高考数学一轮总复习 2.12.3导数的综合应用

合集下载

(江西专用)高考数学一轮复习 2.12 导数的综合应用课件 文 新人教A版

(江西专用)高考数学一轮复习 2.12 导数的综合应用课件 文 新人教A版

1 x
变式训练2 已知函数f(x)=ax +cx+d(a≠0)是R上的奇函数, 当x=1时,f(x)取得极值-2. (1)求f(x)的单调区间; (2)证明:对任意x1、x2∈(-1,1),不等式|f(x1)-f(x2)|<4恒成立. 【解析】(1)∵f(x)为R上的奇函数, ∴f(-x)=-f(x)⇒d=0. ∴f(x)=ax +cx,f'(x)=3ax +c.
a 1, 3 6a 9a 0, 即 则有 4 12 12 a 9 a 0, a , 7
2
∴a≥1,
∴a的取值范围是[1,+∞). 【点评】在处理函数在某个区间上恒为增函数或减函数的 问题时,注意检验端点值是否合适.
变式训练1 已知定义在R上的函数f(x)=x (ax-3),其中a为常数. (1)若x=1是f(x)的一个极值点,求a的值及f(x)的单调区间; (2)若函数f(x)在区间(-1,0)上是增函数,求a的取值范围. 【解析】(1)f(x)=ax -3x ,f'(x)=3ax -6x=3x(ax-2),∵x=1是f(x)的 一个极值点,∴f'(1)=3(a-2)=0,得a=2,经检验a=2为所求. 由a=2,得f'(x)=6x(x-1),又f(x)的定义域为R,
间(-1,0)内恒成立,
∴a≥-2,故实数a的取值范围为[-2,+∞).
题型2 利用导数证明不等式问题
ax b 例2 已知函数f(x)= 在点(-1,f(-1))的切线方程为x+y+3=0. x2 1
(1)求函数f(x)的解析式; (2)设g(x)=ln x,求证:g(x)≥f(x)在x∈[1,+∞)上恒成立. 【分析】要证明 g(x)≥f(x),通过等价转化后构造新的函数, 在x∈[1,+∞)上恒大于或等于0.

高考数学一轮复习课件2.12导数的综合应用

高考数学一轮复习课件2.12导数的综合应用
解答】 设包装盒的高为h(cm),底面边长为 a(cm).
由已知得a= 2x,h=60-22x= 2(30-x),0<x<30. (1)S=4ah=8x(30-x)=-8(x-15)2+1 800, 所以当x=15时,S取得最大值. (2)V=a2h=2 2(-x3+30x2),
V′=6 2x(20-x).
•【解析】 函数f(x)=ex-2x+a有零点,即 方程ex-2x+a=0有实根,即函数g(x)=2x -ex,y=a有交点,而g′(x)=2-ex,易知函 数g(x)=2x-ex在(-∞,ln 2)上递增,在(ln 2,+∞)上递减,因而g(x)=2x-ex的值域为 (-∞,2ln 2-2],所以要使函数g(x)=2x- ex,y=a有交点,只需a≤2ln 2-2即可.
•(2013·梅州模拟)设函数f(x)=a2ln x-x2+ax, a>0.
•(1)求f(x)的单调区间;
•(2)求所有的实数a,使e-1≤f(x)≤e2对x∈[1, e]恒成立.(其中,e为自然对数的底数).
【解】 (1)因为f(x)=a2ln x-x2+ax,其中x>0, 所以f′(x)=ax2-2x+a=-(x-a)x(2x+a). 由于a>0,所以f(x)的增区间为(0,a),减区间为(a, +∞).
•(2)求函数y=f(x)的导数f′(x),解方程f′(x)=0 得出定义域内的实根,确定极值点;
•(3)比较函数在区间端点和极值点处的函数值 大小,获得所求的最大(小)值;
•(4)还原到实际问题中作答.
某地建一座桥,两端的桥墩已建好,这两墩相距m 米.余下工程只需建两端桥墩之间的桥面和桥墩.经测 算,一个桥墩的工程费用为256万元;距离为x米的相邻两
=256(mx -1)+mx (2+ x)x=25x6m+m x+2m-256. (2)由(1)知,f′(x)=-25x62m+12mx-12 =2mx2(x32-512).

高考数学一轮总复习 第2章 第12节 导数的综合应用课件

高考数学一轮总复习 第2章 第12节 导数的综合应用课件
【解析】 f′(x)=1-cos x,当 x∈(0,π]时,f′(x)>0. ∴f(x)在(0,π]上是增函数, ∴f(π)>f(3)>f(2). 【答案】 f(π)>f(3)>f(2)
5.(2013·合肥名校三模)函数 f(x)的定义域为 R,f(- 1)=2,对任意 x∈R,f′(x)>2,则 f(x)>2x+4 的解集为 ________.
∴φ′(x)≥0(当且仅当 x=0 时等号成立), ∴φ(x)在 R 上是单调递增的, ∴φ(x)在 R 上有唯一的零点. 故曲线 y=f(x)与曲线 y=12x2+x+1 有唯一的公共点.
规律方法 1 1.本题(2)的解法中,φ′(x)=ex-x-1 的正 负不能直接判断,故再次借助导数求 φ′(x)的最小值 φ′(0) =0.
(4)“存在 x∈(a,b),使 f(x)≥a”与“任意 x∈(a,b), 使 f(x)≥a”,这两个说法相同( )
【答案】 (1)× (2)√ (3)√ (4)×
2.(人教 A 版教材习题改编)已知某生产厂家的年利润
y(单位:万元)与年产量 x(单位:万件)的函数关系式为 y=-13
x3+81x-234,则使该生产厂家获取最大年利润的年产量为
由于 g(x)=f(x)-f32在(2,+∞)内单调递减, 则由零点存在定理,存在唯一的 x0∈2,32e,使 g(x0)=0, ∴存在唯一的 x0∈(2,+∞),使得 f(x0)=f32.
【解】 (1)f′(x)=1x-2ax=1-x2ax2,x>0. 令 f′(x)=0,得 1-2ax2=0,
∵a>0,x>0,∴x=
2a 2a .
当 x 变化时,f′(x)与 f(x)的变化情况如下表:
x
0,
2a 2a

高三数学一轮总复习 第二章 函数、导数及其应用 2.12 导数的应用(二)课件.ppt

高三数学一轮总复习 第二章 函数、导数及其应用 2.12 导数的应用(二)课件.ppt
答案:C
8
2.函数 f(x)的定义域为 R,f(-1)=2,对任意 x∈R,f′(x)>2,则 f(x)>2x
+4 的解集为( )
A.(-1,1)
B.(-1,+∞)
C.(-∞,-1)
D.(-∞,+∞)
解析:令函数 g(x)=f(x)-2x-4,则 g′(x)=f′(x)-2>0,因此,g(x)在 R 上是 增函数,又 g(-1)=f(-1)+2-4=2+2-4=0。所以,原不等式可化为 g(x)>g(-1), 由 g(x)的单调性,可得 x>-1。
5
1 个构造——构造函数解决问题 把所求问题通过构造函数,转化为可用导数解决的问题,这是用导数解决问题时 常用的方法。
2 个转化——不等式问题中的两个转化 (1)利用导数解决含有参数的单调性问题可将问题转化为不等式恒成立问题,要 注意分类讨论和数形结合思想的应用。 (2)将不等式的证明、方程根的个数的判定转化为函数的单调性、极值问题处理。
答案:(-∞,0)
11
5.设函数 f(x)=ax3-3x+1(x∈R),若对于任意 x∈[-1,1],都有 f(x)≥0 成立, 则实数 a 的值为__________。
解析:若 x=0,则不论 a 取何值,f(x)≥0 显然成立。 当 x>0,即 x∈(0,1]时,f(x)=ax3-3x+1≥0 可化为 a≥x32-x13。 设 g(x)=x32-x13,则 g′(x)=31-x4 2x, 所以 g(x)在区间0,12上单调递增,在区间12,1上单调递减, 因此 g(x)max=g12=4,从而 a≥4。 当 x<0,即 x∈[-1,0]时,同理,a≤x32-x13。 g(x)在区间[-1,0)上单调递增, 所以 g(x)min=g(-1)=4, 从而 a≤4,综上,可知 a=4。 答案:4

届高考数学(理科)一轮总复习212导数的综合应用(人教A版)PPT课件

届高考数学(理科)一轮总复习212导数的综合应用(人教A版)PPT课件

探究
悟典题 能力
的函数关系式为y=-
1 3
x3+81x-234,则使该生产厂家获取最大年利润
提升
的年产量为( )
提素能
高效
训练
A.13万件
B.11万件
C.9万件
D.7万件
解析:y′=-x2+81,令y′=0,解得x=9(-9舍去).
当0<x<9时,y′>0;
当x>9时,y′<0,则当x=9时,y取得最大值.
令f′(x)=0,得x=a.
悟典题 能力
①若a≤0,则f′(x)>0,f(x)在区间(0,e]上单调递增,此时函数f(x)
提升
无最小值.
提素能
高效 训练
②若0<a<e,当x∈(0,a)时,f′(x)<0,函数f(x)在区间(0,a)上单
调递减,当x∈(a,e)时,f′(x)>0,函数f(x)在区间(a,e]上单调递增,
悟典题 能力 提升
函数的最值与导数
提素能 高效
求函数y=f(x)在[a,b]上的最大值与最小值的步骤
训练
(1)求函数y=f(x)在(a,b)内的 极值 .
(2)将函数y=f(x)的各极值与 端点处的函数值f(a),f(b) 比
较,其中最大的一个是最大值,最小的一个是最小值.
菜 单 隐藏
高考总复习 A 数学(理)
答案:6 2
菜 单 隐藏
高考总复习 A 数学(理)
抓主干 考点 解密
研考向 要点 探究
悟典题 能力 提升
函数的最值与导数
提素能
高效 训练
【例1】 (2014年北京东城模拟)已知a∈R,函数f(x)=ax+ln x-1.

高考数学(文)一轮复习课件:2.12 导数的综合应用(广东专版)

高考数学(文)一轮复习课件:2.12 导数的综合应用(广东专版)

自 主
1.通常求利润最大、用料最省、效率最高等问题称为 优化 问题,
高 考


实 ·
一般地,对于实际问题,若函数在给定的定义域内只有一个极值点,
验 ·

基 那么该点也是最值点.
明 考


2.利用导数研究函数的单调性和最(极)值等离不开方程与不等式;
反过来方程的根的个数,不等式的证明、不等式恒成立求参数等,又



落 围是________.
考 体


· 固
【解析】 函数f(x)=ex-2x+a有零点,即方程ex-2x+a=0有实
· 明


础 根,即函数g(x)=2x-ex,y=a有交点,而g′(x)=2-ex,易知函数g(x) 情
=2x-ex在(-∞,ln 2)上递增,在(ln 2,+∞)上递减,因而g(x)=2x-
课 时
究 · 提
当 m=-1e或 m≥0 时,原方程有唯一解.
知 能 训
知 能
当-1e<m<0 时,原方程有两个实数解.,

菜单
自 主 落 实 · 固 基 础
典 例 探 究 · 提 知 能
菜单
新课标 ·数学(文)(广东专用)
高 考 体 验 · 明 考 情
课 时 知 能 训 练
新课标 ·数学(文)(广东专用)
自 围.(2)先根据圆柱的侧面积与球的表面积建立造价y关于r的函数,再 高

落 利用导数求该函数的最小值.
考 体


· 固 基
【尝试解答】 (1)设容器的容积为 V,则 V=830π,
· 明 考

依题意,V=πr2l+43πr3=830π.

