船舶少量载荷变动后计算初稳性高度变化的两个近似公式的使用条件

船舶少量载荷变动后计算初稳性高度变化的两个近似公式的使用条件
船舶少量载荷变动后计算初稳性高度变化的两个近似公式的使用条件

惯性矩的计算方法及常用截面惯性矩计算公式

在此输入你的公司名称 LOGO 惯性矩的计算方法及常用截 面惯性矩计算公式

惯性矩的计算方法及常用截面惯性矩计算公式 截面图形的几何性质 一.重点及难点: (一).截面静矩和形心 1.静矩的定义式 如图1所示任意有限平面图形,取其单元如面积dA ,定义它对任意轴的一次矩为它对该轴的静矩,即 ydA dSx xdA dS y == 整个图形对y 、z 轴的静矩分别为 ??==A A y ydA Sx xdA S (I-1) 2.形心与静矩关系 图I-1 设平面图形形心C 的坐标为C C z y , 则 0 A S y x = , A S x y = (I-2) 推论1 如果y 轴通过形心(即0=x ),则静矩0=y S ;同理,如果x 轴通过形心(即0=y ),则静矩0=Sx ;反之也成立。 推论2 如果x 、y 轴均为图形的对称轴,则其交点即为图形形心;如果y 轴为图形对称轴,则图形形心必在此轴上。 3.组合图形的静矩和形心 设截面图形由几个面积分别为n A A A A ??321,,的简单图形组成,且一直各族图形的形心坐标分别为??332211,,,y x y x y x ;;,则图形对y 轴和x 轴的静矩分别为

∑∑∑∑========n i n i i i xi x n i i i n i yi y y A S S x A S 11 11 S (I-3) 截面图形的形心坐标为 ∑∑===n i i n i i i A x A x 11 , ∑∑===n i i n i i i A y A y 11 (I-4) 4.静矩的特征 (1) 界面图形的静矩是对某一坐标轴所定义的,故静矩与坐标轴有关。 (2) 静矩有的单位为3m 。 (3) 静矩的数值可正可负,也可为零。图形对任意形心轴的静矩必定为零,反之,若图形对某一轴的静矩为零,则该轴必通过图形的形心。 (4) 若已知图形的形心坐标。则可由式(I-1)求图形对坐标轴的静矩。若已知图形对坐标轴的静矩,则可由式(I-2)求图形的形心坐标。组合图形的形心位置,通常是先由式(I-3)求出图形对某一坐标系的静矩,然后由式(I-4)求出其形心坐标。 (二).惯性矩 惯性积 惯性半径 1. 惯性矩 定义 设任意形状的截面图形的面积为A (图I-3),则图形对O 点的极惯性矩定义为 ?=A p dA I 2ρ (I-5) 图形对y 轴和x 轴的光性矩分别定义为 ?=A y dA x I 2 , dA y I A x ?=2 (I-6) 惯性矩的特征 (1) 界面图形的极惯性矩是对某一极点定义的;轴惯性矩是对某一坐 标轴定义的。 (2) 极惯性矩和轴惯性矩的单位为4m 。

船舶原理公式

船舶原理公式汇总 第一章 船型系数: 水线面系数C WP =A W /LB 中横剖面系数C M =A M /Bd 方形系数C B =排水体积/LBd 菱形系数C P =排水体积/A M L=排水体积/C M BdL=C B /CM 垂向菱形系数C VP =排水体积\A W d=排水体积/C WP LBd=C B /C WP 排水体积符号▽ 尺度比: 长宽比L/B :与船的快速性有关 船宽吃水比B/d:与船的稳性、快速性和航向稳定性有关 型深吃水比D/d :与船的稳性、抗沉性、船体的坚固性以及船体的容积有关 船长吃水比L/d :与船的回转性有关,比值越小,船越短小,回转越灵活 梯形法:A=?b a ydx A=l ?b ydx 0 =l(∑=n i yi 0 -(y 0+y 3)/2)注(y 0+y n )/2为首尾修正项 辛氏法:一法,A=1/3l(y 1+4y 2+y 3)二法,A=3l/8(y 1+3y 2+3y 3+y 4) 计算漂心X F =M oy /A W =? -2/2 /L L xydx /? -2 /2 /l l ydx 其中A W =2L δ∑yi ' M oy =2(L δ)2∑kiyi '所以X f =L δ∑kiyi '/∑yi ' 计算横剖面面积型心的垂向坐标Z a =M oy /A s =?d zydz 0 /?d ydz 0 其中横剖面面积As=2?d ydz 0 Moy=2?d zydz 0 又可以表达为As=2d δ∑yi '(注意首位修正) Moy=2(l δ)2∑kiyi '所以可以表达为za=d δ∑kiyi '/∑yi ' 第二章 浮心的计算dM yoz =x F A w d z dM xoy =zA w d z x F 为A w 的漂心纵向坐标 排水体积对中站面yoz 的静距M yoz =?d xfAwdz 0 浮心纵向坐标x B =M yoz /▽=? d xfAwdz 0 /?d Awdz 0 同理可以得排水体积对基平面xoy 的静距和浮心垂向坐标Mxoy=?d zAwdz 0 Zb=Mxoy/▽=?d zAwdz 0/?d Awdz 0 同理根据横剖面计算排水体积和浮心位置 dM yoz =x F A s d x dM xoy =z a A s d x 浮心纵向坐标Myoz=? -2/2 /l l xAsdx X B =Myoz/▽=? -2 /2 /l l xAsdx /? -2 /2 /l l Asdx

