小学数学常用的十一种解题思路

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学数学常用的十一种解题思路
一、直接思路
“直接思路”是解题中的常规思路。

它一般是通过分析、综合、归纳等方法,直接找到解题的途径。

【顺向综合思路】从已知条件出发,根据数量关系先选择两个已知数量,提出可以解决的问题;然后把所求出的数量作为新的已知条件,与其他的已知条件搭配,再提出可以解决的问题;这样逐步推导,直到求出所要求的解为止。

这就是顺向综合思路,运用这种思路解题的方法叫“综合法”。

例1 兄弟俩骑车出外郊游,弟弟先出发,速度为每分钟200米,弟弟出发5分钟后,哥哥带一条狗出发,以每分钟250米的速度追赶弟弟,而狗以每分钟300米的速度向弟弟追去,追上弟弟后,立即返回,见到哥哥后又立即向弟弟追去,直到哥哥追上弟弟,这时狗跑了多少千米?
分析(按顺向综合思路探索):
(1)根据弟弟速度为每分钟200米,出发5分钟的条件,可以求什么?
可以求出弟弟走了多少米,也就是哥哥追赶弟弟的距离。

(2)根据弟弟速度为每分钟200米,哥哥速度为每分钟250米,可以求什么?
可以求出哥哥每分钟能追上弟弟多少米。

(3)通过计算后可以知道哥哥追赶弟弟的距离为1000米,每分钟可追上的距离为50米,根据这两个条件,可以求什么?
可以求出哥哥赶上弟弟所需的时间。

(4)狗在哥哥与弟弟之间来回不断奔跑,看起来很复杂,仔细想一想,狗跑的时间与谁用的时间是一样的?
狗跑的时间与哥哥追上弟弟所用的时间是相同的。

(5)已知狗以每分钟300米的速度,在哥哥与弟弟之间来回奔跑,直到哥哥追上弟弟为止,和哥哥追上弟弟所需的时间,可以求什么?
可以求出这时狗总共跑了多少距离?
这个分析思路可以用下图(图2.1)表示。

例2 下面图形(图2.2)中有多少条线段?
分析(仍可用综合思路考虑):
我们知道,直线上两点间的一段叫做线段,如果我们把上面任意相邻两点间的线段叫做基本线段,那么就可以这样来计数。

(1)左端点是A的线段有哪些?
有AB AC AD AE AF AG共6条。

(2)左端点是B的线段有哪些?
有BC、BD、BE、BF、BG共5条。

(3)左端点是C的线段有哪些?
有CD、CE、CF、CG共4条。

(4)左端点是D的线段有哪些?
有DE、DF、DG共3条。

(5)左端点是E的线段有哪些?
有EF、EG共2条。

(6)左端点是F的线段有哪些?
有FG共1条。

然后把这些线段加起来就是所要求的线段。

二、逆向分析思路
从题目的问题入手,根据数量关系,找出解这个问题所需要的两个条件,然后把其中的一个(或两个)未知的条件作为要解决的问题,再找出解这一个(或两个)问题所需的条件;这样逐步逆推,直到所找的条件在题里都是已知的为止,这就是逆向分析思路,运用这种思路解题的方法叫分析法。

例1 两只船分别从上游的A地和下游的B地同时相向而行,水的流速为每分钟30米,两船在静水中的速度都是每分钟600米,有一天,两船又分别从A、B两地同时相向而行,但这次水流速度为平时的2倍,所以两船相遇的地点比平时相遇点相差60米,求A、B 两地间的距离。