高三数学人教版A版数学(理)高考一轮复习教案:2.12 导数的综合应用 Word版含答案

高三数学人教版A版数学(理)高考一轮复习教案:2.12 导数的综合应用 Word版含答案

第十二节 导数的综合应用 1.最值会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).2.导数的综合应用会利用导数解决某些实际问题.知识点一 函数的最值与导数 一、函数的最值与导数1.函数y =f (x )在[a ,b ]上的最大值点x 0指的是:函数在这个区间上所有点的函数值都不超过f (x 0).2.函数y =f (x )在[a ,b ]上的最小值点x 0指的是:函数在这个区间上所有点的函数值都不小于f (x 0).易误提醒1.易混极值与最值:注意函数最值是个“整体”概念,而极值是个“局部”概念. 2.极值只能在定义域内部取得,而最值却可以在区间的端点取得,有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,最值只要不在端点必定是极值.[自测练习]1.(2016·济宁一模)函数f (x )=12x 2-ln x 的最小值为( )A.12 B .1 C .0D .不存在解析:f ′(x )=x -1x =x 2-1x ,且x >0.令f ′(x )>0,得x >1; 令f ′(x )<0,得0<x <1.∴f (x )在x =1处取得极小值也是最小值, 且f (1)=12-ln 1=12.答案:A2.已知函数f (x )=e x -x 2,若对任意的x ∈[1,2],不等式-m ≤f (x )≤m 2-4恒成立,则实数m 的取值范围是( )A .(-∞,1-e]B .[1-e ,e]C .[-e ,e +1]D .[e ,+∞)解析:由题意得f ′(x )=e x -2x ,又对任意的x ∈R ,f ′(x )>0恒成立,所以函数f (x )在[1,2]上单调递增,所以e -1≤f (x )≤e 2-4,又不等式-m ≤f (x )≤m 2-4恒成立,所以{ e -1≥-m ,-m ≤m 2-4,e 2-4≤m 2-4,解得m ≥e ,所以选D.答案:D知识点二 生活中的优化问题利用导数解决生活中的优化问题的一般步骤易误提醒 在求解实际应用问题中建立数学模型时,易忽视函数的定义域导致失误.[自测练习]3.已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为y =-13x 3+81x -234,则使该生产厂家获取最大年利润的年产量为( )A .13万件B .11万件C .9万件D .7万件解析:y ′=-x 2+81,令y ′=0得x =9或x =-9(舍去). 当x ∈(0,9)时,y ′>0;当x ∈(9,+∞)时,y ′<0, 即当x =9时,y 有最大值.即使该生产厂家获取最大年利润的年产量为9万件,故选C. 答案:C考点一 利用导数研究生活中的优化问题|某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式y =ax -3+10(x -6)2,其中3<x <6,a 为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.(1)求a 的值;(2)若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.[解] (1)因为x =5时,y =11,所以a2+10=11,a =2.(2)由(1)可知,该商品每日的销售量y =2x -3+10(x -6)2.所以商场每日销售该商品所获得的利润 f (x )=(x -3)⎣⎡⎦⎤2x -3+10(x -6)2=2+10(x -3)(x -6)2,3<x <6.从而,f ′(x )=10[(x -6)2+2(x -3)(x -6)] =30(x -4)(x -6).于是,当x 变化时,f ′(x ),f (x )的变化情况如下表:x (3,4) 4 (4,6) f ′(x ) +0 - f (x )极大值由上表可得,x =4是函数f (x )在区间(3,6)内的极大值点,也是最大值点. 所以,当x =4时,函数f (x )取得最大值,且最大值等于42.即当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.利用导数解决生活中优化问题的方法求实际问题中的最大值或最小值时,一般是先设自变量、因变量,建立函数关系式,并确定其定义域,然后利用求函数最值的方法求解,注意结果应与实际情况相结合.1.据环保部门测定,某处的污染指数与附近污染源的强度成正比,与到污染源距离的平方成反比,比例常数为k (k >0).现已知相距18 km 的A ,B 两家化工厂(污染源)的污染强度分别为a ,b ,它们连线上任意一点C 处的污染指数y 等于两化工厂对该处的污染指数之和.设AC =x (km).(1)试将y 表示为x 的函数;(2)若a =1,且x =6时,y 取得最小值,试求b 的值. 解:(1)设点C 受A 污染源污染程度为kax 2,点C 受B 污染源污染程度为kb(18-x )2,其中k 为比例系数,且k >0.从而点C 处受污染程度y =ka x 2+kb(18-x )2.(2)因为a =1,所以y =k x 2+kb(18-x )2,y ′=k ⎣⎡⎦⎤-2x 3+2b(18-x )3令y ′=0,得x =181+3b,又此时x =6,解得b =8,经验证符合题意, 所以,污染源B 的污染强度b 的值为8.考点二 利用导数研究函数的零点或方程的根|(2015·高考北京卷)设函数f (x )=x 22-k ln x ,k >0.(1)求f (x )的单调区间和极值;(2)证明:若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点. [解] (1)由f (x )=x 22-k ln x (k >0),得x >0且f ′(x )=x -k x =x 2-kx .由f ′(x )=0,解得x =k .f (x )与f ′(x )在区间(0,+∞)上的情况如下:x (0,k ) k (k ,+∞)f ′(x ) -0 +f (x )k (1-ln k )2f (x )的单调递减区间是(0,k ],单调递增区间是[k ,+∞); f (x )在x =k 处取得极小值f (k )=k (1-ln k )2. (2)证明:由(1)知,f (x )在区间(0,+∞)上的最小值为f (k )=k (1-ln k )2.因为f (x )存在零点,所以k (1-ln k )2≤0,从而k ≥e.当k =e 时,f (x )在区间(1,e)上单调递减,且f (e)=0, 所以x =e 是f (x )在区间(1,e]上的唯一零点.当k >e 时,f (x )在区间(0, e )上单调递减, 且f (1)=12>0,f ( e )=e -k 2<0,所以f (x )在区间(1, e ]上仅有一个零点.综上可知,若f (x )存在零点,则f (x )在区间(1, e ]上仅有一个零点.利用导数研究方程根的方法研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,根据题目要求,画出函数图象的走势规律,标明函数极(最)值的位置,通过数形结合的思想去分析问题,可以使问题的求解有一个清晰、直观的整体展现.2.(2015·高考四川卷)已知函数f (x )=-2x ln x +x 2-2ax +a 2,其中a >0. (1)设g (x )是f (x )的导函数,讨论g (x )的单调性;(2)证明:存在a ∈(0,1),使得f (x )≥0恒成立,且f (x )=0在区间(1,+∞)内有唯一解. 解:(1)由已知,函数f (x )的定义域为(0,+∞), g (x )=f ′(x )=2(x -1-ln x -a ), 所以g ′(x )=2-2x =2(x -1)x.当x ∈(0,1)时,g ′(x )<0,g (x )单调递减; 当x ∈(1,+∞)时,g ′(x )>0,g (x )单调递增.(2)证明:由f ′(x )=2(x -1-ln x -a )=0,解得a =x -1-ln x .令φ(x )=-2x ln x +x 2-2x (x -1-ln x )+(x -1-ln x )2=(1+ln x )2-2x ln x , 则φ(1)=1>0,φ(e)=2(2-e)<0. 于是,存在x 0∈(1,e),使得φ(x 0)=0.令a 0=x 0-1-ln x 0=u (x 0),其中u (x )=x -1-ln x (x ≥1). 由u ′(x )=1-1x ≥0知,函数u (x )在区间(1,+∞)上单调递增,故0=u (1)<a 0=u (x 0)<u (e)=e -2<1,即a 0∈(0,1). 当a =a 0时,有f ′(x 0)=0,f (x 0)=φ(x 0)=0. 再由(1)知,f ′(x )在区间(1,+∞)上单调递增, 当x ∈(1,x 0)时,f ′(x )<0,从而f (x )>f (x 0)=0; 当x ∈(x 0,+∞)时,f ′(x )>0,从而f (x )>f (x 0)=0; 又当x ∈(0,1]时,f (x )=(x -a 0)2-2x ln x >0. 故x ∈(0,+∞)时,f (x )≥0.综上所述,存在a ∈(0,1),使得f (x )≥0恒成立,且f (x )=0在区间(1,+∞)内有唯一解.考点三 利用导数研究与不等式有关的问题|导数在不等式中的应用问题是每年高考的必考内容,且以解答题的形式考查,难度较大,属中高档题.归纳起来常见的命题探究角度有:1.证明不等式. 2.不等式恒成立问题. 3.存在型不等式成立问题. 探究一 证明不等式1.(2016·唐山一模)已知f (x )=(1-x )e x -1. (1)求函数f (x )的最大值;(2)设g (x )=f (x )x ,x >-1,且x ≠0,证明:g (x )<1.解:(1)f ′(x )=-x e x .当x ∈(-∞,0)时,f ′(x )>0,f (x )单调递增; 当x ∈(0,+∞)时,f ′(x )<0,f (x )单调递减. 所以f (x )的最大值为f (0)=0.(2)证明:由(1)知,当x >0时,f (x )<0,g (x )<0<1. 当-1<x <0时,g (x )<1等价于f (x )>x . 设h (x )=f (x )-x ,则h ′(x )=-x e x -1.当x ∈(-1,0)时,0<-x <1,0<e x <1,则0<-x e x <1, 从而当x ∈(-1,0)时,h ′(x )<0,h (x )在(-1,0]上单调递减. 当-1<x <0时,h (x )>h (0)=0,即g (x )<1. 综上,总有g (x )<1. 探究二 不等式恒成立问题2.已知函数f (x )=m (x -1)e x +x 2(m ∈R ). (1)若m =-1,求函数f (x )的单调区间;(2)若对任意的x <0,不等式x 2+(m +2)x >f ′(x )恒成立,求m 的取值范围. 解:(1)m =-1时,f (x )=(1-x )e x +x 2,则f ′(x )=x (2-e x ), 由f ′(x )>0,得0<x <ln 2,由f ′(x )<0,得x <0或x >ln 2, 故函数的增区间为(0,ln 2),减区间为(-∞,0),(ln 2,+∞). (2)f ′(x )=mx ⎝⎛⎭⎫e x +2m <x 2+(m +2)x ,即:mx e x -x 2-mx <0. ∵x <0,∴m e x -x -m >0.令h (x )=m e x -x -m ,则h ′(x )=m e x -1,当m ≤0时,h (x )在x <0时为减函数,h (x )>h (0)=0. 当0<m ≤1时,h (x )在x <0时为减函数,h (x )>h (0)=0. 当m >1时,h (x )在(-∞,-ln m )上为减函数, 在(-ln m,0)上为增函数, ∴h (-ln m )<h (0)=0,不合题意. 综上:m ≤1.探究三 存在型不等式成立问题3.(2015·东北三校联考)已知函数f (x )=x +1e x (e 为自然对数的底数).(1)求函数f (x )的单调区间;(2)设函数φ(x )=xf (x )+tf ′(x )+1e x ,存在实数x 1,x 2∈[0,1],使得2φ(x 1)<φ(x 2)成立,求实数t 的取值范围.解:(1)∵函数的定义域为R ,f ′(x )=-xe x ,∴当x <0时,f ′(x )>0,当x >0时,f ′(x )<0,∴f (x )在(-∞,0)上单调递增,在(0,+∞)上单调递减. (2)假设存在x 1,x 2∈[0,1],使得2φ(x 1)<φ(x 2)成立, 则2[φ(x )]min <[φ(x )]max .∵φ(x )=xf (x )+tf ′(x )+e -x=x 2+(1-t )x +1e x,∴φ′(x )=-x 2+(1+t )x -t e x=-(x -t )(x -1)e x. ①当t ≥1时,φ′(x )≤0,φ(x )在[0,1]上单调递减, ∴2φ(1)<φ(0),即t >3-e2>1.②当t ≤0时,φ′(x )>0,φ(x )在[0,1]上单调递增, ∴2φ(0)<φ(1),即t <3-2e<0.③当0<t <1时,若x ∈[0,t ),φ′(x )<0,φ(x )在[0,t )上单调递减; 若x ∈(t,1],φ′(x )>0,φ(x )在(t,1]上单调递增, 所以2φ(t )<max{φ(0),φ(1)},即2·t +1e t <max ⎩⎨⎧⎭⎬⎫1,3-t e ,(*) 由(1)知,g (t )=2·t +1et 在[0,1]上单调递减,故4e ≤2·t +1e t ≤2,而2e ≤3-t e ≤3e,所以不等式(*)无解.综上所述,存在t ∈(-∞,3-2e)∪⎝⎛⎭⎫3-e2,+∞,使得命题成立.导数在不等式问题中的应用问题的常见类型及解题策略(1)利用导数证明不等式.①证明f (x )<g (x ),x ∈(a ,b ),可以构造函数F (x )=f (x )-g (x ),如果F ′(x )<0,则F (x )在(a ,b )上是减函数,同时若F (a )≤0,由减函数的定义可知,x ∈(a ,b )时,有F (x )<0,即证明了f (x )<g (x ).②证明f (x )>g (x ),x ∈(a ,b ),可以构造函数F (x )=f (x )-g (x ),如果F ′(x )>0,则F (x )在(a ,b )上是增函数,同时若F (a )≥0,由增函数的定义可知,x ∈(a ,b )时,有F (x )>0,即证明了f (x )>g (x ).(2)利用导数解决不等式的恒成立问题.利用导数研究不等式恒成立问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.3.导数的综合应用问题的答题模板【典例】 (14分)(2015·高考福建卷)已知函数f (x )=ln x -(x -1)22.(1)求函数f (x )的单调递增区间; (2)证明:当x >1时,f (x )<x -1;(3)确定实数k 的所有可能取值,使得存在x 0>1,当x ∈(1,x 0)时,恒有f (x )>k (x -1). [思路点拨] (1)先求函数f (x )的定义域,再求f ′(x ),令f ′(x )>0(注意在函数f (x )的定义域上),得函数f (x )的单调递增区间;(2)构造函数,通过求导判断函数的单调性来证明不等式;(3)对k 进行分类讨论,通过构造函数,利用求导来判断其单调性,从而得到参数k 的取值范围.[规范解答] (1)f ′(x )=1x -x +1=-x 2+x +1x,x ∈(0,+∞).(2分)由f ′(x )>0得⎩⎪⎨⎪⎧x >0,-x 2+x +1>0.解得0<x <1+52.(3分)故f (x )的单调递增区间是⎝⎛⎭⎪⎫0,1+52.(4分)(2)证明:令F (x )=f (x )-(x -1),x ∈(0,+∞).(5分) 则F ′(x )=1-x 2x .当x ∈(1,+∞)时,F ′(x )<0,所以F (x )在[1,+∞)上单调递减,(7分)故当x >1时,F (x )<F (1)=0,即当x >1时,f (x )<x -1.(8分) (3)由(2)知,当k =1时,不存在x 0>1满足题意.(9分) 当k >1时,对于x >1,有f (x )<x -1<k (x -1),则f (x )<k (x -1), 从而不存在x 0>1满足题意.(10分)当k <1时,令G (x )=f (x )-k (x -1),x ∈(0,+∞), 则G ′(x )=1x -x +1-k =-x 2+(1-k )x +1x .(11分)由G ′(x )=0,得-x 2+(1-k )x +1=0. 解得x 1=1-k -(1-k )2+42<0,x 2=1-k +(1-k )2+42>1.当x ∈(1,x 2)时,G ′(x )>0,故G (x )在[1,x 2)内单调递增.(13分) 从而当x ∈(1,x 2)时,G (x )>G (1)=0,即f (x )>k (x -1), 综上,k 的取值范围是(-∞,1).(14分) [模板形成]A 组 考点能力演练1.(2016·沈阳一模)已知函数f (x )=a ln x (a >0),e 为自然对数的底数. (1)若过点A (2,f (2))的切线斜率为2,求实数a 的值; (2)当x >0时,求证:f (x )≥a ⎝⎛⎭⎫1-1x ; (3)若在区间(1,e)上e x a -e 1a x <0恒成立,求实数a 的取值范围.解:(1)f ′(x )=a x ,f ′(2)=a2=2,a =4.(2)证明:令g (x )=a ⎝⎛⎭⎫ln x -1+1x ,g ′(x )=a ⎝⎛⎭⎫1x -1x 2. 令g ′(x )>0,即a ⎝⎛⎭⎫1x -1x 2>0,解得x >1,∴g (x )在(0,1)上单调递减,在(1,+∞)上单调递增.∴g (x )的最小值为g (1)=0,∴f (x )≥a ⎝⎛⎭⎫1-1x . (3)由题意可知e x a <e 1a x ,化简得x -1a <ln x ,又x ∈(1,e),∴a >x -1ln x .令h (x )=x -1ln x ,则h ′(x )=ln x -(x -1)·1x (ln x )2=ln x -1+1x (ln x )2,由(2)知,当x ∈(1,e)时,ln x -1+1x >0,∴h ′(x )>0,即h (x )在(1,e)上单调递增, ∴h (x )<h (e)=e -1. ∴a ≥e -1.2.(2015·九江一模)设函数f (x )=12x 2-(a +b )x +ab ln x (其中e 为自然对数的底数,a ≠e ,b ∈R ),曲线y =f (x )在点(e ,f (e))处的切线方程为y =-12e 2.(1)求b ;(2)若对任意x ∈⎣⎡⎭⎫1e ,+∞,f (x )有且只有两个零点,求a 的取值范围. 解:(1)f ′(x )=x -(a +b )+ab x =(x -a )(x -b )x .∵f ′(e)=0,a ≠e ,∴b =e.(2)由(1)得f (x )=12x 2-(a +e)x +a eln x ,f ′(x )=(x -a )(x -e )x,①当a ≤1e 时,由f ′(x )>0得x >e ;由f ′(x )<0得1e ≤x <e ⎝⎛⎭⎫注:a =1e 时,由f ′(x )<0得1e <x <e . 此时f (x )在⎣⎡⎭⎫1e ,e 上单调递减,在(e ,+∞)上单调递增. ∵f (e)=12e 2-(a +e)e +a eln e =-12e 2<0,f (e 2)=12e 4-(a +e)e 2+2a e =12e(e -2)(e 2-2a )≥12e(e -2)⎝⎛⎭⎫e 2-2e >0, ∴要使得f (x )在⎣⎡⎭⎫1e ,+∞上有且只有两个零点,则只需f ⎝⎛⎭⎫1e =12e 2-a +e e +a eln 1e =(1-2e 2)-2e (1+e 2)a2e 2≥0,即a ≤1-2e 22e (1+e 2). ②当1e <a <e 时,由f ′(x )>0得1e ≤x <a 或x >e ;由f ′(x )<0得a <x <e.此时f (x )在(a ,e)上单调递减,在⎣⎡⎭⎫1e ,a 和(e ,+∞)上单调递增.f (a )=-12a 2-a e +a eln a <-12a 2-a e +a eln e =-12a 2<0,∴此时f (x )在⎣⎡⎭⎫1e ,+∞上至多只有一个零点,不合题意. ③当a >e 时,由f ′(x )>0得1e≤x <e 或x >a ,由f ′(x )<0得e<x <a ,此时f (x )在⎣⎡⎭⎫1e ,e 和(a ,+∞)上单调递增,在(e ,a )上单调递减,且f (e)=-12e 2<0,∴f (x )在⎣⎡⎭⎫1e ,+∞上至多只有一个零点,不合题意.综上所述,a 的取值范围为⎝ ⎛⎦⎥⎤-∞,1-2e 22e (1+e 2). 3.已知函数f (x )=ln x +1x +ax (a 是实数),g (x )=2x x 2+1+1. (1)当a =2时,求函数f (x )在定义域上的最值;(2)若函数f (x )在[1,+∞)上是单调函数,求a 的取值范围;(3)是否存在正实数a 满足:对于任意x 1∈[1,2],总存在x 2∈[1,2],使得f (x 1)=g (x 2)成立?若存在,求出a 的取值范围,若不存在,说明理由.解:(1)当a =2时,f (x )=ln x +1x+2x ,x ∈(0,+∞), f ′(x )=1x -1x 2+2=2x 2+x -1x 2=(2x -1)(x +1)x 2,令f ′(x )=0,则x =-1或x =12. 当x ∈⎝⎛⎭⎫0,12时,f ′(x )<0;当x ∈⎝⎛⎭⎫12,+∞时,f ′(x )>0, 所以f (x )在x =12处取到最小值,最小值为3-ln 2;无最大值. (2)f ′(x )=1x -1x 2+a =ax 2+x -1x 2,x ∈[1,+∞), 显然a ≥0时,f ′(x )≥0,且不恒等于0,所以函数f (x )在[1,+∞)上是单调递增函数,符合要求.当a <0时,令h (x )=ax 2+x -1,易知h (x )≥0在[1,+∞)上不恒成立,所以函数f (x )在[1,+∞)上只能是单调递减函数.所以Δ=1+4a ≤0或⎩⎪⎨⎪⎧ Δ>0,h (1)≤0,-12a ≤1,解得a ≤-14. 综上,满足条件的a 的取值范围是⎝⎛⎦⎤-∞,-14∪[0,+∞). (3)不存在满足条件的正实数a .由(2)知,a >0时f (x )在[1,+∞)上是单调递增函数,所以f (x )在[1,2]上是单调递增函数.所以对于任意x 1∈[1,2],f (1)≤f (x 1)≤f (2),即f (x 1)∈⎣⎡⎦⎤1+a ,ln 2+12+2a . g ′(x )=2(1-x 2)(1+x 2)2,当x ∈[1,2]时,g ′(x )≤0,所以g (x )在[1,2]上是单调递减函数. 所以当x 2∈[1,2]时,g (x 2)∈⎣⎡⎦⎤95,2.若对于任意x 1∈[1,2],总存在x 2∈[1,2],使得f (x 1)=g (x 2)成立,则⎣⎡⎦⎤1+a ,ln 2+12+2a ⊆⎣⎡⎦⎤95,2,此时a 无解.所以不存在满足条件的正实数a .B 组 高考题型专练1.(2015·高考广东卷)设a >1,函数f (x )=(1+x 2)e x -a .(1)求f (x )的单调区间;(2)证明:f (x )在(-∞,+∞)上仅有一个零点;(3)若曲线y =f (x )在点P 处的切线与x 轴平行,且在点M (m ,n )处的切线与直线OP 平行(O 是坐标原点),证明:m ≤ 3a -2e-1. 解:(1)f ′(x )=2x e x +(1+x 2)e x =(x 2+2x +1)e x =(x +1)2e x ≥0,故f (x )是R 上的单调递增函数,其单调增区间是(-∞,+∞),无单调减区间.(2)证明:因为f (0)=(1+02)e 0-a =1-a <0,且f (ln a )=(1+ln 2a )e ln a -a =(1+ln 2a )a -a =a ln 2a >0,由零点存在性定理知,f (x )在(-∞,+∞)上至少有一个零点.又由(1)知,函数f (x )是(-∞,+∞)上的单调递增函数,故函数f (x )在(-∞,+∞)上仅有一个零点.(3)设点P (x 0,y 0),由曲线y =f (x )在点P 处的切线与x 轴平行知,f ′(x 0)=0,即f ′(x 0)=(x 0+1)2e x 0=0,(x 0+1)2=0,x 0=-1,即P (-1,2e -1-a ).由点M (m ,n )处的切线与直线OP 平行知,f ′(m )=k OP ,即(1+m )2e m =2e -1-a -0-1-0=a -2e . 由e m ≥1+m知,(1+m )3≤(1+m )2e m =a -2e ,即1+m ≤ 3a -2e ,即m ≤ 3a -2e-1.2.(2015·高考山东卷)设函数f (x )=(x +a )ln x ,g (x )=x 2ex .已知曲线y =f (x )在点(1,f (1))处的切线与直线2x -y =0平行.(1)求a 的值;(2)是否存在自然数k ,使得方程f (x )=g (x )在(k ,k +1)内存在唯一的根?如果存在,求出k ;如果不存在,请说明理由;(3)设函数m (x )=min{f (x ),g (x )}(min{p ,q }表示p ,q 中的较小值),求m (x )的最大值. 解:(1)由题意知,曲线y =f (x )在点(1,f (1))处的切线斜率为2,所以f ′(1)=2,又f ′(x )=ln x +a x+1,所以a =1. (2)k =1时,方程f (x )=g (x )在(1,2)内存在唯一的根.设h (x )=f (x )-g (x )=(x +1)ln x -x 2e x , 当x ∈(0,1]时,h (x )<0,又h (2)=3ln 2-4e 2=ln 8-4e 2>1-1=0, 所以存在x 0∈(1,2),使得h (x 0)=0.因为h ′(x )=ln x +1x +1+x (x -2)e x, 所以当x ∈(1,2)时,h ′(x )>1-1e>0, 当x ∈[2,+∞)时,h ′(x )>0,所以当x ∈(1,+∞)时,h (x )单调递增.所以k =1时,方程f (x )=g (x )在(k ,k +1)内存在唯一的根.(3)由(2)知,方程f (x )=g (x )在(1,2)内存在唯一的根x 0,且x ∈(0,x 0)时,f (x )<g (x ), x ∈(x 0,+∞)时,f (x )>g (x ),所以m (x )=⎩⎪⎨⎪⎧(x +1)ln x ,x ∈(0,x 0],x 2e x ,x ∈(x 0,+∞). 当x ∈(0,x 0]时,若x ∈(0,1],m (x )≤0;若x ∈(1,x 0],由m ′(x )=ln x +1x+1>0. 可知0<m (x )≤m (x 0).故m (x )≤m (x 0).当x ∈(x 0,+∞)时,由m ′(x )=x (2-x )e x, 可得x ∈(x 0,2)时,m ′(x )>0,m (x )单调递增;x ∈(2,+∞)时,m ′(x )<0,m (x )单调递减.可知m (x )≤m (2)=4e 2,且m (x 0)<m (2). 综上可得,函数m (x )的最大值为4e 2.。

