基于FPGA芯片智能电梯控制系统设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于FPGA芯片的电梯自动控制系统
学号:2011051339姓名:聂丽霞
摘要:
本论文是基于FPGA的电梯控制器的研究,是电梯控制的核心技术,通过电梯控制器可以对电梯运行模式和状态进行全面的控制,这也是此次论文研究的重要性;由于FPGA技术近些年来蓬勃发展,而且在很多领域已经应用的十分成熟,所以用FPGA可以实现对电梯精确、稳定、实时性控制,同时用于FPGA开发的芯片都是一些微处理器芯片,便于集成和智能化设计。
关键词: FPGA VHDL 电梯状态机
一、电梯控制器的需求分析
目前,电梯的设计、工艺不断提高,电梯的品种也逐渐增多,电梯的材质由黑白到彩色,样式由直式到斜式,在操纵控制方面更是步步出新:手柄开关操纵、按钮控制、信号控制、集选控制、人机对话等;多台电梯还出现了并联控制、智能群控;双层轿箱电梯展示出节省井道空间,提升运输能力的优势,变速式自动人行道扶梯大大节省了行人的时间;不同外形的电梯则使身处其中的乘客的视线不再封闭。
电梯的结构分为:四大空间,八大系统;四大空间:机房部分、井道及地坑部分、轿厢部分、层站部分;八大系统:曳引系统、导向系统、轿厢、门系统、重量平衡系统、电力拖动系统、电气控制系统、安全保护系统;电梯的功能结构决定电梯的八大应用技术:
⑴全数字识别乘客技术(所有乘客进入电梯前进行识别,其中包括眼球识别、
指纹识别)
⑵数字智能型安全控制技术(通过乘客识别系统或者IC卡以及数码监控设
备,拒绝外来人员进入)
⑶第四代无机房电梯技术(主机必须与导轨和轿厢分离,完全没有共振共鸣,
速度可以达到2.0M/S以上,最高可以使用在30层以上。)
⑷双向安全保护技术(双向安全钳、双向限速器,在欧洲必须使用,中国正
在被普遍使用)
⑸快速安装技术(改变过去的电梯安装方法,能够快速组装)
⑹节能技术(采用节能技术,使电梯更节约能源)
⑺数字监控技术(完全采用计算机进行电梯监控与控制)
⑻无线远程控制及报警装置(当电梯产生故障时,电梯可以通过无线装置给
手机发送故障信息,并通过手机发送信号对电梯进行简单控制。)
本论文主要是控制电梯的运行模式和状态,对信号进行处理的模块,重点在对响应的信号进行处理,并将处理结果反馈给对应功能的控制端口,实现对电梯运行的全面控制。
电梯方向优先控制方式控制系统方框图
二、论文研究的主要内容
本论文的电梯控制器所有的程序可以集成在一个FPGA开发芯片上面,不用在用其他功能的分立逻辑元件,达到集成度高、响应快、功耗低的特点。
本论文是基于FPGA的电梯控制器的研究,是电梯控制的核心技术,通过电梯控制器可以对电梯运行模式和状态进行全面的控制,这也是次论文的研究重要性;电梯的层数为6层,本次论文采用模块化设计,主要分为四大模块:时钟分频模块、按键处理模块、电梯运行控制模块、数码管显示模块。
由于FPGA技术近些年来蓬勃发展,而且在很多领域已经应用的十分成熟,用FPGA可以实现对电梯精确、实时性控制,而且用于FPGA开发的芯片都是一些微处理器芯片,便于集成和智能化设计,而且大大缩短了开发周期。
三、FPGA概述
FPGA(Field Programmable Gate Arry)即现场可编程门阵列,它是在PAL、GAL、CPLD等可编程器件的基础上进一步发展的产物。它是作为专用集成电路(ASIC)领域中的一种半定制电路而出现的,既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点;FPGA采用了逻辑单元阵列LCA (Logic Cell Array)这样一个概念,内部包括可配置逻辑模块CLB(Configurable Logic Block)、输入输出模块IOB(Input Output Block)和内部连线(Interconnect)三个部分。
四、FPGA硬件体系结构
FPGA采用逻辑单元阵列(LCA,Logic Cell Array)新概念,内部包括可配置逻辑模块(CLB,Configurable Logic Block)、输入输出模块(IOB,Input Output Block)和内部互连资源(IR,Interconnect Resources)三部分组成。
⑴可配置逻辑块(CLB,Configurable Logic Block)是FPGA的主要组成
部分,主要是由逻辑函数发生器、触发器、数据选择器等电路组成。
⑵输入输出模块(IOB,Input Output Block)提供了器件引脚和内部逻辑
阵列之间的连接,主要是由输入触发器、输入缓冲器和输出触发、锁存
器、输出缓冲器组成。
⑶可编程互连资源(IR,Interconnect Resources)可以将FPGA内部的CLB
和CLB之间、CLB和IOB之间连接起来,构成各种具有复杂功能的系
统,IR主要由许多金属线段构成,这些金属线段带有可编程开关,通过
自动布线实现各种电路的连接。
五、电梯控制器的工作原理
本次论文是实现6层电梯的运行控制,当在某一楼层按下上升或者下降请求按钮时,控制器响应该请求并控制电梯前往该楼层,当到达该楼层时,电梯开门,当进入电梯后,电梯关门,此时按下要到达的楼层按钮,控制器响应该请求并控制电梯前往该楼层,当到达前往楼层后,电梯开门,走出电梯,然后关门......,就这样往复的实现电梯的控制功能。
在电梯运行时遵循如下规则:当电梯处于上升模式时,只响应比电梯所在位置高的上楼信号,由下至上依次执行;直到最后一个上楼请求执行完毕,如有更
高层有下楼请求时,则直接升到有下降请求的最高楼,然后进入下降模式,电梯处于下降模式时,则与上升相反。
电梯的输入信号主要包括外部输入信号和内部输入信号;对于电梯外部输入信号主要有:每一层电梯门外都有上升请求和下降请求按钮,其中一楼电梯门外只有上升请求按钮,6楼电梯门外只有下降请求按钮。对于电梯内部输入信号主要有:6个前往楼层的按钮、提前关门按钮、延时关门按钮、电梯异常按钮。
电梯输出信号也主要包括外部输出信号和内部输出信号;对于电梯外部输出信号包括上升请求按钮和下降按钮指示信号、电梯当前所在楼层指示信号、电梯运行方向指示信号。电梯内部输出信号包括6个前往楼层按钮指示信号、超重等警告指示信号、电梯当前所在楼层指示信号、电梯运行方面指示信号。
六、电梯控制系统的设计内容
本次论文是基于FPGA的电梯控制器的研究,是电梯控制的核心技术,通过电梯控制器可以对电梯运行模式和状态进行全面的控制,这也是次论文的研究重要性;电梯的层数为6层,本次论文采用模块化设计方法,主要分为四大模块:时钟分频模块、按键处理模块、电梯运行控制模块、数码管显示模块。
本论文是基于FPGA的电梯控制器的研究,是电梯控制的核心技术,通过电梯控制器可以对电梯运行模式和状态进行全面的控制,这也是次论文的研究重要性;电梯的层数为6层,本次论文采用模块化设计方法,主要分为四大模块:时钟分频模块、按键处理模块、电梯运行控制模块、数码管显示模块。其方框原理图如下:
电梯控制器原理图