分析(用分析思路考虑):
(1)要求A、B两地间的距离,根据题意需要什么条件?
需要知道两船的速度和与两船相遇的时间。

(2)要求两船的速度和,必要什么条件?
两船分别的速度各是多少。

题中已告之在静水中两船都是每分钟600米,那么不论其水速是否改变,其速度和均为(600+600)米,这是因为顺水船速为:船速+水速,逆水船速为:船速-水速,故顺水船速与逆水船速的和为:船速+水速+船速-水速=2个船速(实为船在静水中的速度)
(3)要求相遇的时间,根据题意要什么条件?
两次相遇的时间因为距离相同,速度和相同,所以应该是相等的,这就是说,尽管水流的速度第二次比第一次每分钟增加了30米,仍不会改变相遇时间,只是改变了相遇地点:偏离原相遇点60米,由此可知两船相遇的时间为60÷30=2(小时)。

此分析思路可以用下图(图2.3)表示:
例2 五环图由内径为4,外径为5的五个圆环组成,其中两两相交的小曲边四边形(阴影部分)的面积都相等(如图2.4),已知五个圆环盖住的总面积是122.5,求每个小曲边四边形的面积(圆周率π取3.14)
分析(仍用逆向分析思路探索):
(1)要求每个小曲边四边形的面积,根据题意必须知道什么条件?
曲边四边形的面积,没有公式可求,但若知道8个小曲边四边形的总面积,则只要用8个曲边四边形总面积除以8,就可以得到每个小曲边四边形的面积了。

(2)要求8个小曲边四边形的总面积,根据题意需要什么条件?
8个小曲边四边形恰好是圆环面积两两相交重叠一次的部分,因此只要把五个圆环的总面积减去五个圆环盖住的总面积就可以了。

(3)要求五个圆环的总面积,根据题意需要什么条件?
求出一个圆环的面积,然后乘以5,就是五个圆环的总面积。

(4)要求每个圆环的面积,需要什么条件?
已知圆环的内径(4)和外径(5),然后按圆环面积公式求就是了。

圆环面积公式为:
S圆环=π(R2-r2)
=π(R+r)(R-r)
其思路可用下图(图2.5)表示:
三、一步倒推思路
顺向综合思路和逆向分析思路是互相联系,不可分割的。

在解题时,两种思路常常协同运用,一般根据问题先逆推第一步,再根据应用题的条件顺推,使双方在中间接通,我们把这种思路叫“一步倒推思路”。

这种思路简明实用。

例1 一只桶装满10千克水,另外有可装3千克和7千克水的两只空桶,利用这三只桶,怎样才能把10千克水分为5千克的两份?
分析(用一步倒推思路考虑):
(1)逆推第一步:把10千克水平分为5千克的两份,根据题意,关键是要找到什么条件?
因为有一只可装3千克水的桶,只要在另一只桶里剩2千克水,利用3+2=5,就可以把水分成5千克一桶,所以关键是要先倒出一个2千克水。

(2)按条件顺推。

第一次:10千克水倒入7千克桶,10千克水桶剩3千克水,7千克水倒入3千克桶,7千克水桶剩4千克水,3千克水桶里有水3千克;第二次:3千克桶的水倒入10千克水桶,这时10千克水桶里有水6千克,把7千克桶里的4千克水倒入3千克水桶里,这时7千克水桶里剩水1千克,3千克水桶里有水3千克;第三次:3千克桶里的水倒入10千克桶里,这时10千克桶里有水9千克,7千克桶里的1千克水倒入3千克桶里,这时7千克桶里无水,3千克桶里有水1千克;第四次:10千克桶里的9千克水倒入7千克桶里,10千克水桶里剩下2千克水,7千克桶里的水倒入3千克桶里(原有1千克水),只倒出2千克水,7千克桶里剩水5千克,3千克桶里有水3千克,然后把3千克桶里的3千克水倒10千克桶里,因为原有2千克水,这时也正好是5千克水了。

其思路可用下图(图2.6和图2.7)表示:
问题:
例2 今有长度分别为1、2、3……9厘米的线段各一条,可用多少种不同的方法,从中选用若干条线段组成正方形?
分析(仍可用一步倒推思路来考虑):
(1)逆推第一步。

