
.
2020年10月2日
4
(3)、某地山上野生动物的饮水告急,当地居 民自发上山建造蓄水池,其中一个长方体蓄水 池的深度是x米,底面积为y平方米。这个蓄水
Thank you for reading! In order to facilitate learning and use, the content of this document can be modified, adjusted and printed at will after downloading. Welcome to download!
汇报人:XXX 汇报日期:20XX年10月10日
10
合并同类项(一)
2020年10月2日
1
•请大家为下面的娱乐场所设计一个方案,要求设
计
一个休息区和游泳区并写出它们的名称。
小明为一个矩形娱乐场所提供了如下的设计方案,其中 半圆形休息区和矩形游泳区以外的地方都是绿地。
⑴游泳区的面积是: mn
1
⑵休息区的面积是: 8 πn2
⑶
绿地的面积是:ab-mn
-
池的最大容量是 xy 立方米。
2020年10月2日
5
在代数式1.5v中,字母前的数字因数1.5叫做它的系数,
如
1 3
πr2h的系数是
13π。
练:
写出下列各代数式的系数:
xy , -a
, -15a2b
1
, 3 a2b2
, 0.2πx
2020年10月2日
6
问题(二):
(1)如图,一个长方体的箱子紧靠墙角,它的长、宽、高分别是a,b,c 。
πn2是ab ,-mn ,- -mn 项的系数是
1
8
2020年10月2日
8
练:
下列的代数式分别是几项的和?每一项的系数分别是什么 ?
2x -3y , -a+0.2b ,4a2 - 4ab+b2 , -0.3x2y +2y -x ,
x 9 ,2 m 2
3
2020年10月2日
9
演讲完毕,谢谢观看!
这个箱子露在外面的表面积是 ab+bc+ac.
2020年10月2日
7
(2)用代数式表示甲数a的3倍与乙数b的2倍的 差: 3a-2b .
代数式ab+bc +ac是ab,bc ,ac三项的和,每一项的
系π-n数12三81,都项-是的1和;πn,代2项a数b81的项式系的ab数系-是数m-n是-1,π81