惯性矩的计算方法

I等.I等是从不同角度反映了截 S,其数学表达式 (4 -1a ) (4-1b) (4 -2a )

(4-2b) 式中y、z 为截面图形形心的坐标值.若把式(4-2) 改写成 (4-3) 性质: ?若截面图形的静矩等于零,则此坐标轴必定通过截面的形心. ?若坐标轴通过截面形心,则截面对此轴的静矩必为零. ?由于截面图形的对称轴必定通过截面形心,故图形对其对称轴的静矩恒为零。 4 )工程实际中,有些构件的截面形状比较复杂,将这些复杂的截面形状看成是由若干简单图形( 如矩形、圆形等) 组合 而成的.对于这样的组合截面图形,计算静矩(S) 与形心坐标(y、z ) 时,可用以下公式 (4-4) (4-5) 式中A,y ,z 分别表示第个简单图形的面积及其形心坐标值,n 为组成组合图形的简单图形个数. 即:组合图形对某一轴的静矩等于组成它的简单图形对同一轴的静矩的代数和.组合图形的形心坐标值等于组合图形对相应坐标轴的静矩除以组合图形的面积.组合截面图形有时还可以认为是由一种简单图形减去另一种简单图形所组成的. 例4-1 已知T 形截面尺寸如图4-2 所示,试确定此截面的形心坐标值.

、两个矩形,则 设任一截面图形( 图4 — 3) ,其面积为A .选取直角坐标系yoz ,在坐标为(y 、z) 处取一微小面积dA ,定义此微面积dA 乘以到坐标原点o的距离的平方,沿整个截面积分,为截面图形的极惯性矩I.微面积dA 乘以到坐标轴y 的距离的平方,沿整个截面积分为截面图形对y 轴的惯性矩I.极惯性矩、惯性矩常简称极惯矩、惯矩. 数学表达式为

极惯性矩(4-6) 对y 轴惯性矩(4 -7a ) 同理,对z 轴惯性矩(4-7b) 由图4-3 看到所以有 即(4-8) 式(4 — 8) 说明截面对任一对正交轴的惯性矩之和恒等于它对该两轴交点的极惯性矩。 在任一截面图形中( 图 4 — 3) ,取微面积dA 与它的坐标z 、y 值的乘积,沿整个截面积分,定义此积分为截面图形对y 、z 轴的惯性积,简称惯积.表达式为 (4-9) 惯性矩、极惯性矩与惯性积的量纲均为长度的四次方.I,I,I恒为正值.而惯性积I其值能为正,可能为负,也可能为零.若选取的坐标系中,有一轴是截面的对称轴,则截面图形对此轴的惯性积必等于零. 当截面图形对某一对正交坐标轴的惯性积等于零时,称此对坐标轴为截面图形的主惯性轴.对主惯性轴的惯性矩称为主惯性矩.而通过图形形心的主惯性轴称为形心主惯性轴( 或称主形心惯轴) .截面对形心主惯性轴的惯性矩称为形心主惯性矩( 或称主形心惯矩) .例如,图4-4 中若这对yz 轴通过截面形心,则它们就是形心主惯性轴.对这两个轴的惯性矩即为形心主惯性矩.

船舶稳性校核计算书

一、概述 本船为航行于内河B级航区的一条旅游船。现按照中华人民共和国海事局《内河船舶法定检验技术规则》(2004)第六篇对本船舶进行完整稳性计算。 二、主要参数 总长L OA13.40 m 垂线间长L PP13.00 m 型宽 B 3.10 m 型深 D 1.40 m 吃水 d 0.900 m 排水量?17.460 t 航区内河B航区 三、典型计算工况 1、空载出港 2、满载到港

五、受风面积A及中心高度Z 六、旅客集中一弦倾侧力矩L K L K=1 ? 1? n 5lb =0.030 m n lb =1.400<2.5,取 n lb =1.400 式中:C—系数,C=0.013lb N =0.009<0.013,取C=0.013 n—各活动处所的相当载客人数,按下式计算并取整数 n=N S bl=28.000 S—全船供乘客活动的总面积,m2,按下式计算: S=bl=20.000 m2 b—乘客可移动的横向最大距离,b=2.000 m; l—乘客可移动的横向最大距离,b=2.000 m。 七、全速回航倾侧力矩L V L V=0.045V m2 S KG?a2+a3F r d KN?m 式中:Fr—船边付氏数,F r=m 9.81L ; Ls—所核算状态下的船舶水线长,m; d—所核算状态下的船舶型吃水,m; ?—所核算状态下的船舶型排水量,m2; KG—所核算状态下的船舶重心至基线的垂向高,m; Vm—船舶最大航速,m/s;

a3—修正系数,按下式计算; a3=25F r?9 当a3<0,取a3=0;当a3>1时,取a3=1; a2—修正系数,按下式计算; a2=0.9(4.0?Bs/d) 当Bs/d<3.5时,取Bs/d=3.5;当Bs/d>4.0时,取Bs/d=4.0;