新教材高考数学一轮复习:导数的综合应用课件

新教材高考数学一轮复习:导数的综合应用课件
当 m>4 时,两个根为正,f(x)有两个极值点 x1,x2,
f(x1)+f(x2)=mln


(1 +2 )
x1-x1+ +mln x2-x2+ =mln x1x2-(x1+x2)+
=mln
1
2
1 2

m-m+m=mln m.
12
(1 )+(2 )
2
2
2
+ 2 =(x1+x2) -2x1x2=m -2m.所以 2 2
=
((+1)ln)'
+
(-1)'
x→1
1
= lim+
→1
1++ln
1
=2,于是 a≤2,于是 a 的
(方法 2 最值法)
由 f(x)=(x+1)ln x-a(x-1),得 f'(x)=ln
1
x++1-a.
①当 1-a≥0,即 a≤1 时,f'(x)>0,所以 f(x)在(1,+∞)上单调递增,所以 f(x)>f(1)=0.
(1,x0)上单调递减,
所以f(x)<f(1)=0,不符合题意.
综上所述,a的取值范围是(-∞,2].
解题心得1.若∀x>0,f(x)≥0成立,求a的取值范围,即求当x>0,f(x)≥0恒成立
时的a的取值范围,即研究a取什么范围使得当x>0时f(x)≥0成立.
2.对于恒成立求参数取值范围的问题,最值法与分离参数法是两种最常用
要找到两个变量的关系,转化为一个变量,从而得到一个函数;也可以从含