要求能用多少种不同方法,从中选用若干条线段组成正方形必须的条件是什么?
根据题意,必须知道两个条件。

一是确定正方形边长的长度范围,二是每一种边长有几种组成方法。

(2)从条件顺推。

①因为九条线段的长度各不相同,所以用这些线段组成的正方形至少要7条,最多用了9条,这样就可以求出正方形边长的长度范围为(1+2+……
②当边长为7厘米时,各边分别由1+6、2+5、3+4及7组成,只有一种组成方法。

③当边长为8厘米时,各边分别由1+7、2+6、3+5及8组成,也只有一种组成方法。

④当边长为9厘米时,各边分别由1+8、2+7、3+6及9;1+8、2+7、4+5及9;2+7、3+6、4+5及9;1+8、3+6、4+5及9;1+8、2+7、3+6及4+5共5种组成方法。

⑤当边长为10厘米时,各边分别由1+9、2+8、3+7及4+6组成,也只有一种组成方法。

⑤当边长为11厘米时,各边分别由2+9、3+8、4+7及5+6组成,也只有一种组成方法。

⑥将上述各种组成法相加,就是所求问题了。

此题的思路图如下(图2.8):
问题:
四、还原思路
从叙述事情的最后结果出发利用已知条件,一步步倒着推理,直到解决问题,这种解题思路叫还原思路。

解这类问题,从最后结果往回算,原来加的用减、原来减的用加,原来乘的用除,原来除的用乘。

运用还原思路解题的方法叫“还原法”。

例1 一个数加上2,减去3,乘以4,除以5等于12,你猜这个数是多少?
分析(用还原思路考虑):
从运算结果12逐步逆推,这个数没除以5时应等于多少?没乘以4时应等于多少?不减去3时应等于多少?不加上2时又是多少?这里分别利用了加与减,乘与除之间的逆运算关系,一步步倒推还原,直找到答案。

其思路图如下(图2.9):
条件:
例2 李白街上走,提壶去打酒;遇店加一倍,见花喝一斗,三遇店和花,喝光壶中酒。

试问酒壶中,原有多少酒?
分析(用还原思路探索):
李白打酒是我国民间自古以来广为流传的一道用打油诗叙述的
著名算题。

题意是:李白提壶上街买酒、喝酒,每次遇到酒店,便将壶中的酒量增添1倍,而每次见到香花,便饮酒作诗,喝酒1斗。

这样他遇店、见花经过3次,便把所有的酒全喝光了。

问:李白的酒壶中原有酒多少?
下面我们运用还原思路,从“三遇店和花,喝光壶中酒”开始推算。

见花前——有1斗酒。

第三次:见花后——壶中酒全喝光。

第三次:遇店前——壶中有酒半斗。

第一次:见花前——壶中有酒为第二次遇店前的再加1斗。

遇店前——壶中有酒为第一次见花前的一半。

其思路图如下
五、假设思路
在自然科学领域内,一些重要的定理、法则、公式等,常常是在“首先提出假设、猜想,然后再进行检验、证实”的过程中建立起来的。

数学解题中,也离不开假设思路,尤其是在解比较复杂的题目时,如能用“假设”的办法去思考,往往比其他思路简捷、方便。

我们把先提出假设、猜想,再进行检验、证实的解题思路,叫假设思路。

例1 中山百货商店,委托运输队包运1000只花瓶,议定每只花瓶运费0.4元,如果损坏一只,不但不给运费,而且还要赔偿损失5.1元。

结果运输队获得运费382.5元。

问:损坏了花瓶多少只?
分析(用假设思路考虑):
(1)假设在运输过程中没有损坏一个花瓶,那么所得的运费应该是多少?
0.4×1000=400(元)。

(2)而实际只有383.5元,这当中的差额,说明损坏了花瓶,而损坏一只花瓶,不但不给运费,而且还要赔偿损失5.1元,这就是说损坏一只花瓶比不损坏一只花瓶的差额应该是多少元?
0.4+5.1=5.5(元)
(3)总差额中含有一个5.5元,就损坏了一只花瓶,含有几个5.5元,就是损坏了几只花瓶。