极惯性矩常用计算公式

极惯性矩常用计算公式:Ip=∫Aρ^2dA 矩形对于中线(垂直于h边的中轴线)的惯性矩:b*h^3/12 三角形:b*h^3/36 圆形对于圆心的惯性矩:π*d^4/64 环形对于圆心的惯性矩:π*D^4*(1-α^4)/64;α=d/D §16-1 静矩和形心 平面图形的几何性质一般与杆件横截面的几何形状和尺寸有关,下面介绍的几何性质表征量在杆件应力与变形的分析与计算中占有举足轻重的作用。 静矩:平面图形面积对某坐标轴的一次矩,如图Ⅰ-1所示。 定义式: ,(Ⅰ-1) 量纲为长度的三次方。 由此可得薄板重心的坐标为 同理有 所以形心坐标 ,(Ⅰ-2) 或 ,

由式(Ⅰ-2)得知,若某坐标轴通过形心,则图形对该轴的静矩等于零,即, ;,则;反之,若图形对某一轴的静矩等于零,则该轴必然通过图形的形心。静矩与所选坐标轴有关,其值可能为正,负或零。 如一个平面图形是由几个简单平面图形组成,称为组合平面图形。设第i块分图形的面积为,形心坐标为,则其静矩和形心坐标分别为 ,(Ⅰ-3) ,(Ⅰ-4) 【例I-1】求图Ⅰ-2所示半圆形的及形心位置。 【解】由对称性,,。现取平行于轴的狭长条作为微面积 所以 读者自己也可用极坐标求解。

【例I-2】确定形心位置,如图Ⅰ-3所示。 【解】将图形看作由两个矩形Ⅰ和Ⅱ组成,在图示坐标下每个矩形的面积及形心位置分别为 矩形Ⅰ:mm2 mm,mm 矩形Ⅱ:mm2 mm,mm 整个图形形心的坐标为 §16-2 惯性矩和惯性半径 惯性矩:平面图形对某坐标轴的二次矩,如图Ⅰ-4所示。 ,(Ⅰ-5) 量纲为长度的四次方,恒为正。相应定义 ,(Ⅰ-6) 为图形对轴和对轴的惯性半径。

截面惯性矩计算

截面的几何性质 15-1(I-8) 试求图示三角形截面对通过顶点A并平行于底边BC的轴的惯性矩。 解:已知三角形截面对以BC边为轴的惯性矩是,利用平行轴定理,可求得 截面对形心轴的惯性矩 所以 再次应用平行轴定理,得 返回 15-2(I-9) 试求图示的半圆形截面对于轴的惯性矩,其中轴与半圆形的底边平行,相距1 m。 解:知半圆形截 面对其底边的惯性矩是,用 平行轴定理得截面对形心轴的惯性矩

再用平行轴定理,得截面对轴的惯性矩 返回 15-3(I-10) 试求图示组合截面对于形心轴的惯性矩。 解:由于三圆直径相等,并两两相切。它们的圆心构成一个边长为的等边三角形。该等边三角形的形心就是组合截面的形心,因此下面两个圆的圆心,到形心轴的距离是 上面一个圆的圆心到轴的距离是。 利用平行轴定理,得组合截面对轴的惯性矩如下: 返回 15-4(I-11) 试求图示各组合截面对其对称轴的惯性矩。

解:(a)22a号工字钢对其对称轴的惯性矩是。 利用平行轴定理得组合截面对轴的惯性矩 (b)等边角钢的截面积是,其形心距外边缘的距离是28.4 mm,求得组合截面对轴的惯性矩如下: 返回 15-5(I-12) 试求习题I-3a图所示截面对其水平形心轴的惯性矩。关于形心位置,可利用该题的结果。 解:形心轴位置及几何尺寸如图所示。惯性矩计算如下: 返回 15-6(I-14) 在直径的圆截面中,开了一个的矩形孔,如图所示, 试求截面对其水平形心轴和竖直形心轴的惯性矩和。 解:先求形心主轴的位置 即

15-7(I-16) 图示由两个20a号槽钢组成的组合截面,若欲使截面对两对称轴 的惯性矩和相等,则两槽钢的间距应为多少? 解:20a号槽钢截面对其自身的形心轴、的惯性矩是, ;横截面积为;槽钢背到其形心轴的距离 是。 根据惯性矩定义和平行轴定理,组合截面对,轴的惯性矩分别是 ; 若 即 等式两边同除以2,然后代入数据,得 于是 所以,两槽钢相距

稳性的基本概念

第一节 稳性的基本概念 一、稳性概述 1. 概念:船舶稳性(Stability)是指船舶受外力作用发生倾斜,当外力消失后能够自行 回复到原来平衡位置的能力。 2. 船舶具有稳性的原因 1)造成船舶离开原来平衡位置的是倾斜力矩,它产生的原因有:风和浪的作用、 船上货物的移动、旅客集中于一舷、拖船的急牵、火炮的发射以及船舶回转等,其大小取决于这些外界条件。 2)使船舶回复到原来平衡位置的是复原力矩,其大小取决于排水量、重心和浮心 的相对位置等因素。 S M G Z =?? (9.81)kN m ? 式中: G Z :复原力臂,也称稳性力臂,重力和浮力作用线之间的距离。 ◎船舶是否具有稳性,取决于倾斜后重力和浮力的位置关系,而排水量一定时, 船舶浮心的变化规律是固定的(静水力资料),因此重心的位置是主观因素。 3. 横稳心(Metacenter)M : 船舶微倾前后浮力作用线的交点,其距基线的高度KM 可从船舶资料中查取。 4. 船舶的平衡状态 1)稳定平衡:G 在M 之下,倾斜后重力和浮力形成稳性力矩。 2)不稳定平衡:G 在M 之上,倾斜后重力和浮力形成倾覆力矩。 3)随遇平衡:G 与M 重合,倾斜后重力和浮力作用在同一垂线上,不产生力矩。 如下图所示