2023版高考数学一轮总复习第三章导数及其应用第一讲导数的概念及运算课件理

2023版高考数学一轮总复习第三章导数及其应用第一讲导数的概念及运算课件理

先化为和、差的形式,再求导
根式形式
先化为分数指数幂的形式,再求导
三角形式
先利用三角函数公式转化为和或差的形式,再求导
复合形式
先确定复合关系,由外向内逐层求导,必要时可换元
P(x0,f(x0))处的切线的斜率k,即k= f '(x0) .相应地,切线方程为y-f(x0)=
f '(x0)(x-x0).
说明 函数y=f(x)在某点处的导数、曲线y=f(x)在某点处切线的斜率和
倾斜角,这三者是可以相互转化的.
考点2
ቤተ መጻሕፍቲ ባይዱ
导数的运算
1.基本初等函数的导数公式
基本初等函数
导函数
f(x)=C(C为常数)
y=3x-1,则f(1)+f '(1)=
5
.
考向扫描
考向1
导数的运算
1.典例 求下列函数的导数:
(1)y=(x+1)(x+2)(x+3);


2
(2)y=sin (1-2cos );
2
4
2−1
1
(3)y=ln
(x> ).
2+1
2
考向1
解析
导数的运算
(1)因为y=(x+1)(x+2)(x+3)=(x2+3x+2)(x+3)=x3+6x2+11x+6,
f '(x)=
a
考点2
导数的运算
2.导数的四则运算法则
若f '(x),g'(x)存在,则
(1)[f(x)±g(x)] ' =f '(x)±g'(x) ;
(2)[f(x)·g(x)]'= f '(x)g(x)+f(x)g'(x) ;

高考一轮数学复习课件:第二章 第十二节 导数的综合应用

高考一轮数学复习课件:第二章  第十二节 导数的综合应用

sin x+xcos x>0. 3 当 a=0 时,f(x)=- ,不合题意; 2
π 当 a<0,x∈0,2时,f′(x)<0,从 π 而 f(x)在0,2 内单调递减,
考点二
解析
3 1. 已知函数 f(x)=axsin x- (a 2
π ∈ R),且在0,2 上的最大值
第十二节
导数的综合应用
1.用导数研究不等式问题. 2.用导数研究函数零点问题. 3.用导数解决实际应用问题.
考点一
利用导数研究与不等式有关问题
[必会方法] 1.利用导数证明不等式 若证明 f(x)<g(x),x∈(a,b),可以构造函数 F(x)=f(x)-g(x),
师生互动
如果 F′(x)<0,则 F(x)在(a,b)上是减函数,同时若 F(a)≤0, 由减函数的定义可知, x ∈ (a , b) 时,有 F(x)<0 ,即证明了 f(x)<g(x). 2.利用导数解决不等式的恒成立问题 利用导数研究不等式恒成立问题,首先要构造函数,利用导数 研究函数的单调性,求出最值,进而得出相应的含参不等式, 从而求出参数的取值范围;也可分离变量,构造函数,直接把 问题转化为函数的最值问题.
当 x∈(0,e1-a)时,f′(x)>0,f(x)是增函数;

1 a 当 x ∈ (e , +∞)时, f′(x)<0, f(x)是减函数. (2)若函数 f(x)的图象与 1-a 函数 g(x)的图象在区间 所以函数 f(x)的单调递增区间为(0,e ], 1-a 单调递减区间为 [e ,+∞), (0,e ]上有公共点,求
2
实数 a 的取值范围.
极大值为 f(x)极大值=f(e1-a)=ea-1,无极小值.