由此便可求得本题的答案。

例2 有100名学生在车站准备乘车去离车站600米的烈士纪念馆搞活动,等最后一人到达纪念馆45分钟以后,再去离纪念馆900米的公园搞活动。

现在有中巴和大巴各一辆,它们的速度分别是每分钟300米和150米,而中巴和大巴分别可乘坐10人和25人,问最后一批学生到达公园最少需要多少时间?
分析(用假设思路思索);
假设从车站直接经烈士纪念馆到公园,则路程为(600+900)米。

把在最后1人到达纪念馆后停留45分钟,假设为在公园停留45分钟,则问题将大大简化。

(1)从车站经烈士纪念馆到达公园,中巴、大巴往返一次各要多少时间?
中巴:(600+900)÷300×2=10(分钟)
大巴:(600+900)÷150×2=20(分钟)
(2)中巴和大巴在20分钟内共可运多少人?
中巴每次可坐10人,往返一次要10分钟,故20分钟可运20人。

大巴每次可坐25人,往返一次要20分钟,故20分钟可运25人。

所以在20分钟内中巴、大巴共运45人。

(3)中巴和大巴20分钟可运45人,那么40分钟就可运
45×2=90(人),100人运走90人还剩下10人,还需中巴再花10分钟运一次就够了。

(4)最后可求出最后一批学生到达公园的时间:把运90人所需的时间,运10人所需的时间,和在纪念馆停留的时间相加即可。

六、消去思路
对于要求两个或两个以上未知数的数学题,我们可以想办法将其中一个未知数进行转化,进而消去一个未知数,使数量关系化繁为简,这种思路叫消去思路,运用消去思路解题的方法叫消去法。

二元一次方程组的解法,就是沿着这条思路考虑的。

例1 师徒两人合做一批零件,徒弟做了6小时,师傅做了8小时,一共做了312个零件,徒弟5小时的工作量等于师傅2小时的工作量,师徒每小时各做多少个零件?
分析(用消去思路考虑):
这里有师、徒每小时各做多少个零件两个未知量。

如果以徒弟每小时工作量为1份,把师傅的工作量用徒弟的工作量来代替,那么师傅8小时的工作量相当于这样的几份呢?很明显,师傅2小时的工作量相当于徒弟5小时的工作量,那么8小时里有几个2小时就是几个5小时工作量,这样就把师傅的工作量换成了徒弟的工作量,题目里就消去了师傅工作量这个未知数;然后再看312个零件里包含了多少个徒弟单位时间里的工作量,就是徒弟应做多少个。

求出了徒弟的工作量,根据题中师博工作量与徒弟工作量的倍数关系,也就能求出师傅的工作量了。

例2 小明买2本练习本、2枝铅笔、2块橡皮,共用0.36元,小军买4本练习本、3枝铅笔、2块橡皮,共用去0.60元,小庆买5
本练习本、4枝铅笔、2块橡皮,共用去0.75元,问练习本、铅笔、橡皮的单价各是多少钱?
分析(用消去法思考):
这里有三个未知数,即练习本、铅笔、橡皮的单价各是多少钱?我们要同时求出三个未知数是有困难的。

应该考虑从三个未知数中先去掉两个未知数,只留下一个未知数就好了。

如何消去一个未知数或两个未知数?一般能直接消去的就直接消去,不能直接消去,就通过扩大或缩小若干倍,使它们之间有两个相同的数量,再用加减法即可消去,本题把小明小军、小庆所购买的物品排列如下:
小明2本2枝2块0.36元
小军4本3枝2块0.60元
小庆5本4枝2块0.75元
现在把小明的各数分别除以2,可得到1本练习本、1枝铅笔、1块橡皮共0.18元。