例如: 1)圆锥在桌面上的不同放置方法; 2)悬挂的圆盘 5. 船舶具有稳性的条件:初始状态为稳定平衡,这只是稳性的第一层含义;仅仅具 有稳性是不够的,还应有足够大的回复能力,使船舶不致倾覆,这是稳性的另一层含义。 6. 稳性大小和船舶航行的关系 1)稳性过大,船舶摇摆剧烈,造成人员不适、航海仪器使用不便、船体结构容易 受损、舱内货物容易移位以致危及船舶安全。 2)稳性过小,船舶抗倾覆能力较差,容易出现较大的倾角,回复缓慢,船舶长时 间斜置于水面,航行不力。 二、稳性的分类 1. 按船舶倾斜方向分为:横稳性、纵稳性 2. 按倾角大小分为:初稳性、大倾角稳性 3. 按作用力矩的性质分为:静稳性、动稳性 4. 按船舱是否进水分为:完整稳性、破舱稳性 三、初稳性 1. 初稳性假定条件: 1)船舶微倾前后水线面的交线过原水线面的漂心F; 2)浮心移动轨迹为圆弧段,圆心为定点M(稳心),半径为BM(稳心半径)。2.初稳性的基本计算 初稳性方程式:M R = ??GM?sinθ GM = KM - KG

第四章 船舶稳性

第四章船舶稳性 第一节船舶稳性的基本概念 (一)船舶平衡的3种状态 1、稳定平衡 >0 G点在M点之下,GM>0,M R 2、随遇平衡 G点与M点重合,GM=0,M =0 R 3、不稳定平衡 <0 G点在M点之上,GM<0,M R (二)稳性的定义 船舶稳性是指船舶受给定的外力作用后发生倾侧而不致倾覆,当外力消失后仍能回复到原来的平衡位置的能力。 (三)稳性分类 分类方法: 按倾斜方向、倾角大小、倾斜力矩性质、船舱是否进水 ┏破舱稳性 稳性┫┏初稳性(小倾角稳性) ┃┏横稳性┫┏静稳性 ┗完整稳性┫┗大倾角稳性┫ ┗纵稳性┗动稳性 其中,倾角小于等于10-15度称为小倾角,否则称为大倾角。倾斜力矩性质指静力或动力,或者说有无角速度、角加速度。

第二节船舶初稳性(1) (一)船舶初稳性的基本标志 1.稳心M 与稳心距基线高度KM 船舶小倾角横倾前、后其浮力作用线交点称为横稳心,简称稳心。 稳心M距基线的垂向坐标称为稳心距基线高度。 2.初稳性的衡准指标 稳心M至重心G的垂距称为初稳性高度GM。 初稳性高度GM是衡准船舶是否具有初稳性的指标。初稳性高度大于零,即船舶重心在稳心之下,船舶就有初稳性。 3.初稳性中的假设(对于任一给定的吃水或排水量) (1)小倾角横倾(微倾); (2)在微倾过程中稳心M和重心G的位置固定不变; (3)在微倾过程中浮心B的移动轨迹是一段以稳心为圆心的圆弧; (4)在微倾过程中倾斜轴过漂心。 (二)初稳性高度GM的表达式 GM=KB+BM-KG=KM-KG

第二节 船舶初稳性(2) (三) 初稳性高度的求取 1、 KM 可在静水力曲线图、静水力参数表或载重表中查取。 2、 KG 的计算 式中,P i —— 组成船舶总重量(含空船重量等)的第i 项载荷,t Z i —— 载荷P i 的重心距基线高度,m 3、Z i 确定 (1)舱容曲线图表查取法 船舶资料中通常有各个货舱和液舱的舱容曲线图或数据表,利用舱容曲线图表,可方便确定舱内散货或液货的重心高度Z i ,方法如下: i )对于匀质散货或液货,已知货堆表面距基线高度,在图中左纵轴上对应点做水平线交舱容中心距基线高度曲线得B 点,过B 点做垂线交上横轴得C 点,对应值即为该舱货物重心距基线高度Z i 。 ii )对于积载因素相近、合理积载的件杂货,根据所装货物的体积,在下横轴找到相应点向上做垂线,交舱容曲线得A 点,过A 点做水平线交舱容中心距基线高度曲线得B 点,过B 点向上做垂线交上横轴得C 点,对应值即为该舱货物重心距基线高度Z i 。 ) 2.3()m (Z P KG i i ? *∑ =