(word完整版)高三理科数学一轮总复习导数及其应用教师用书95891

(word完整版)高三理科数学一轮总复习导数及其应用教师用书95891

第三章导数及其应用高考导航知识网络3.1 导数的概念与运算典例精析题型一 导数的概念【例1】 已知函数f (x )=2ln 3x +8x , 求0Δlim→x f (1-2Δx )-f (1)Δx 的值.【解析】由导数的定义知:0Δlim→x f (1-2Δx )-f (1)Δx =-20Δlim →x f (1-2Δx )-f (1)-2Δx =-2f ′(1)=-20.【点拨】导数的实质是求函数值相对于自变量的变化率,即求当Δx →0时, 平均变化率ΔyΔx 的极限.【变式训练1】某市在一次降雨过程中,降雨量y (mm)与时间t (min)的函数关系可以近似地表示为f (t )=t 2100,则在时刻t =10 min 的降雨强度为( ) A.15 mm/minB.14 mm/min C.12mm/minD.1 mm/min 【解析】选A. 题型二 求导函数【例2】 求下列函数的导数. (1)y =ln(x +1+x 2); (2)y =(x 2-2x +3)e 2x ; (3)y =3x 1-x. 【解析】运用求导数公式及复合函数求导数法则. (1)y ′=1x +1+x2(x +1+x 2)′=1x +1+x 2(1+x 1+x 2)=11+x 2.(2)y ′=(2x -2)e 2x +2(x 2-2x +3)e 2x=2(x 2-x +2)e 2x . (3)y ′=13(x 1-x 32)-1-x +x (1-x )2=13(x 1-x 32)-1(1-x )2 =13x 32- (1-x ) 34-【变式训练2】如下图,函数f (x )的图象是折线段ABC ,其中A 、B 、C 的坐标分别为(0,4),(2,0),(6,4),则f (f (0))=;0Δlim→x f (1+Δx )-f (1)Δx =(用数字作答).【解析】f (0)=4,f (f (0))=f (4)=2, 由导数定义0Δlim→x f (1+Δx )-f (1)Δx =f ′(1).当0≤x ≤2时,f (x )=4-2x ,f ′(x )=-2,f ′(1)=-2. 题型三 利用导数求切线的斜率【例3】 已知曲线C :y =x 3-3x 2+2x , 直线l :y =kx ,且l 与C 切于点P (x 0,y 0) (x 0≠0),求直线l 的方程及切点坐标.【解析】由l 过原点,知k =y 0x 0 (x 0≠0),又点P (x 0,y 0) 在曲线C 上,y 0=x 30-3x 20+2x 0, 所以y 0x 0=x 2-3x 0+2. 而y ′=3x 2-6x +2,k =3x 20-6x 0+2. 又 k =y 0x 0,所以3x 20-6x 0+2=x 20-3x 0+2,其中x 0≠0, 解得x 0=32.所以y 0=-38,所以k =y 0x 0=-14,所以直线l 的方程为y =-14x ,切点坐标为(32,-38).【点拨】利用切点在曲线上,又曲线在切点处的切线的斜率为曲线在该点处的导数来列方程,即可求得切点的坐标.【变式训练3】若函数y =x 3-3x +4的切线经过点(-2,2),求此切线方程. 【解析】设切点为P (x 0,y 0),则由 y ′=3x 2-3得切线的斜率为k =3x 20-3.所以函数y =x 3-3x +4在P (x 0,y 0)处的切线方程为 y -y 0=(3x 20-3)(x -x 0). 又切线经过点(-2,2),得2-y 0=(3x 20-3)(-2-x 0),① 而切点在曲线上,得y 0=x 30-3x 0+4, ② 由①②解得x 0=1或x 0=-2. 则切线方程为y =2 或 9x -y +20=0.总结提高1.函数y =f (x )在x =x 0处的导数通常有以下两种求法: (1) 导数的定义,即求0Δlim→x ΔyΔx =0Δlim →x f (x 0+Δx )-f (x 0)Δx 的值;(2)先求导函数f ′(x ),再将x =x 0的值代入,即得f ′(x 0)的值. 2.求y =f (x )的导函数的几种方法: (1)利用常见函数的导数公式; (2)利用四则运算的导数公式; (3)利用复合函数的求导方法.3.导数的几何意义:函数y =f (x )在x =x 0处的导数f ′(x 0),就是函数y =f (x )的曲线在点P (x 0,y 0)处的切线的斜率.3.2 导数的应用(一)典例精析题型一 求函数f (x )的单调区间【例1】已知函数f (x )=x 2-ax -a ln(x -1)(a ∈R ),求函数f (x )的单调区间. 【解析】函数f (x )=x 2-ax -a ln(x -1)的定义域是(1,+∞). f ′(x )=2x -a -ax -1=2x (x -a +22)x -1,①若a ≤0,则a +22≤1,f ′(x )=2x (x -a +22)x -1>0在(1,+∞)上恒成立,所以a ≤0时,f (x )的增区间为(1,+∞).②若a >0,则a +22>1,故当x ∈(1,a +22]时,f ′(x )=2x (x -a +22)x -1≤0;当x ∈[a +22,+∞)时,f ′(x )=2x (x -a +22)x -1≥0,所以a >0时,f (x )的减区间为(1,a +22],f (x )的增区间为[a +22,+∞).【点拨】在定义域x >1下,为了判定f ′(x )符号,必须讨论实数a +22与0及1的大小,分类讨论是解本题的关键.【变式训练1】已知函数f (x )=x 2+ln x -ax 在(0,1)上是增函数,求a 的取值范围. 【解析】因为f ′(x )=2x +1x -a ,f (x )在(0,1)上是增函数,所以2x +1x -a ≥0在(0,1)上恒成立,即a ≤2x +1x恒成立.又2x +1x ≥22(当且仅当x =22时,取等号).所以a ≤22,故a 的取值范围为(-∞,22].【点拨】当f (x )在区间(a ,b )上是增函数时⇒f ′(x )≥0在(a ,b )上恒成立;同样,当函数f (x )在区间(a ,b )上为减函数时⇒f ′(x )≤0在(a ,b )上恒成立.然后就要根据不等式恒成立的条件来求参数的取值范围了.题型二 求函数的极值【例2】已知f (x )=ax 3+bx 2+cx (a ≠0)在x =±1时取得极值,且f (1)=-1. (1)试求常数a ,b ,c 的值;(2)试判断x =±1是函数的极小值点还是极大值点,并说明理由. 【解析】(1)f ′(x )=3ax 2+2bx +c . 因为x =±1是函数f (x )的极值点,所以x =±1是方程f ′(x )=0,即3ax 2+2bx +c =0的两根.由根与系数的关系,得⎪⎪⎩⎪⎪⎨⎧-==-② ,13① ,032ac ab又f (1)=-1,所以a +b +c =-1.③ 由①②③解得a =12,b =0,c =-32.(2)由(1)得f (x )=12x 3-32x ,所以当f ′(x )=32x 2-32>0时,有x <-1或x >1;当f ′(x )=32x 2-32<0时,有-1<x <1.所以函数f (x )=12x 3-32x 在(-∞,-1)和(1,+∞)上是增函数,在(-1,1)上是减函数.所以当x =-1时,函数取得极大值f (-1)=1;当x =1时,函数取得极小值f (1)=-1.【点拨】求函数的极值应先求导数.对于多项式函数f (x )来讲, f (x )在点x =x 0处取极值的必要条件是f ′(x )=0.但是, 当x 0满足f ′(x 0)=0时, f (x )在点x =x 0处却未必取得极值,只有在x 0的两侧f (x )的导数异号时,x 0才是f (x )的极值点.并且如果f ′(x )在x 0两侧满足“左正右负”,则x 0是f (x )的极大值点,f (x 0)是极大值;如果f ′(x )在x 0两侧满足“左负右正”,则x 0是f (x )的极小值点,f (x 0)是极小值.【变式训练2】定义在R 上的函数y =f (x ),满足f (3-x )=f (x ),(x -32)f ′(x )<0,若x 1<x 2,且x 1+x 2>3,则有( )A.f (x 1)<f (x 2)B.f (x 1)>f (x 2)C.f (x 1)=f (x 2)D.不确定【解析】由f (3-x )=f (x )可得f [3-(x +32)]=f (x +32),即f (32-x )=f (x +32),所以函数f (x )的图象关于x =32对称.又因为(x -32)f ′(x )<0,所以当x >32时,函数f (x )单调递减,当x <32时,函数f (x )单调递增.当x 1+x 22=32时,f (x 1)=f (x 2),因为x 1+x 2>3,所以x 1+x 22>32,相当于x 1,x 2的中点向右偏离对称轴,所以f (x 1)>f (x 2).故选B.题型三 求函数的最值【例3】 求函数f (x )=ln(1+x )-14x 2在区间[0,2]上的最大值和最小值.【解析】f ′(x )=11+x -12x ,令11+x -12x =0,化简为x 2+x -2=0,解得x 1=-2或x 2=1,其中x 1=-2舍去.又由f ′(x )=11+x -12x >0,且x ∈[0,2],得知函数f (x )的单调递增区间是(0,1),同理, 得知函数f (x )的单调递减区间是(1,2),所以f (1)=ln 2-14为函数f (x )的极大值.又因为f (0)=0,f (2)=ln 3-1>0,f (1)>f (2),所以,f (0)=0为函数f (x )在[0,2]上的最小值,f (1)=ln 2-14为函数f (x )在[0,2]上的最大值.【点拨】求函数f (x )在某闭区间[a ,b ]上的最值,首先需求函数f (x )在开区间(a ,b )内的极值,然后,将f (x )的各个极值与f (x )在闭区间上的端点的函数值f (a )、f (b )比较,才能得出函数f (x )在[a ,b ]上的最值.【变式训练3】(2008江苏)f (x )=ax 3-3x +1对x ∈[-1,1]总有f (x )≥0成立,则a =. 【解析】若x =0,则无论a 为何值,f (x )≥0恒成立. 当x ∈(0,1]时,f (x )≥0可以化为a ≥3x 2-1x3,设g (x )=3x 2-1x 3,则g ′(x )=3(1-2x )x 4,x ∈(0,12)时,g ′(x )>0,x ∈(12,1]时,g ′(x )<0.因此g (x )max =g (12)=4,所以a ≥4.当x ∈[-1,0)时,f (x )≥0可以化为 a ≤3x 2-1x 3,此时g ′(x )=3(1-2x )x 4>0, g (x )min =g (-1)=4,所以a ≤4. 综上可知,a =4.总结提高1.求函数单调区间的步骤是: (1)确定函数f (x )的定义域D ; (2)求导数f ′(x );(3)根据f ′(x )>0,且x ∈D ,求得函数f (x )的单调递增区间;根据f ′(x )<0,且x ∈D ,求得函数f (x )的单调递减区间.2.求函数极值的步骤是: (1)求导数f ′(x ); (2)求方程f ′(x )=0的根;(3)判断f ′(x )在方程根左右的值的符号,确定f (x )在这个根处取极大值还是取极小值. 3.求函数最值的步骤是:先求f (x )在(a ,b )内的极值;再将f (x )的各极值与端点处的函数值f (a )、f (b )比较,其中最大的一个是最大值,最小的一个是最小值.3.3 导数的应用(二)典例精析题型一 利用导数证明不等式 【例1】已知函数f (x )=12x 2+ln x .(1)求函数f (x )在区间[1,e]上的值域; (2)求证:x >1时,f (x )<23x 3.【解析】(1)由已知f ′(x )=x +1x,当x ∈[1,e]时,f ′(x )>0,因此f (x )在 [1,e]上为增函数. 故f (x )max =f (e)=e 22+1,f (x )min =f (1)=12,因而f (x )在区间[1,e]上的值域为[12,e 22+1].(2)证明:令F (x )=f (x )-23x 3=-23x 3+12x 2+ln x ,则F ′(x )=x +1x -2x 2=(1-x )(1+x +2x 2)x ,因为x >1,所以F ′(x )<0, 故F (x )在(1,+∞)上为减函数. 又F (1)=-16<0,故x >1时,F (x )<0恒成立, 即f (x )<23x 3.【点拨】有关“超越性不等式”的证明,构造函数,应用导数确定所构造函数的单调性是常用的证明方法.【变式训练1】已知对任意实数x ,有f (-x )=-f (x ),g (-x )=g (x ),且x >0时,f ′(x )>0,g ′(x )>0,则x <0时( )A.f ′(x )>0,g ′(x )>0B.f ′(x )>0,g ′(x )<0C.f ′(x )<0,g ′(x )>0D.f ′(x )<0,g ′(x )<0 【解析】选B. 题型二 优化问题【例2】 (2009湖南)某地建一座桥,两端的桥墩已建好,这两个桥墩相距m 米,余下工程只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用为256万元;距离为x 米的相邻两墩之间的桥面工程费用为(2+x )x 万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素.记余下工程的费用为y 万元.(1)试写出y 关于x 的函数关系式;(2)当m =640米时,需新建多少个桥墩才能使y 最小? 【解析】(1)设需新建n 个桥墩,则(n +1)x =m , 即n =m x-1.所以y =f (x )=256n +(n +1)(2+x )x=256(m x -1)+mx (2+x )x=256m x+m x +2m -256.(2)由(1)知f ′(x )=-256m x 2+12mx 21 =m2x2(x 23-512).令f ′(x )=0,得x 23=512.所以x =64.当0<x <64时,f ′(x )<0,f (x )在区间(0,64)内为减函数;当64<x <640时,f ′(x )>0,f (x )在区间(64,640)内为增函数.所以f (x )在x =64处取得最小值.此时n =m x -1=64064-1=9.故需新建9个桥墩才能使y 最小.【变式训练2】(2010上海)如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,骨架把圆柱底面8等份,再用S 平方米塑料片制成圆柱的侧面和下底面(不安装上底面).当圆柱底面半径r 取何值时,S 取得最大值?并求出该最大值(结果精确到0.01平方米).【解析】设圆柱底面半径为r ,高为h , 则由已知可得4(4r +2h )=9.6,所以2r +h =1.2. S =2.4πr -3πr 2,h =1.2-2r >0,所以r <0.6. 所以S =2.4πr -3πr 2(0<r <0.6). 令f (r )=2.4πr -3πr 2,则f ′(r )=2.4π-6πr . 令f ′(r )=0得r =0.4.所以当0<r <0.4,f ′(r )>0; 当0.4<r <0.6,f ′(r )<0.所以r =0.4时S 最大,S max =1.51. 题型三 导数与函数零点问题【例3】 设函数f (x )=13x 3-mx 2+(m 2-4)x ,x ∈R .(1)当m =3时,求曲线y =f (x )在点(2,f (2))处的切线方程;(2)已知函数f (x )有三个互不相同的零点0,α,β,且α<β.若对任意的x ∈[α,β],都有f (x )≥f (1)恒成立,求实数m 的取值范围.【解析】(1)当m =3时,f (x )=13x 3-3x 2+5x ,f ′(x )=x 2-6x +5.因为f (2)=23,f ′(2)=-3,所以切点坐标为(2,23),切线的斜率为-3,则所求的切线方程为y -23=-3(x -2),即9x +3y -20=0.(2)f ′(x )=x 2-2mx +(m 2-4). 令f ′(x )=0,得x =m -2或x =m +2.当x ∈(-∞,m -2)时,f ′(x )>0,f (x )在(-∞,m -2)上是增函数; 当x ∈(m -2,m +2)时,f ′(x )<0,f (x )在(m -2,m +2)上是减函数; 当x ∈(m +2,+∞)时,f ′(x )>0,f (x )在(m +2,+∞)上是增函数.因为函数f (x )有三个互不相同的零点0,α,β,且f (x )=13x [x 2-3mx +3(m 2-4)],所以⎩⎨⎧≠->--.0)4(3,0)4(12)3(222m m m 解得m ∈(-4,-2)∪(-2,2)∪(2,4). 当m ∈(-4,-2)时,m -2<m +2<0,所以α<m -2<β<m +2<0.此时f (α)=0,f (1)>f (0)=0,与题意不合,故舍去. 当m ∈(-2,2)时,m -2<0<m +2, 所以α<m -2<0<m +2<β.因为对任意的x ∈[α,β],都有f (x )≥f (1)恒成立, 所以α<1<β.所以f (1)为函数f (x )在[α,β]上的最小值.因为当x =m +2时,函数f (x )在[α,β]上取最小值, 所以m +2=1,即m =-1. 当m ∈(2,4)时,0<m -2<m +2, 所以0<m -2<α<m +2<β.因为对任意的x ∈[α,β],都有f (x )≥f (1)恒成立, 所以α<1<β.所以f (1)为函数f (x )在[α,β]上的最小值.因为当x =m +2时,函数f (x )在[α,β]上取最小值, 所以m +2=1,即m =-1(舍去). 综上可知,m 的取值范围是{-1}.【变式训练3】已知f (x )=ax 2(a ∈R ),g (x )=2ln x . (1)讨论函数F (x )=f (x )-g (x )的单调性;(2)若方程f (x )=g (x )在区间[2,e]上有两个不等解,求a 的取值范围. 【解析】(1)当a >0时,F (x )的递增区间为(1a ,+∞),递减区间为(0,1a); 当a ≤0时,F (x )的递减区间为(0,+∞). (2)[12ln 2,1e). 总结提高在应用导数处理方程、不等式有关问题时,首先应熟练地将方程、不等式问题直接转化为函数问题,再利用导数确定函数单调性、极值或最值.3.4 定积分与微积分基本定理典例精析题型一 求常见函数的定积分 【例1】 计算下列定积分的值. (1)⎰21(x -1)5d x ;(2)⎰2π(x +sin x )d x .【解析】(1)因为[16(x -1)6]′=(x -1)5, 所以⎰21 (x -1)5d x =6)1(61-x 12=16. (2)因为(x 22-cos x )′=x +sin x , 所以⎰2π0(x +sin x )d x =)cos 2(2x x -12π=π28+1. 【点拨】(1)一般情况下,只要能找到被积函数的原函数,就能求出定积分的值;(2)当被积函数是分段函数时,应对每个区间分段积分,再求和;(3)对于含有绝对值符号的被积函数,应先去掉绝对值符号后积分;(4)当被积函数具有奇偶性时,可用以下结论:①若f (x )是偶函数时,则⎰-a a f (x )d x =2⎰a 0f (x )d x ; ②若f (x )是奇函数时,则⎰-a a f (x )d x =0. 【变式训练1】求⎰-55(3x 3+4sin x )d x . 【解析】⎰-55(3x 3+4sin x )d x 表示直线x =-5,x =5,y =0和曲线y =3x 3+4sin x 所围成的曲边梯形面积的代数和,且在x 轴上方的面积取正号,在x 轴下方的面积取负号.又f (-x )=3(-x )3+4sin(-x )=-(3x 3+4sin x )=-f (x ).所以f (x )=3x 3+4sin x 在[-5,5]上是奇函数,所以⎰-50(3x 3+4sin x )d x =-⎰05(3x 3+4sin x )d x , 所以⎰-55(3x 3+4sin x )d x =⎰-50(3x 3+4sin x )d x +⎰05(3x 3+4sin x )d x =0. 题型二 利用定积分计算曲边梯形的面积【例2】求抛物线y 2=2x 与直线y =4-x 所围成的平面图形的面积.【解析】方法一:如图,由⎩⎨⎧-==,4,22x y x y 得交点A (2,2),B (8,-4),则S =⎰02[2x -(-2x )]d x +⎰28[4-x -(-2x )]d x=0223324x +28)32224(232x x x +-=163+383=18. 方法二:S =⎰-42[(4-y )-y 22]d y =42)61214(32---y y y =18. 【点拨】根据图形的特征,选择不同的积分变量,可使计算简捷,在以y 为积分变量时,应注意将曲线方程变为x =φ(y )的形式,同时,积分上、下限必须对应y 的取值.【变式训练2】设k 是一个正整数,(1+x k )k 的展开式中x 3的系数为116,则函数y =x 2与y =kx -3的图象所围成的阴影部分(如图)的面积为.【解析】T r +1=C r k (x k )r ,令r =3,得x 3的系数为C 3k 1k 3=116,解得k =4.由⎩⎨⎧-==34,2x y x y 得函数y =x 2与y =4x -3的图象的交点的横坐标分别为1,3.所以阴影部分的面积为S =⎰13(4x -3-x 2)d x =(2x 2-3x -13)313x =43. 题型三 定积分在物理中的应用【例3】 (1) 变速直线运动的物体的速度为v (t )=1-t 2,初始位置为x 0=1,求它在前2秒内所走过的路程及2秒末所在的位置;(2)一物体按规律x =bt 3作直线运动,式中x 为时间t 内通过的距离,媒质的阻力正比于速度的平方,试求物体由x =0运动到x =a 时阻力所做的功.【解析】(1)当0≤t ≤1时,v (t )≥0,当1≤t ≤2时,v (t )≤0,所以前2秒内所走过的路程为s =⎰01v (t )d t +⎰12(-v (t ))d t =⎰01(1-t 2)d t +⎰12(t 2-1)d t=01)31(3t t -+12)31(3t t -=2.2秒末所在的位置为x 1=x 0+⎰02v (t )d t =1+⎰02(1-t 2)d t =13. 所以它在前2秒内所走过的路程为2,2秒末所在的位置为x 1=13. (2) 物体的速度为v =(bt 3)′=3bt 2.媒质阻力F 阻=kv 2=k (3bt 2)2=9kb 2t 4,其中k 为比例常数,且k >0.当x =0时,t =0;当x =a 时,t =t 1=(a b)31, 又d s =v d t ,故阻力所做的功为W 阻=⎰阻F d s =⎰01t kv 2·v d t =k ⎰01t v 3d t = k ⎰01t (3bt 2)3d t =277kb 3t 71 = 277k 3a 7b 2. 【点拨】定积分在物理学中的应用应注意:v (t )=⎰a ba (t )d t ,s (t )=⎰ab v (t )d t 和W =⎰a b F (x )d x 这三个公式.【变式训练3】定义F (x ,y )=(1+x )y ,x ,y ∈(0,+∞).令函数f (x )=F [1,log 2(x 2-4x +9)]的图象为曲线C 1,曲线C 1与y 轴交于点A (0,m ),过坐标原点O 向曲线C 1作切线,切点为B (n ,t )(n >0),设曲线C 1在点A ,B 之间的曲线段与线段OA ,OB 所围成图形的面积为S ,求S 的值.【解析】因为F (x ,y )=(1+x )y ,所以f (x )=F (1,log 2(x 2-4x +9))=)94log(22+-x x =x 2-4x +9,故A (0,9),又过坐标原点O 向曲线C 1作切线,切点为B (n ,t )(n >0),f ′(x )=2x -4. 所以⎪⎩⎪⎨⎧-=+-=,42,942n nt n n t 解得B (3,6), 所以S =⎰03(x 2-4x +9-2x )d x =(x 33-3x 2+9x )03=9. 总结提高1.定积分的计算关键是通过逆向思维求得被积函数的原函数.2.定积分在物理学中的应用必须遵循相应的物理过程和物理原理.3.利用定积分求平面图形面积的步骤:(1)画出草图,在直角坐标系中画出曲线或直线的大致图象;(2)借助图形确定出被积函数,求出交点坐标,确定积分的上、下限;(3)把曲边梯形的面积表示成若干个定积分的和;(4)计算定积分,写出答案.。

