《平行四边形及其性质》第一课时教案 (1)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.1 平行四边形及其性质(1)

教材分析:

本节教材是青岛版八年级下第六章“平行四边形”的第一节,是初中数学实验几何的重要组成部分,是学生在学习和掌握了对称、旋转和全等等知识的基础上,进一步借助图形的运动来研究平行四边形的性质.

学生分析:

平行四边形这部分内容,学生在小学阶段已接触过,初步了解了平行四边形的概念及能直观识别平行四边形的图形.

学习目标:

知识目标:1.理解并掌握平行四边形的定义.

2.掌握平行四边形的性质定理1及性质定理2

能力目标:提高综合运用知识的能力.

情感态度与价值观:感受数学概念与实际生活的紧密联系.

学习重难点:

重点:平行四边形的定义,对角、对边相等的性质以及性质的应用.

难点:运用平行四边形的性质进行有关的论证和计算.

课前准备

教具准备教师准备PPT课件

教学过程:

导入新课

[师]通过上面图片你发现具有什么特征的四边形是平行四边形?

能根据这一特征画出平行四边形吗?

[学生小组合作探究]

合作探究一: 平行四边形的定义

1、定义:

2、特征:

3、符号:

4、有关名称:

小组交流 :

1.平行四边形的边具有哪些性质?说说你的理由.

2.平行四边形的角具有哪些性质?说说你的理由.

【设计意图】:

通过小组合作观察,讨论什么样的图形是平行四边形,自己归纳出平行四边形的定义和性质.给学生更多的思考空间,促进学生积极思考,发展学生的思维.

合作探究二:平行四边形的性质定理

定理1:平行四边形的对边相等.

已知:如图,四边形ABCD是平行四边形.

求证:AB=CD,BC=DA.

[师]由上述证明过程你能得到平行四边形的对角相等吗?

归纳:

1.平行四边形的对边平行.

几何语言:∵四边形ABCD是平行四边形∴AB ∥CD,BC ∥AD.

2.性质定理1:平行四边形的对边相等.

几何语言:∵四边形ABCD是平行四边形∴AB=CD,BC=AD.

3.性质定理2:平行四边形的对角相等.

几何语言: ∵四边形ABCD是平行四边形∴∠A=∠C,∠B=∠D.

【设计意图】:

通过推理的形式得出平行四边形的性质定理,培养了学生的推理能力.

例题讲解:

例1.求证

(1)夹在两条平行线间的平行线段相等.

(2)如果两条直线平行,那么一条直线上各点到另一条直线的距离相等.

当堂检测:

1.下列命题中,正确的个数是()

①一组对边平行的四边形叫做平行四边形

②平行四边形的对角相等,邻角互补;

③夹在两平行线之间的线段相等

④两条平行线之间的距离相等

A、1个

B、2个

C、3个

D、4个

2.如图ABCD中,AB=5,BC=9,BE平分∠ABC,则DE= _________.

3.已知:平行四边形ABCD的周长为60cm,两邻边AB,BC长的比为3:2,求AB和BC的长度 .

解:∵四边形ABCD是平行四边形(已知)

∴AB=CD,BC=AD(平行四边形的对边相等)

又∵□ABCD的周长为60cm.

∴AB + BC=30cm.

又AB:BC=3:2,即AB=1.5BC.

则1.5BC + BC=30 ,

解得BC=12 (cm).

而AB=1.5×12=18 (cm).

课堂小结:

本节课学习了平行四边形的定义 ,平行四边形的性质定理.

作业:

课本 P.6第2题

板书设计:

6.1 平行四边形及其性质(1)

平行四边形的定义

平行四边形的定义性质定理1

平行四边形的定义性质定理2

例1

教后反思:

本堂课主要用了探究式教学,启发式教学,分层教学.让学生在掌握基本知识的基础上理论联系实际,用所学的知识解决身边的问题.调动了学生学习的积极性和主动性.在本堂课的教学当中学生通过探索了解平行四边形的基本特征.

相关文档
最新文档