船舶稳性和吃水差计算

船舶稳性和吃水差计算 Ship stability and trim calculations 1.总则General rules 保证船舶稳性和强度在任何时候都保持在船级社认可的稳性计算书规定范围内,防止因受载不当,产生应力集中造成船体结构永久性变形或损伤。Ensure stability and strength of the ship at all times to maintain stability within stability calculations approved by the classification societies in order to prevent due to load improperly resulting in stress concentration which will cause the ship structure permanent deformation or subversion. 2.适用范围Sphere of application 公司所属和代管船舶的稳性、强度要求 To satisfy the requirement of company owned and managed ships stability and strength 3.责任Responsibility 3.1.大副根据本船《装载手册》或《稳性计算手册》等法定装载资料,负责合理配载或对 相关部门提供的预配方案进行核算,确保船舶稳性及强度处于安全允许值范围。Based on the ship "loading manual" or "stability calculations manual" and other legal loading information, the chief officer is responsible for making reasonable stowage plan or adjust accounts of the pre plan from relevant departments to ensure stability and strength of the ship in a safe range of allowed values. 3.2.船长负责审批大副确认的配载方案和稳性计算。 The captain is responsible for checking and approving the stowage plan and stability calculation that has been confirmed by chief officer. 4.实施步骤Implementation steps 4.1.每次装货前,大副必须对相关部门提供的预配方案仔细核算,报船长审核签字后才可 实施。 Every time before loading, the chief officer should carefully adjust accounts of the pre stowage plan from the relevant department and transfer it to captain, the stowage plan should be implemented after captain reviewing and signing. 4.2.船舶装货前后大副应认真进行船舶稳性及强度计算校核,包括装货前的预算和装货后 的船舶局部强度和应力状况的核算,货品发生变化后,要重新进行计算。计算时充分考虑自由液面,油水消耗,污水变化及甲板结冰等对船舶稳性产生的影响,确保船舶在离港、航行、抵港的过程中均满足要求。 Every time before loading, the chief officer should carefully calculate and check the ship’s stability and strength, including calculation before loading and the partial strength and stress condition of the ship after loading, if cargos changes, the stability and strength should be re-calculated. When calculating, should fully consider the free surface, water and oil consumption, sewage and water ice on deck and other changes on the impact of ship stability, to ensure that the ship departure, navigating and arriving at port in the process can meet the requirements. 4.3.开航前,大副应完成初稳性高度和强度的计算。稳性计算结果应满足: Before departure, the chief officer should complete the calculations of height of initial stability and strength. Stability calculation results should be satisfied as below: hc - ⊿h > hL 式中:hc:计算的初稳性高度The calculating height of initial stability ⊿h:自由液面修正值Free surface correction value hL:临界初稳性高度The critical height of initial stability 船舶静水力弯矩和剪力以及局部强度不得超过允许值。 Hydrostatic moment of force, shear force and partial strength of the ship can not to exceed the allowable values. 4.4.大副要将每航次的稳性计算资料包括积载图留存,并将稳性计算中的重要内容摘录记 在航海日志中,报船长审核确认签字。 The chief officer should preserve such documents including stability calculation information and stowage plan, and records the important contents of the stability calculation into the log, which shall be reported to captain to verify and sign.

惯性矩的计算方法及常用截面惯性矩计算公式

惯性矩的计算方法及常用截面惯性矩计算公式 截面图形的几何性质 一.重点及难点: (一).截面静矩和形心 1.静矩的定义式 如图1所示任意有限平面图形,取其单元如面积dA ,定义它对任意轴的一次矩为它对该轴的静矩,即 ydA dSx xdA dS y ==整个图形对y 、z 轴的静矩分别为 ??==A A y ydA Sx xdA S (I-1)2.形心与静矩关系 图I-1 设平面图形形心C 的坐标为C C z y , 则 0 A S y x = , A S x y = (I-2) 推论1 如果y 轴通过形心(即0=x ),则静矩0=y S ;同理,如果x 轴通过形心(即0=y ),则静矩0=Sx ;反之也成立。 推论2 如果x 、y 轴均为图形的对称轴,则其交点即为图形形心;如果y 轴为图形对称轴,则图形形心必在此轴上。 3.组合图形的静矩和形心 设截面图形由几个面积分别为n A A A A ??321,,的简单图形组成,且一直各族图形的形心坐标分别为??332211,,,y x y x y x ;;,则图形对y 轴和x 轴的静矩分别为

∑∑∑∑========n i n i i i xi x n i i i n i yi y y A S S x A S 1 1 11S (I-3) 截面图形的形心坐标为 ∑∑=== n i i n i i i A x A x 1 1 , ∑∑=== n i i n i i i A y A y 1 1 (I-4) 4.静矩的特征 (1) 界面图形的静矩是对某一坐标轴所定义的,故静矩与坐标轴有关。 (2) 静矩有的单位为3m 。 (3) 静矩的数值可正可负,也可为零。图形对任意形心轴的静矩必定为零,反之,若图形对某一轴的静矩为零,则该轴必通过图形的形心。 (4) 若已知图形的形心坐标。则可由式(I-1)求图形对坐标轴的静矩。若已知图形对坐标轴的静矩,则可由式(I-2)求图形的形心坐标。组合图形的形心位置,通常是先由式(I-3)求出图形对某一坐标系的静矩,然后由式(I-4)求出其形心坐标。 (二).惯性矩 惯性积 惯性半径 1. 惯性矩 定义 设任意形状的截面图形的面积为A (图I-3),则图形对O 点的极惯性矩定义为 ?=A p dA I 2ρ (I-5) 图形对y 轴和x 轴的光性矩分别定义为 ?=A y dA x I 2 , dA y I A x ?=2 (I-6) 惯性矩的特征 (1) 界面图形的极惯性矩是对某一极点定义的;轴惯性矩是对某一坐

惯性矩的计算方法

I等. I等是从不同角度反映了截 S,其数学表达式 (4 -1a ) (4-1b) (4 -2a )