高考数学一轮总复习第二章函数导数及其应用2_12导数的综合应用课件理新人教A版

高考数学一轮总复习第二章函数导数及其应用2_12导数的综合应用课件理新人教A版

由G′(x)=0,得-x2+(1-k)x+1=0. 解得x1=1-k- 21-k2+4<0, x2=1-k+ 21-k2+4>1. 当x∈(1,x2)时,G′(x)>0,故G(x)在[1,x2)内单调递增. 从而当x∈(1,x2)时,G(x)>G(1)=0, 即f(x)>k(x-1), 综上,k的取值范围是(-∞,1).
考点三|利用导数求解生活中的优化问题 (方法突破) 【例 3】 某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的 中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为643π立方米.假 设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为 3 千元,半球形部分每平方米建造费用为 4 千元.设该容器的总建造费用为 y 千元. (1)将 y 表示成 r 的函数 f(r),并求该函数的定义域; (2)讨论函数 f(r)的单调性,并确定 r 和 l 为何值时, 该容器的建造费用最小,并求出最小建造费用.
第十二节 导数的综合应用
栏目 导航
教材回顾 考点突破
最新考纲
考情考向分析
1.利用导数与函数的关系研究 根据近三年的高考
函数的零点问题(方程的根). 来看,导数多与函
2.通过导数构造函数证明不等 数零点、不等式等
式,求不等式恒成立问题.
内容综合考查.
[基础梳理] 1.利用导数证明不等式 若证明f(x)<g(x),x∈(a,b),可以构造函数F(x)=f(x)-g(x),如果F′(x)<0,则 F(x)在(a,b)上是减函数,同时若F(a)≤0,由减函数的定义可知,x∈(a,b)时, 有F(x)<0,即证明了f(x)<g(x).
解析:(1)函数f(x)的定义域为(0,+∞),当k=2时,f′(x)=