接着用小庆的各数减去小军的各数,得1本练习本、1枝铅笔为0.15元。

再把小明各数除以2所得的各数减去上数,就消去了练习本、铅笔两个未知数,得到1块橡皮0.03元,采用类似的方法可求出练习本和铅笔的单价。

七、转化思路
解题时,如果用一般方法暂时解答不出来,就可以变换一种方式去思考,或改变思考的角度,或转化为另外一种问题,这就是转化思路。

运用转化思路解题就叫转化法。

各养兔多少只?
分析(用转化思路思索):
题中数量关系比较复杂,两个分率的标准量不同,为了简化数量关系,
只呢?这时两人养的总只数该是多少只呢?假设后的数量关系,两人养的总只数应是:100-16×3=52(只)
分析(用转化思路分析):
本题求和,题中每个分数的分子都是1,分母是几个连续自然数的和,好像不能把每个分数分成两个分数相减,然后相加抵消一些数。

但是只要我们按等差数列求和公式,求出分母就会发现,可将上面各分数的分母转化为两个连续自然数积的形式。

然后再相加,抵消中间的各个分数即可。

八、类比思路
类比就是从一个问题想到了相似的另一个问题。

例如从等差数列求和公式想到梯形面积公式,从矩形面积公式想到长方体体积公式等等;类比是一个重要的思想方法,也是解题的一种重要思路。

例1 有一个挂钟,每小时敲一次钟,几点钟就敲几下,钟敲6下,5秒钟敲完;钟敲12下,几秒敲完?
分析(用类比思路探讨):
有人会盲目地由倍数关系下结沦,误认为10秒钟敲完,那就完全错了。

其实此题只要运用类比思路,与植树问题联系起来想一想就通了:一条线路植树分成几段(株距),如果不包括两个端点,共需植(n-1)棵树,如果包括两个端点,共需植树(n+1)棵,把钟点指数看作是一棵棵的树,把敲的时间看作棵距,此题就迎刃而解了。

例2 从时针指向4点开始,再经过多少分钟,时针正好与分钟重合。

分析(用类比思路讨论):
本题可以与行程问题进行类比。

如图2.11,如果用时针1小时所走的一格作为路程单位,那么本题可以重新叙述为:已知分针与时针相距4格,分
如果分针与时针同时同向出发,问:分针过多少分钟可追上时针?这样就与行程问题中的追及问题相似了。

4为距离差,速度差为,重合的时间,就是追上的时间。

九、分类思路
把一个复杂的问题,依照某种规律,分解成若干个较简单的问题,从而使问题得到解决,这就是分类思路。

这种思路在解决数图形个数问题中经常用到。

例1 如图2.12,共有多少个三角形?
分析(用分类思路考虑):
这样的图直接去数有多少个三角形,要做到能不重复,又不遗漏,是比较困难的。

怎么办?可以把图中所有三角形按大小分成几类,然
后分类去数,再相加就是总数了。

本题根据条件,可以分为五类(如图2.13)。

例2 如图2.14,象棋棋盘上一只小卒过河后沿着最短的路走到对方“将”处,这小卒有多少种不同的走法?
分析(运用分类思路分析):
小卒过河后,首先到达A点,因此,题目实际上是问:从A点出发,沿最短路径有多少种走法可以到达“将”处,所谓最短,是指不走回头路。

因为“将”直接相通的是P点和K点,所以要求从A点到“将”处有多少种走法,就必须是求出从A到P和从A到K各有多少种走法。

分类。

一种走法:A到B、C、D、E、F、G都是各有一种走法。

二种走法:从A到H有两种走法。

三种走法:从A到M及从A到I各有三种走法。

其他各类的走法:因为从A到M、到I各有3种走法,所以从A 到N就有3+3=6种走法了,因为从A到I有3种走法,从A到D 有1种走法,所以从A到J就有3+1=4种走法了;P与N、J相邻,而A到N有6种走法,A到J有4种走法,所以从A到P就有6+4=10种走法了;同理K与J、E相邻,而A到J有4种走法,到E有1
种走法,所以A到K就有4+1=5种走法。