(4-2b) 式中 y、 z 为截面图形形心的坐标值.若把式 (4-2) 改写成 (4-3) 性质: ?若截面图形的静矩等于零,则此坐标轴必定通过截面的形心. ?若坐标轴通过截面形心,则截面对此轴的静矩必为零. ?由于截面图形的对称轴必定通过截面形心,故图形对其对称轴的静矩恒为零。 4 )工程实际中,有些构件的截面形状比较复杂,将这些复杂的截面形状看成是由若干简单图形 ( 如矩形、圆形等 ) 组合而成的.对于这样的组合截面图形,计算静矩 (S) 与形心坐标 (y、 z ) 时,可用以下公式 (4-4) (4-5) 式中 A, y , z 分别表示第个简单图形的面积及其形心坐标值, n 为组成组合图形的简单图形个数. 即:组合图形对某一轴的静矩等于组成它的简单图形对同一轴的静矩的代数和.组合图形的形心坐标值等于组合图形对相应坐标轴的静矩除以组合图形的面积.组合截面图形有时还可以认为是由一种简单图形减去另一种简单图形所组成的. 例 4-1 已知 T 形截面尺寸如图 4-2 所示,试确定此截面的形心坐标值.

、两个矩形,则 设任一截面图形 ( 图 4 — 3) ,其面积为 A .选取直角坐标系 yoz ,在坐标为 (y 、 z) 处取一微小面积 dA ,定义此微面积 dA 乘以到坐标原点o的距离的平方,沿整个截面积分,为截面图形的极惯性矩 I.微面积 dA 乘以到坐标轴 y 的距离的平方,沿整个截面积分为截面图形对 y 轴的惯性矩 I.极惯性矩、惯性矩常简称极惯矩、惯矩. 数学表达式为

船舶完整稳性规则

附则3 关于国际海事组织文件包括的所有船舶的完整稳性规则 说明与要求 1 本附则是国际海事组织第18届大会1993年11月4日通过的A.749(18)决议的附件。 2 本附则中“动力支承船”的有关规定已被《国际高速船安全规则》所替代。详见本法规第4篇附则2《际高速船安全规则》。 3 船舶的完整稳性还应符合本法规总则与第1篇的适用规定。 349

第1章一般规定 1.1 宗旨 关于国际海事组织文件包括的所有类型船舶的完整稳性规则(以下简称本规则)旨在提出稳性衡准及其他为确保所有船舶的安全操作而采取的措施,使之最大限度地减少对船舶、船上人员和环境的危害。 1.2 适用范围 1.2.1 除非另有说明,本规则中的完整稳性衡准适用于长度为24m及以上的下列类型船舶和其他海上运输工具: ——货船; ——装载木材甲板货的货船; ——装载散装谷物的货船; ——客船; ——渔船; ——特种用途船; ——近海供应船; ——海上移动式钻井平台; ——方驳; ——动力支承船; ——集装箱船。 1.2.2 沿海国家可对新型设计的船舶或未包含在本规则内的船舶的设计方面制定附加要求。 1.3 定义 下列定义适用于本规则。对过去常用的术语但在本规则中未定义的,如在1974 SOLAS公约中所定义的,亦适用于本规则。 1.3.1 主管机关:系指船旗国政府。 1.3.2 客船:系指经修改的1974 SOLAS公约第Ⅰ/2条中规定的载客超过12人的船舶。 1.3.3 货船:系指非客船的任何船舶。 1.3.4渔船:系指用于捕捞鱼类、鲸鱼、海豹、海象或其他海洋生物资源的船舶。 1.3.5 特种用途船:系指国际海事组织《特种用途船舶安全规则》(A.534(13)决议案)1.3.3中规定的因其特殊用途载有12名以上特种人员(包括可不超过12名乘客)的机动自航船舶(从事科研、探险和测量的船舶;用于培训海员的船;不从事捕捞作业的鲸鱼或鱼类加工船舶;不从事捕捞作业的其他海洋生物资源加工船或其设计特点和运行方式类似上述的其他船舶,根据主管机关的意见可列入此类范围)。 1.3.6 近海供应船:系指主要从事运送物品、材料和设备至近海设施上,并在船前部设计有居住处所和桥楼、在船后部有为在海上装卸货物的露天装货甲板的船舶。 1.3.7海上移动式钻井平台(MODU)或平台:系指能够为勘探或开采诸如液态或气态碳氢化合物、 硫或盐等海床之下的资源而从事钻井作业的海上建筑物: .1柱稳式平台:系指用立柱将主甲板连接到水下壳体或沉箱上的平台; .2浮式平台:系指有单体或多体结构船型或驳船型排水船体、用于漂浮状态下作业的平台; .3自升式平台:系指有活动桩腿能够将其壳体升至海面以上的平台。 1.3.8动力支承船(DSC):系指能够在水面或超出水面航行的船舶,其具有的特性与适用现行国际公约,特别是SOLAS公约和LL载重线公约的普通排水量船舶大不相同,以致要采取其他措施来获得同等安 350

惯性矩总结含常用惯性矩公式

惯性矩总结含常用惯性矩 公式 The Standardization Office was revised on the afternoon of December 13, 2020