高三数学高考一轮复习资料: 导数的综合应用

高三数学高考一轮复习资料: 导数的综合应用

第12讲 导数的综合应用[最新考纲]1.利用导数研究函数的单调性、极(最)值,并会解决与之有关的方程(不等式)问题;2.会利用导数解决某些简单的实际问题.知 识 梳 理1.生活中的优化问题通常求利润最大、用料最省、效率最高等问题称为优化问题,一般地,对于实际问题,若函数在给定的定义域内只有一个极值点,那么该点也是最值点.2.利用导数解决生活中的优化问题的一般步骤3.导数在研究方程(不等式)中的应用研究函数的单调性和极(最)值等离不开方程与不等式;反过来方程的根的个数、不等式的证明、不等式恒成立求参数等,又可转化为函数的单调性、极值与最值的问题,利用导数进行研究.辨 析 感 悟1.函数最值与不等式(方程)的关系(1)(教材习题改编)对任意x >0,ax 2+(3a -1)x +a ≥0恒成立的充要条件是a ∈⎣⎢⎡⎭⎪⎫15,+∞.(√) (2)(·辽宁卷改编)已知函数f (x )=e x -2x +a 有零点,则a 的取值范围是(-∞,2ln 2-2].(√)2.关于实际应用问题(3)实际问题中函数定义域要由实际问题的意义和函数解析式共同确定.(√)(4)若实际问题中函数定义域是开区间,则不存在最优解.(×)(5)(·贵阳调研改编)已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为y=-13x3+81x-234,则使该生产厂家获取最大年利润的年产量为9万件.(√)[感悟·提升]1.两个转化一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理,如(2).2.两点注意一是注意实际问题中函数定义域,由实际问题的意义和解析式共同确定,如(3).二是在实际问题中,如果函数在区间内只有一个极值点,那么可直接根据实际意义判定是最大值还是最小值,如(4).若在开区间内有极值,则一定有最优解.考点一导数在方程(函数零点)中的应用【例1】(·北京卷)已知函数f(x)=x2+x sin x+cos x.(1)若曲线y=f(x)在点(a,f(a))处与直线y=b相切,求a与b的值;(2)若曲线y=f(x)与直线y=b有两个不同交点,求b的取值范围.审题路线(1)由导数的几何意义,知f′(a)=0且f(a)=b,解方程得a,b的值.(2)两曲线的交点问题,转化为方程x2+x sin x+cos x-b=0.通过判定零点个数来求解.解由f(x)=x2+x sin x+cos x,得f′(x)=2x+sin x+x(sin x)′-sin x=x(2+cos x).(1)因为曲线y=f(x)在点(a,f(a))处与直线y=b相切,所以f′(a)=a(2+cos a)=0,b=f(a).解得a=0,b=f(0)=1.(2)设g(x)=f(x)-b=x2+x sin x+cos x-b.令g′(x)=f′(x)-0=x(2+cos x)=0,得x=0.当x变化时,g′(x),g(x)的变化情况如下表:所以函数g(x)g(x)的最小值为g(0)=1-b.①当1-b≥0时,即b≤1时,g(x)=0至多有一个实根,曲线y=f(x)与y=b最多有一个交点,不合题意.②当1-b<0时,即b>1时,有g(0)=1-b<0,g(2b)=4b2+2b sin 2b+cos 2b-b>4b-2b-1-b>0.∴y=g(x)在(0,2b)内存在零点,又y=g(x)在R上是偶函数,且g(x)在(0,+∞)上单调递增,∴y=g(x)在(0,+∞)上有唯一零点,在(-∞,0)也有唯一零点.故当b>1时,y=g(x)在R上有两个零点,则曲线y=f(x)与直线y=b有两个不同交点.综上可知,如果曲线y=f(x)与直线y=b有两个不同交点,那么b的取值范围是(1,+∞).规律方法(1)在解答本题(2)问时,可转化为判定f(x)=b有两个实根时实数b应满足的条件,并注意g(x)的单调性、奇偶性、最值的灵活应用.另外还可作出函数y=f(x)的大致图象,直观判定曲线交点个数,但应注意严谨性,进行必要的论证.(2)该类问题的求解,一般利用导数研究函数的单调性、极值等性质,并借助函数图象,根据零点或图象的交点情况,建立含参数的方程(或不等式)组求解,实现形与数的和谐统一.【训练1】(·天津卷节选)已知函数f(x)=13x3+1-a2x2-ax-a,x∈R,其中a>0.(1)求函数f(x)的单调区间;(2)若函数f(x)在区间(-2,0)内恰有两个零点,求a的取值范围.解(1)f′(x)=x2+(1-a)x-a=(x+1)(x-a).由f′(x)=0,得x=-1或a(a>0).当x 变化时f ′(x )与f (x )的变化情况如下表:(2)由(1)知f (x )在区间(-2,-1)内单调递增;在区间(-1,0)内单调递减.从而函数f (x )在区间(-2,0)内恰有两个零点,当且仅当⎩⎨⎧ f (-2)<0,f (-1)>0,f (0)<0,解得0<a <13.所以,a 的取值范围是⎝ ⎛⎭⎪⎫0,13.考点二 导数在不等式中的应用【例2】 (·新课标全国Ⅱ卷)已知函数f (x )=e x -ln(x +m ).(1)设x =0是f (x )的极值点,求m ,并讨论f (x )的单调性;(2)当m ≤2时,证明f (x )>0. 审题路线 (1)由极值点确定出实数m 的值,然后利用导数求出函数的单调区间;(2)当m ≤2时,转化为求f (x )min ,证明f (x )min >0.解 (1)易知f ′(x )=e x -1x +m. 由x =0是f (x )的极值点得f ′(0)=0,所以m =1.于是f (x )=e x -ln(x +1),定义域为(-1,+∞),∴f ′(x )=e x -1x +1在(-1,+∞)上是增函数,且f ′(0)=0. 当x ∈(-1,0)时,f ′(x )<0;当x >0时,f ′(x )>0.故f (x )在(-1,0)上单调递减,在(0,+∞)上单调递增.(2)当m ≤2,x >-m 时,ln(x +m )≤ln(x +2).故只需证明当m =2时,f (x )>0.当m =2时,f ′(x )=e x -1x +2在(-2,+∞)上单调递增.又f ′(-1)=1e -1<0,f ′(0)=1-12>0.所以f ′(x )=0在(-2,+∞)上有唯一实根x 0,且-1<x 0<0.于是y =f (x )在x =x 0处,取到最小值.又f ′(x 0)=0,得=1x 0+2, 两边取对数得ln(x 0+2)=-x 0.故f (x )≥f (x 0)=-ln(x 0+2)=1x 0+2+x 0=(x 0+1)2x 0+2>0. 综上可知,当m ≤2时,f (x )>0成立. 规律方法 (1)第(2)问证明抓住两点:一是转化为证明当m =2时,f (x )>0;二是依据f ′(x 0)=0,准确求f (x )=e x -ln(x +2)的最小值.(2)对于该类问题,可从不等式的结构特点出发,构造函数,借助导数确定函数的性质,借助单调性或最值实现转化.【训练2】 (·郑州一模)已知函数f (x )=a (x 2+1)+ln x .(1)讨论函数f (x )的单调性;(2)若对任意a ∈(-4,-2)及x ∈[1,3],恒有ma -f (x )>a 2成立,求实数m 的取值范围.解 (1)由已知,得f ′(x )=2ax +1x =2ax 2+1x (x >0).①当a ≥0时,恒有f ′(x )>0,则f (x )在(0,+∞)上是增函数.②当a <0时,若0<x <-12a ,则f ′(x )>0, 故f (x )在⎝⎛⎦⎥⎤0, -12a 上是增函数; 若x > -12a ,则f ′(x )<0,故f (x )在⎣⎢⎡⎭⎪⎫ -12a ,+∞上是减函数. 综上,当a ≥0时,f (x )在(0,+∞)上是增函数;当a <0时,f (x )在⎝⎛⎦⎥⎤0, -12a 上是增函数,在⎣⎢⎡⎭⎪⎫ -12a ,+∞上是减函数. (2)由题意,知对任意a ∈(-4,-2)及x ∈[1,3],恒有ma -f (x )>a 2成立,等价于ma -a 2>f (x )max .因为a ∈(-4,-2),所以24< -12a <12<1.由(1),知当a ∈(-4,-2)时,f (x )在[1,3]上是减函数,所以f (x )max =f (1)=2a ,所以ma -a 2>2a ,即m <a +2.因为a ∈(-4,-2),所以-2<a +2<0,即m ≤-2.所以实数m 的取值范围是(-∞,-2].考点三 导数与生活中的优化问题【例3】 某地建一座桥,两端的桥墩已建好,这两墩相距m 米,余下工程只需建两端桥墩之间的桥面和桥墩,经预测,一个桥墩的工程费用为256万元,距离为x 米的相邻两墩之间的桥面工程费用为(2+x )x 万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y 万元.(1)试写出y 关于x 的函数关系式;(2)当m =640米时,需新建多少个桥墩才能使y 最小?解 (1)设需新建n 个桥墩,则(n +1)x =m ,即n =m x -1,所以y =f (x )=256n +(n +1)(2+x )x=256⎝ ⎛⎭⎪⎫m x -1+m x (2+x )x =256x m +m x +2m -256.(2)由(1)知,令f ′(x )=0,得=512,所以x =64.当0<x <64时,f ′(x )<0,f (x )在区间(0,64)内为减函数;当64<x<640,f′(x)>0,f(x)在区间(64,640)内为增函数.所以f(x)在x=64处取得最小值.此时n=mx-1=64064-1=9.故需新建9个桥墩才能使工程的费用y最小.规律方法求实际问题中的最大值或最小值时,一般是先设自变量、因变量,建立函数关系式,并确定其定义域,利用求函数的最值的方法求解,注意结果应与实际情况相结合.用导数求解实际问题中的最大(小)值时,如果函数在开区间内只有一个极值点,那么依据实际意义,该极值点也就是最值点.【训练3】某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12 000π元(π为圆周率).(1)将V表示成r的函数V(r),并求该函数的定义域;(2)讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大.解(1)因为蓄水池侧面的总成本为100·2πrh=200πrh元,底面的总成本为160πr2元,所以蓄水池的总成本为(200πrh+160πr2)元.又根据题意200πrh+160πr2=12 000π,所以h=15r(300-4r2),从而V(r)=πr2h=π5(300r-4r3).因为r>0,又由h>0可得r<53,故函数V(r)的定义域为(0,53).(2)因为V(r)=π5(300r-4r3),所以V′(r)=π5(300-12r2).令V′(r)=0,解得r=5或-5(因为r=-5不在定义域内,舍去).当r∈(0,5)时,V′(r)>0,故V(r)在(0,5)上为增函数;当r∈(5,53)时,V′(r)<0,故V(r)在(5,53)上为减函数.由此可知,V(r)在r=5处取得最大值,此时h=8.即当r=5,h=8时,该蓄水池的体积最大.1.理解极值与最值的区别,极值是局部概念,最值是整体概念.2.利用导数解决含有参数的单调性问题是将问题转化为不等式恒成立问题,要注意分类讨论和数形结合思想的应用.3.在实际问题中,如果函数在区间内只有一个极值点,那么只要根据实际意义判定是最大值还是最小值即可,不必再与端点的函数值比较.答题模板4——构建函数模型证明不等式恒成立问题【典例】(13分)(·山东卷)已知函数f(x)=ln x+ke x(k为常数,e=2.718 28…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.(1)求k的值;(2)求f(x)的单调区间;(3)设g(x)=xf′(x),其中f′(x)为f(x)的导函数,证明:对任意x>0,g(x)<1+e-2.[规范解答](1)由f(x)=ln x+ke x,得f′(x)=1-kx-x ln xx e x,x∈(0,+∞).由于曲线y=f(x)在(1,f(1))处的切线与x轴平行,所以f′(1)=0,因此k=1.(2)由(1)知,f′(x)=1x-ln x-1e x,x∈(0,+∞).设h(x)=1x-ln x-1,则h′(x)=-1x2-1x<0,即h(x)在(0,+∞)上是减函数,由h(1)=0知,当0<x<1时,h(x)>0,从而f′(x)>0,当x>1时,h(x)<0,从而f′(x)<0.综上可知,f(x)的单调递增区间是(0,1),单调递减区间是(1,+∞).(3)由(2)可知,当x≥1时,g(x)=xf′(x)≤0<1+e-2,故只需证明g(x)<1+e-2在0<x<1时成立.当0<x<1时,e x>1,且g(x)>0,∴g(x)=1-x ln x-xe x<1-x ln x-x.设F(x)=1-x ln x-x,x∈(0,1),则F′(x)=-(ln x+2),当x∈(0,e-2)时,F′(x)>0,当x∈(e-2,1)时,F′(x)<0,所以当x=e-2时,F(x)取得最大值F(e-2)=1+e-2.所以g(x)<F(x)≤1+e-2.综上,对任意x>0,g(x)<1+e-2.[反思感悟] 一是不能抓住f′(x)的特征,联系导数的几何意义,求f′(x)=0的实根x=1,导致思维受阻;二是第(3)问中,未将x的范围细化为0<x<1和x≥1来考虑,致使问题变得复杂化;三是第(3)问中未利用“e x>1”这一条件,将g(x)=1-x ln x-xe x变为:g(x)=1-x ln x-xe x<1-x ln x-x.答题模板第一步:利用导数的几何意义求k的值;第二步:求g(x),构造函数F(x);第三步:将问题转化为证明F(x)≤1+e-2;第四步:对F(x)求导,判断其单调性,求最大值;第五步:将问题再转化为原问题从而得到欲证明的不等式.【自主体验】(·辽宁卷)已知函数f(x)=(1+x)e-2x,g(x)=ax+x32+1+2x cos x.当x∈[0,1]时,(1)求证:1-x≤f(x)≤11+x;(2)若f(x)≥g(x)恒成立,求实数a的取值范围.(1)证明要证x∈[0,1]时,(1+x)e-2x≥1-x,只需证明(1+x)e-x≥(1-x)e x. 记h(x)=(1+x)e-x-(1-x)e x,则h′(x)=x(e x-e-x).当x∈(0,1)时,h′(x)>0,因此h(x)在[0,1]上是增函数,故h(x)≥h(0)=0. 所以f(x)≥1-x,x∈[0,1].要证x ∈[0,1]时,(1+x )e -2x ≤11+x,只需证明e x ≥x +1. 记K (x )=e x -x -1,则K ′(x )=e x -1,当x ∈(0,1)时,K ′(x )>0,因此K (x )在[0,1]上是增函数,故K (x )≥K (0)=0.所以f (x )≤11+x,x ∈[0,1]. 综上,1-x ≤f (x )≤11+x,x ∈[0,1]. (2)解 f (x )-g (x )=(1+x )e -2x -⎝ ⎛⎭⎪⎫ax +x 32+1+2x cos x ≥1-x -ax -1-x 32-2x cos x=-x ⎝ ⎛⎭⎪⎫a +1+x 22+2cos x . 设G (x )=x 22+2cos x ,则G ′(x )=x -2sin x .记H (x )=x -2sin x ,则H ′(x )=1-2cos x .当x ∈(0,1)时,H ′(x )<0,于是G ′(x )在[0,1]上是减函数,从而当x ∈(0,1)时,G ′(x )<G ′(0)=0,故G (x )在[0,1]上是减函数.于是G (x )≤G (0)=2,从而a +1+G (x )≤a +3. 所以,当a ≤-3时,f (x )≥g (x )在[0,1]上恒成立.下面证明,当a >-3时,f (x )≥g (x )在[0,1]上不恒成立.f (x )-g (x )≤11+x-1-ax -x 32-2x cos x =-x 1+x-ax -x 32-2x cos x =-x ⎝ ⎛⎭⎪⎫11+x +a +x 22+2cos x , 记I (x )=11+x +a +x 22+2cos x =11+x+a +G (x ), 则I ′(x )=-1(1+x )2+G ′(x ),当x ∈(0,1)时,I ′(x )<0,故I(x)在[0,1]上是减函数,于是I(x)在[0,1]上的值域为[a+1+2cos 1,a+3].因为当a>-3时,a+3>0,所以存在x0∈(0,1),使得I(x0)>0,此时f(x0)<g(x0),即f(x)≥g(x)在[0,1]上不恒成立.综上,实数a的取值范围是(-∞,-3].基础巩固题组(建议用时:40分钟)一、选择题1.若直线y=m与y=3x-x3的图象有三个不同的交点,则实数m的取值范围是().A.(-2,2) B.[-2,2]C.(-∞,-2)∪(2,+∞) D.(-∞,-2]∪[2,+∞)解析y′=3(1-x)(1+x),由y′=0,得x=±1.∴y极大=2,y极小=-2,∴-2<m<2.答案 A2.若关于x的不等式x3-3x2-9x+2≥m对任意x∈[-2,2]恒成立,则m的取值范围是().A.(-∞,7] B.(-∞,-20]C.(-∞,0] D.[-12,7]解析令f(x)=x3-3x2-9x+2,则f′(x)=3x2-6x-9,令f′(x)=0,得x=-1或3(舍去).∵f(-1)=7,f(-2)=0,f(2)=-20.∴f(x)的最小值为f(2)=-20,故m≤-20,可知应选B.答案 B3.从边长为10 cm×16 cm的矩形纸板的四角截去四个相同的小正方形,作成一个无盖的盒子,则盒子容积的最大值为().A.12 cm3B.72 cm3C.144 cm3D.160 cm3解析设盒子容积为y cm3,盒子的高为x cm,则x∈(0,5).则y=(10-2x)(16-2x)x=4x3-52x2+160 x,∴y′=12x2-104x+160.令y′=0,得x=2或203(舍去),∴y max=6×12×2=144 (cm3).答案 C4.(·浙江卷)已知e为自然对数的底数,设函数f(x)=(e x-1)(x-1)k(k=1,2),则().A.当k=1时,f(x)在x=1处取到极小值B.当k=1时,f(x)在x=1处取到极大值C.当k=2时,f(x)在x=1处取到极小值D.当k=2时,f(x)在x=1处取到极大值解析当k=1时,f′(x)=e x·x-1,f′(1)≠0,∴x=1不是函数f(x)的极值点.当k=2时,f′(x)=(x-1)(x e x+e x-2),显然f′(1)=0,且x在1的左边附近f′(x)<0,x在1的右边附近f′(x)>0,∴f(x)在x=1处取得极小值.答案 C5.在R上可导的函数f(x)的图象如图所示,则关于x的不等式x·f′(x)<0的解集为().A.(-∞,-1)∪(0,1)B.(-1,0)∪(1,+∞)C.(-2,-1)∪(1,2)D.(-∞,-2)∪(2,+∞)解析(1)当x∈(-∞,-1)和x∈(1,+∞)时,f(x)是增函数,∴f′(x)>0,由x·f′(x)<0,得x<0,∴x<-1.(2)当x ∈(-1,1)时,f (x )是减函数,∴f ′(x )<0.由x ·f ′(x )<0,得x >0,∴0<x <1. 故x ·f ′(x )<0的解集为(-∞,-1)∪(0,1).答案 A二、填空题6.已知函数f (x )=12mx 2+ln x -2x 在定义域内是增函数,则实数m 的取值范围是________.解析 f ′(x )=mx +1x -2≥0对一切x >0恒成立,m ≥-⎝ ⎛⎭⎪⎫1x 2+2x ,令g (x )=-⎝ ⎛⎭⎪⎫1x 2+2x ,则当1x =1时,函数g (x )取最大值1,故m ≥1. 答案 [1,+∞)7.若f (x )=x sin x +cos x ,则f (-3),f ⎝ ⎛⎭⎪⎫π2,f (2)的大小关系为________. 解析 函数f (x )为偶函数,因此f (-3)=f (3).又f ′(x )=sin x +x cos x -sin x =x cosx ,当x ∈⎝ ⎛⎭⎪⎫π2,π时,f ′(x )<0.∴f (x )在区间⎝ ⎛⎭⎪⎫π2,π上是减函数,∴f ⎝ ⎛⎭⎪⎫π2>f (2)>f (3)=f (-3).答案 f (-3)<f (2)<f ⎝ ⎛⎭⎪⎫π2 8.设函数f (x )=6ln x ,g (x )=x 2-4x +4,则方程f (x )-g (x )=0有________个实根.解析 设φ(x )=g (x )-f (x )=x 2-4x +4-6ln x ,则φ′(x )=2x 2-4x -6x =2(x +1)(x -3)x,且x >0.由φ′(x )=0,得x =3.当0<x <3时,φ′(x )<0;当x >3时,φ′(x )>0.∴φ(x )在(0,+∞)上有极小值φ(3)=1-6ln 3<0.故y =φ(x )的图象与x 轴有两个交点,则方程f (x )-g (x )=0有两个实根.答案 2三、解答题9.某种产品每件成本为6元,每件售价为x 元(6<x <11),年销售为u 万件,若已知5858-u 与⎝ ⎛⎭⎪⎫x -2142成正比,且售价为10元时,年销量为28万件. (1)求年销售利润y 关于售价x 的函数关系式;(2)求售价为多少时,年利润最大,并求出最大年利润.解 (1)设5858-u =k ⎝ ⎛⎭⎪⎫x -2142, ∵售价为10元时,年销量为28万件,∴5858-28=k ⎝ ⎛⎭⎪⎫10-2142,解得k =2. ∴u =-2⎝ ⎛⎭⎪⎫x -2142+5858=-2x 2+21x +18. ∴y =(-2x 2+21x +18)(x -6)=-2x 3+33x 2-108x -108(6<x <11).(2)y ′=-6x 2+66x -108=-6(x 2-11x +18)=-6(x -2)(x -9).令y ′=0,得x =2(舍去)或x =9,显然,当x ∈(6,9)时,y ′>0;当x ∈(9,11)时,y ′<0.∴函数y =-2x 3+33x 2-108x -108在(6,9)上是单调递增,在(9,11)上是单调递减. ∴当x =9时,y 取最大值,且y max =135,∴售价为9元时,年利润最大,最大年利润为135万元.10.(·南京调研)已知函数f (x )=e x -m -x ,其中m 为常数.(1)若对任意x ∈R 有f (x )≥0恒成立,求m 的取值范围;(2)当m >1时,判断f (x )在[0,2m ]上零点的个数,并说明理由.解 (1)依题意,可知f (x )在R 上连续,且f ′(x )=e x -m -1,令f ′(x )=0,得x =m .故当x ∈(-∞,m )时,e x -m <1,f ′(x )<0,f (x )单调递减;当x ∈(m ,+∞)时,e x -m >1,f ′(x )>0,f (x )单调递增.故当x =m 时,f (m )为极小值也是最小值.令f (m )=1-m ≥0,得m ≤1,即对任意x ∈R ,f (x )≥0恒成立时,m 的取值范围是(-∞,1].(2)当m >1时,f (m )=1-m <0.∵f (0)=e -m >0,f (0)·f (m )<0,且f (x )在(0,m )上单调递减.∴f (x )在(0,m )上有一个零点.又f (2m )=e m -2m ,令g (m )=e m -2m ,∵当m >1时,g ′(m )=e m -2>0,∴g (m )在(1,+∞)上单调递增.∴g (m )>g (1)=e -2>0,即f (2m )>0.∴f (m )·f (2m )<0,∴f (x )在(m,2m )上有一个零点.故f (x )在[0,2m ]上有两个零点.能力提升题组(建议用时:25分钟)一、选择题1.(·潍坊模拟)已知函数y =f (x )是定义在R 上的奇函数,且当x <0时,不等式f (x )+xf ′(x )<0成立,若a =30.3f (30.3),b =(log π3)f (log π3),c =⎝ ⎛⎭⎪⎫log 319f ⎝ ⎛⎭⎪⎫log 319,则a ,b ,c 间的大小关系是( ).A .a >b >cB .c >b >aC .c >a >bD .a >c >b解析 设g (x )=xf (x ),则g ′(x )=f (x )+xf ′(x )<0(x <0),∴当x <0时,g (x )=xf (x )为减函数.又g (x )为偶函数,∴当x >0时,g (x )为增函数.∵1<30.3<2,0<log π3<1,log 319=-2,∴g (-2)>g (30.3)>g (log π3),即c >a >b .答案 C2.已知函数f (x )=⎩⎨⎧-x 2+6x +e 2-5e -2,x ≤e ,x -2ln x ,x >e (其中e 为自然对数的底数,且e ≈2.718).若f (6-a 2)>f (a ),则实数a 的取值范围是( ).A .(2,3)B .(2,e)C .(-3,2)D .(-2,e)解析 当x ≤e 时,f ′(x )=2(3-x )>0;当x >e 时,f ′(x )=1-2x >0,∴f (x )在R 上单调递增.因此6-a 2>a ,解之得-3<a <2.答案 C二、填空题3.将边长为1 m 的正三角形薄铁皮,沿一条平行于某边的直线剪成两块,其中一块是梯形,记S =(梯形的周长)2梯形的面积,则S 的最小值是________. 解析如图所示,设AD =x m(0<x <1),则DE =AD =x m ,∴梯形的周长为x +2(1-x )+1=3-x (m),又S △ADE =34x 2(m 2), ∴梯形的面积为34-34x 2(m 2),∴S =433×x 2-6x +91-x 2(0<x <1), ∴S ′=-833×(3x -1)(x -3)(1-x 2)2,令S ′=0,得x =13或3(舍去),当x ∈⎝ ⎛⎭⎪⎫0,13时,S ′<0,S 递减;当x ∈⎝ ⎛⎭⎪⎫13,1时,S ′>0,S 递增.故当x =13时,S 的最小值是3233. 答案 3233三、解答题4.(·湛江质检)已知函数f (x )=sin x (x ≥0),g (x )=ax (x ≥0).(1)若f (x )≤g (x )恒成立,求实数a 的取值范围;(2)当a 取(1)中的最小值时,求证:g (x )-f (x )≤16x 3.解 (1)令h (x )=sin x -ax (x ≥0),则h ′(x )=cos x -a .①若a ≥1,h ′(x )=cos x -a ≤0,h (x )=sin x -ax (x ≥0)单调递减,h (x )≤h (0)=0,则sin x ≤ax (x ≥0)成立.②若0<a <1,存在x 0∈⎝ ⎛⎭⎪⎫0,π2,使得cos x 0=a , 当x ∈(0,x 0),h ′(x )=cos x -a >0,h (x )=sin x -ax (x ∈(0,x 0))单调递增,h (x )>h (0)=0,不合题意.③若a ≤0,结合f (x )与g (x )的图象可知显然不合题意. 综上可知,a 的取值范围是[1,+∞).(2)当a 取(1)中的最小值为1时,g (x )-f (x )=x -sin x .设H (x )=x -sin x -16x 3(x ≥0), 则H ′(x )=1-cos x -12x 2.令G (x )=1-cos x -12x 2,则G ′(x )=sin x -x ≤0(x ≥0),所以G (x )=1-cos x -12x 2在[0,+∞)上单调递减,此时G (x )=1-cos x -12x 2≤G (0)=0,即H ′(x )=1-cos x -12x 2≤0,所以H (x )=x -sin x -16x 3在x ∈[0,+∞)上单调递减.所以H (x )=x -sin x -16x 3≤H (0)=0,则x -sin x ≤16x 3(x ≥0).所以,当a 取(1)中的最小值时,g (x )-f (x )≤16x 3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品课件
①若1≤k<e2,则-2<x1≤0; 从而当x∈(-2,x1)时,F′(x)<0; 当x∈(x1,+∞)时,F′(x)>0. 即F(x)在[-2,x1]上单调递减,在[x1,+∞)上单调递增, 故F(x)在[-2,+∞)上的最小值为F(x1). 而F(x1)=2x1+2-x12-4x1-2=-x1(x1+2)≥0, 故当x≥-2时,F(x)≥0,即f(x)≤kg(x)恒成立.
第二章 函数、导数及其应用
精品课件
第十二节 ►►导数的应用
精品课件
第三课时 导数的综合应用
精品课件
R 热点命题·深度剖 析
研考点 知规律 通法悟道
精品课件
问题探究 问题1 利用导数研究方程根的方法是什么? 研究方程根的情况,可以通过导数研究函数的单调性、最大 值、最小值、变化趋势等,根据题目要求,画出函数图象的走势 规律,标明函数极(最)值的位置,通过数形结合的思想去分析问 题,可以使问题的求解有一个清晰、直观的整体展现.
听 课 记 录 (1)由已知,得f(0)=2,g(0)=2,f′(0)=4, g′(0)=4,
而f′(x)=2x+a,g′(x)=ex(cx+d+c), 故b=2,d=2,a=4,d+c=4. 从而a=4,b=2,c=2,d=2.
精品课件
(2)由(1),知f(x)=x2+4x+2,g(x)=2ex(x+1). 设函数F(x)=kg(x)-f(x)=2kex(x+1)-x2-4x-2,则 F′(x)=2kex(x+2)-2x-4=2(x+2)(kex-1). 由题设,可得F(0)≥0,即k≥1. 令F′(x)=0,得x1=-lnk,x2=-2.
精品课件
变式思考 1 已知函数f(x)=x2+xsinx+cosx. (1)若曲线y=f(x)在点(a,f(a))处与直线y=b相切,求a与b的 值; (2)若曲线y=f(x)与直线y=b有两个不同交点,求b的取值范 围.
精品课件
解 由f(x)=x2+xsinx+cosx, 得f′(x)=x(2+cosx). (1)因为曲线y=f(x)在点(a,f(a))处与直线y=b相切, 所以f′(a)=a(2+cosa)=0,b=f(a). 解得a=0,b=f(0)=1.
精品课件
所以g(x)=0在(0,+∞)没有实根. 综上,g(x)=0在R上有唯一实根, 即曲线y=f(x)与直线y=kx-2只有一个交点.
精品课件
【规律方法】 本题第(2)问处理函数g(x)=0在(0,+∞)上 无实根时采用的分解方法是值得体会的.即用h(x)<g(x)中的h(x) 在(0,+∞)上无实根,说明g(x)在(0,+∞)上无实根.
精品课件
考点二 利用导数解决恒成立问题 【例2】 设函数f(x)=x2+ax+b,g(x)=ex(cx+d),若曲线y =f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x +2. (1)求a,b,c,d的值; (2)若x≥-2时,f(x)≤kg(x),求k的取值范围.
精品课件
精品课件
g(x)
,若F′(x)>0,则F(x)在(a,b)上是增函数,同时若
F(a)≥0,由增函数的定义可知,x∈(a,b)时,有F(x)>0,即证明
了f(x)>g(x).
精品课件
问题3 如何利用导数的方法解决恒成立问题? 利用导数研究不等式恒成立问题,首先要构造函数,利用导 数研究函数的单调性,求出最值,进而得出相应的含参不等式, 从而求出参数的取值范围;也可分离变量,构造函数,直接把问 题转化为函数的最值问题.
精品课件
(2)令f′(x)=0,得x=0.
f(x)与f′(x)的情况如下:
x
(-∞,0) 0 (0,+∞)
f′(x)