再求从A到“将”处共有多少种走法就非常容易了。

十、等量代换思路
有些题的数量关系十分隐蔽,如果用一般的分析推理,难于找出数量之间的内在联系,求出要求的数量。

那么我们就根据已知条件与未知
条件相等的关系,使未知条件转化为已知条件,使隐蔽的数量关系明朗化,促使问题迎刃而解。

这种思路叫等量代换思路。

例1 如图2.15的正方形边长是6厘米,甲三角形是正方形中的一部分,乙三角形的面积比甲三角形大6平方厘米,求CE长多少厘米?
分析(用等量代换思路思考):
按一般思路,要求CE的长,必须知道乙三角形的面积和高,而这两个条件都不知道,似乎无法入手。

用等量代换思路,我们可以求出三角形ABE的面积,从而求出CE的长,怎样求这个三角形的面积呢?设梯形为丙:
已知乙=甲+6
丙+甲=6×6=36
用甲+6代换乙,可得丙+乙=丙+甲+6=36+6=42
即三角形ABE的面积等于42平方厘米,这样,再来求CE的长就简单了。

例2 有三堆棋子,每堆棋子数一样多,并且都只有黑白两色棋子。

第一
这三堆棋子集中一起,问白子占全部棋子的几分之几?
分析(用等量代换的思路来探讨):
这道题数量关系比较复杂,如果我们把第一堆里的黑子和第二堆的白子对换一下,那么这个问题就简单多了。

出现了下面这个等式。

第一堆(全部是白子)=第二堆(全部是黑子)
=第三堆(白子+黑子)(这里指的棋子数)
份,则第二堆(全部黑子)为3份,这样就出现了每堆棋子为3份,3堆棋子的总份数自然就出来了。

而第三堆黑子占了2份,白子自然就只有3—2=1份了。

第一堆换成了全部白子,所以白子总共是几份也可求出。

最后去解决白子占全部棋子的几分之几就非常容易了。

十一、对应思路
分数、百分数应用题的特点是一个数量对应着一个分率,也就是一个数量相当于单位“1”的几分之几,这种关系叫做对应关系。

找对应关系的思路,我们把它叫做对应思路。

例1 有一块菜地和一块麦地,菜地的一半和麦地的三分之一放在一起是91公亩,麦地的一半和菜地的三分之一放在一起是84公亩,那么,菜地是几公亩?
分析(用对应思路分析):
这是一道复杂的分数应用题,我们不妨用对应思路去思索。

如能找出91公亩、84公亩的对应分率,此题就比较容易解决了。

但题中有对应分率两个,究竟相当于总公亩数的几分之几呢?这是解题的关键。

而我们一时还弄不清楚,现将条件排列起来寻找。

求出总公亩数后,我们仍未找到菜地或麦地占总公亩数的几分之几,故还不能直接求出菜地或麦地的公亩数。

但我们把条件稍作组合,就可以求出
分析到这一步,那么再去求菜地有多少公亩,则就变成了一道很简单的分数应用题了。

例2 蓄水池有甲、丙两条进水管,和乙、丁两条排水管,要灌满一池水,单开甲管需要3小时,单开丙管需要5小时,要排完一池水,单开乙管
顺序,循环各开水管,每次每管开一小时,问多少时间后水开始溢出水池?
分析(用对应思路考虑):
本题数量关系复杂,但仍属分数应用题,所以仍可用对应思路寻找解题途径。

首先要找出甲、丙两管每小时灌水相当于一池水的几分之几,乙、丁两管每小时排水相当于一池水的几分之几,然后才能计算。

通过转化找到了对应分率就容易计算了。

假设甲、乙、丙、丁四个水管按顺序各开1小时,共开4小时,池内灌进的水是全池的:
也就是20小时以后,池内有水。

相关文档
最新文档