惯性矩是一个物理量,通常被用作描述一个物体抵抗扭动,扭转的能力。惯性矩的国际单位为(m^4)。 工程构件典型截面几何性质的计算 2.1面积矩 1.面积矩的定义 图2-2.1任意截面的几何图形 如图2-31所示为一任意截面的几何图形(以下简称图形)。定义:积分和 分别定义为该图形对z轴和y轴的面积矩或静矩,用符号S z和S y,来表示,如式(2—2.1) (2—2.1)面积矩的数值可正、可负,也可为零。面积矩的量纲是长度的三次方,其常用单位为m3或mm3。 2.面积矩与形心 平面图形的形心坐标公式如式(2—2.2) (2—2.2) 或改写成,如式(2—2.3)

(2—2.3) 面积矩的几何意义:图形的形心相对于指定的坐标轴之间距离的远近程度。图形形心相对于某一坐标距离愈远,对该轴的面积矩绝对值愈大。 图形对通过其形心的轴的面积矩等于零;反之,图形对某一轴的面积矩等于零,该轴一定通过图形形心。 3.组合截面面积矩和形心的计算 组合截面对某一轴的面积矩等于其各简单图形对该轴面积矩的代数和。如式(2—2.4) (2—2.4) 式中,A和y i、z i分别代表各简单图形的面积和形心坐标。组合平面图形的形心位置由式(2—2.5)确定。 (2—2.5) 2.2极惯性矩、惯性矩和惯性积 1.极惯性矩 任意平面图形如图2-31所示,其面积为A。定义:积分称为图形对O点的极惯性矩,用符号I P,表示,如式(2—2.6) (2—2.6) 极惯性矩是相对于指定的点而言的,即同一图形对不同的点的极惯性矩一般是不同的。极惯性矩恒为正,其量纲是长度的4次方,常用单位为m4或mm4。

惯性矩总结(含常用惯性矩公式)

惯性矩是一个物理量,通常被用作描述一个物体抵抗扭动,扭转的能力惯性矩的国际单位为(m%)。 工程构件典型截面几何性质的计算 2.1面积矩 1?面积矩的定义 别定义为该图形对z轴和y轴的面积矩或静矩,用符号和,来表示,如式(2 —2.1) (2 — 2.1) 面积矩的数值可正、可负,也可为零。面积矩的量纲是长度的三次方,其常用单 3 3 位为m或o 2?面积矩与形心 平面图形的形心坐标公式如式(2 —2.2) 4 =— 」」(2 — 2.2) 或改写成,如式(2 —2.3) 亀二5 —2.3) 面积矩的几何意义:图形的形心相对于指定的坐标轴之间距离的远近程度。图形 如图2-31所示为一任意截面的几何图形 (以下简称图形)。定义:积分和I二‘分 图2-2.1任意截面的几何图形

形心相对于某一坐标距离愈远,对该轴的面积矩绝对值愈大。 图形对通过其形心的轴的面积矩等于零;反之,图形对某一轴的面积矩等于零, 该轴一定通过图形形心。 3?组合截面面积矩和形心的计算 组合截面对某一轴的面积矩等于其各简单图形对该轴面积矩的代数和。如式(2 — 2.4) = S5,ii , (2 — 2.4) 式中,A和、分别代表各简单图形的面积和形心坐标。组合平面图形的形心位置由 式(2 —2.5)确定。 占1西+舄阳+?* ? +4兀二名1 丿】+缶+…+哉V V" Ay =岀了】十爲丁2十-?.十爲丿击 = 台 2.2极惯性矩、惯性矩和惯性积 1 ?极惯性矩 任意平面图形如图2-31所示,其面积为A。定义:积分「川」称为图形对0点的 极惯性矩,用符号,表示,如式(2 —2.6) (2 — 2.6) 极惯性矩是相对于指定的点而言的,即同一图形对不同的点的极惯性矩一般是不同的。极惯性矩恒为正,其量纲是长度的4次方,常用单位为m或4。 (1)圆截面对其圆心的极惯性矩,如式(2 —7) --(2 — 2.7) (2)对于外径为D内径为d的空心圆截面对圆心的极惯性矩,如式(2 —2.8) 范(2 — 2.8) 式中,二二为空心圆截面内、外径的比值 (2 —2.5)

船舶初稳性高度计算

船舶初稳性高度计算 船舶初稳性高度计算 1.船舶装载后的初稳性高度GM: GM=KM--KG {KM--为船舶横稳心距基线高度(米) KG--为船舶装载后重心距基线高(米) KM--可由船舶资料静水曲线图按平均吃水查得} 2.舶装载后重心距基线高KG: KG=( DZg+∑PiZi) /Δ { D--空船重量(吨);查船舶资料得; Zg--空船重心距基线高度(米);查船舶资料得; Pi--包括船舶常数,货物总重量,船员及供应品,备品,油水重量(吨);Zi--载荷Pi的重心高度(米); ?--船舶排水量(吨);} 3.自由液面的影响δGMf : δGMf=∑ρix/Δ {ρ—舱内液体的密度(克/立方米) ix---液舱内自由液面对液面中心轴的面积横矩(M4)} 4.经自由液面修正后的初稳心高度GoM: GoM=KM--KG--δGMf 5.船舶横摇周期T?: T?=0.58f√(B+4KG)/GoM {0.58为常数; f—可由B/d查出; B—船舶型宽; d—船舶装载吃水;}