0

f(x)

所以函数f(x)在区间(-∞,0]上单调递减,在区间[0,+∞) 上单调递增,f(0)=1是f(x)的最小值.
精品课件
当b≤1时,曲线y=f(x)与直线y=b最多只有一个交点; 当b>1时,f(-2b)=f(2b)≥4b2-2b-1>4b-2b-1>b,f(0)= 1<b, 所以存在x1∈(-2b,0),x2∈(0,2b),使得f(x1) =f(x2)=b. 由于函数f(x)在区间(-∞,0)和(0,+∞)上均单调,所以当 b>1时曲线y=f(x)与直线y=b有且仅有两个不同交点. 综上可知,如果曲线y=f(x)与直线y=b有两个不同交点,那 么b的取值范围是(1,+∞).
听 课 记 录 (1)f′(x)=3x2-6x+a,f′(0)=a.曲线y=f(x) 在点(0,2)处的切线方程为y=ax+2.由题设得-2a=-2,所以a=1.
(2)由(1)知,f(x)=x3-3x2+x+2. 设g(x)=f(x)-kx+2=x3-3x2+(1-k)x+4. 由题设知1-k>0.
精品课件
高频考点 考点一 利用导数求函数的零点或方程的根 【例1】 (2014·新课标全国卷Ⅱ)已知函数f(x)=x3-3x2+ax +2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为-2. (1)求a; (2)证明:当k<1时,曲线y=f(x)与直线y=kx-2只有一个交 点.
精品课件
精品课件
当x≤0时,g′(x)=3x2-6x+1-k>0,g(x)单调递增,g(-1) =k-1<0,g(0)=4,所以g(x)=0在(-∞,0]有唯一实根.
当x>0时,令h(x)=x3-3x2+4, 则g(x)=h(x)+(1-k)x>h(x). h′(x)=3x2-6x=3x(x-2),h(x)在(0,2]上单调递减,在[2, +∞)上单调递增,所以g(x)>h(x)≥h(2)=0.
精品课件
问题2 利用导数证明不等式的常见方法是什么?
(1)证明f(x)<g(x),x∈(a,b),可以构造函数F(x)=f(x)-
g(x),若F′(x)<0,则F(x)在(a,b)上是减函数,同时若F(a)≤0,
由减函数的定义可知,x∈(a,b)时,有F(x)<0,即证明了
f(x)<g(x).
(2)证明f(x)>g(x),x∈(a,b),可以构造函数F(x)=f(x)-
相关文档
最新文档