6.例题:某船装载货物后Δ=18500吨,全船垂向重量力矩∑PiZi= 143375吨.米,现有1号燃油舱自由液面对液面中心轴的面积横矩∑ρix= 58.7四次方米。淡水舱自由液面对液面中心轴的面积横矩∑ρix= 491.1四次方米。两舱均未装满,其中燃油密度ρ=0.97克/立方厘米。试计算经自由液面修正后的初稳性高度GoM(根据Δ查得KM=8.58米)。 解:1)求KG KG=( DZg+∑PiZi) /Δ=143375/18500=7.75米 2)计算自由液面影响的减小值δGMf : δGMf=∑ρix/Δ=(0.97*58.7+1.0*491.1)/18500 =0.03米 3)计算 GoM: GoM=KM—KG--δGMf =8.58-7.75-0.03 =0.80米

惯性矩的定义和计算公式

惯性矩的定义 ●区域惯性矩-典型截面I ●区域惯性矩,一个区域的惯性矩或典型截面轮廓的第二个区域惯性矩 ●面积惯性矩或面积惯性矩-也称为面积二阶矩-I,是用于预测梁的挠度、弯曲和 应力的形状特性。 ●面积惯性矩-英制单位 ●inches4 ●面积惯性矩-公制单位 ●mm4 ●cm4 ●m4 ●单位转换 ● 1 cm4 = 10-8 m4 = 104 mm4 ● 1 in4 = 4.16x105 mm4 = 41.6 cm4 ●示例-惯性单位面积矩之间的转换 ●9240 cm4 can be converted to mm4 by multiplying with 104 ●(9240 cm4) 104 = 9.24 107 mm4 ●区域惯性矩(一个区域或第二个区域的惯性矩) ● ●绕x轴弯曲可表示为 ●I x = ∫ y2 dA (1) ●其中

●I x =与x轴相关的惯性矩面积(m4, mm4, inches4)●y =从x轴到元件dA的垂直距离(m, mm, inches)●dA =基元面积(m2, mm2, inches2) ●绕y轴弯曲的惯性矩可以表示为 ●I y = ∫ x2 dA (2) ●其中 ●I x =与y轴相关的惯性矩面积(m4, mm4, inches4)●x =从轴y到元件dA的垂直距离(m, mm, inches)●典型截面I的面积惯性矩 ●典型截面II的面积惯性矩 ●实心方形截面 ● ●实心方形截面的面积惯性矩可计算为 ●I x = a4 / 12 (2) ●其中 ● a = 边长(mm, m, in..) ●I y = a4 / 12 (2b) ●实心矩形截面

材料力学--计算机计算惯性矩和抗弯截面系数方法(精)

材料力学—计算机计算惯性矩和抗弯截面系数方法 1 在AutoCAD中绘制需要计算的截面图形或导入图形,如图1所示。 图1 2 创建面域 面域创建的方式主要有两种: (1)reg命令。输入reg并回车或在菜单栏点选“绘图”→“面域”,按提示选择需要计算的截面图形线条;右键或Enter键确定。会建立两个面域(外围边框和内部边框); (2)bo命令。在命令行输入bo并回车或在菜单栏点选“绘图”→“边界”,弹出如图2所示“边界创建”对话框。选择创建“对象类型”为“面域”,勾选“孤岛检测”,点击“拾取点”返回绘图界面,用十字光标拾取截面图形内部任意一点,右键或Enter键确定。也会建立两个面域(外围边框和内部边框)。 图2 3 面域差集计算 将建立的两个面域进行差集计算。在命令行输入subtract并回车或在菜单栏点选“修改”→“实体编辑”→“差集”,按提示选择要从中减去的实体或面域(外围边框)并回车,再选择要减去的实体或面域(内部边框)并回车,会将两个面域合成一个整体面域。 4 查询计算 (1)在命令行输入massprop 并回车或在菜单中选择“工具”→“查询”→“面积/质量特性”; (2)选择刚创建的面域并回车,弹出如图3所示的文本对话框; 图

3 (3)得到截面面积=37.7mm2,截面形心坐标为(88.11,211.48)。截面惯性矩、惯性积、主力矩。 5 对截面形心坐标轴的惯性矩、惯性半径、抗弯截面系数查询计算 (1)从主力矩与质心的X-Y方向可以得出: Ix=188.5mm4, Iy=188.5mm4 (2)利用刚得到的截面形心坐标为(88.11,211.48),命令行输入ucs→(88.11,211.48),将用户ucs坐标原点移动到截面形心,如图4; 图4 (3)命令行输入massprop并回车,弹出如图5所示的文本对话框; 图5 (4)可得:截面对形心轴的惯性矩Ix=188.5mm4、Iy=188.5mm4,惯性积Ixy=0(由图5可知,形心轴y轴为截面图形的对称轴,所以截面图形对形心轴x、y轴的惯性积恒等于零)。 由图5可知,截面图形边界框值为x:-4—4、y:-4—4, 抗弯截面系数计算如下: Wx1=Ix/ymax=188.5/4=47.13mm3 Wx2= Ix/ymin=188.5/4=47.13mm3 Wy1= Iy/xmax=188.5/4=47.13mm3 Wy2= Iy/ymin=188.5/4=47.13mm3 6 相同的计算方法就可以计算各种复杂截面的零件的惯性矩和抗弯截面系数,只是在计算中要注意截面面域的选择要正确,截面差集要准确。

相关文档
最新文档