遗传学分类及其三大定律

合集下载

简述遗传学三大定律的实质以及与减数分裂的关系

简述遗传学三大定律的实质以及与减数分裂的关系

简述遗传学三大定律的实质以及与减数分裂的关系
遗传学三大定律分别是孟德尔定律、染色体理论和基因互补定律。

这三条定律揭示了遗传现象中的本质规律。

孟德尔定律揭示了遗传物质的离散性,证明了遗传物质的分离遵循着一定的规律性。

染色体理论揭示了遗传物质存在于染色体上,遗传物质的分离和组合是通过染色体的分离和组合来完成的。

基因互补定律则揭示了某些基因之间的相互作用,不同基因之间的相互作用会影响到个体的表现型。

减数分裂是生殖细胞形成过程中的一种特殊分裂方式。

在减数分裂中,染色体的复制和分裂过程都只发生一次,最终形成四个单倍体的细胞。

减数分裂是遗传物质在生殖细胞中重新组合的过程,它保证了每个生殖细胞都具有不同的基因组合。

遗传学三大定律的实质都与减数分裂密切相关,孟德尔定律和基因互补定律揭示了基因在减数分裂过程中的行为规律,染色体理论则揭示了染色体在减数分裂中的行为规律。

遗传学三大规律总结

遗传学三大规律总结

遗传学三大规律总结遗传学是研究遗传信息传递和遗传变异的科学。

遗传学三大规律是指孟德尔的遗传规律、染色体学的遗传规律和分子遗传学的遗传规律。

下面将详细介绍这三大规律。

一、孟德尔的遗传规律孟德尔的遗传规律是遗传学的基础,他在豌豆杂交实验中发现了两性生殖体的遗传现象,并总结出以下三个规律:1.性状表现规律:孟德尔通过杂交实验发现,杂交(异交)后代的性状并非介于父本和母本之间,而是呈现一种明确的表型。

这表明个体的性状是由基因决定的,在杂交过程中,两个纯合亲本所带的基因以一定的比例参与了后代的表型表达。

2.隔离规律:孟德尔提出了性状分离的规律,即在杂交后代中,携带着两种性状的纯合基因会在有性繁殖中分离,而每个个体又只能将一种性状遗传给后代,即每个个体的两个基因互相独立地在生殖细胞中分配给后代。

这种分离规律为后来的基因分离定律奠定了基础。

3.独立规律:孟德尔通过多个杂交实验发现,不同基因对于性状的遗传是独立的,互不影响。

他称这些基因为“遗传因子”,并提出了基因的概念。

二、染色体学的遗传规律染色体学的遗传规律是在孟德尔的遗传规律基础上,随着染色体学的发展而形成的。

它包括以下两个规律:1. 染色体分离规律:根据Mitosis和Meiosis的观察和实验证明,染色体在有丝分裂和减数分裂过程中具有固定的数目和形态。

在减数分裂的第一次分裂中,染色体以同源染色体为单位发生分离,确保每个子细胞获得一对染色体。

这一规律称为李约瑟定律。

2.染色体间的基因连锁和自由组合规律:通过观察多个基因同时杂交所得的后代,发现染色体上的基因会因为染色体间的互联而不能独立分离,成为基因连锁。

然而,基因连锁并非永久的,基因之间可以通过染色体的重组而发生自由组合。

这一规律由摩尔根提出,也称为染色体交换规律。

三、分子遗传学的遗传规律分子遗传学的遗传规律是在分子生物学和基因工程的发展中建立起来的,主要涉及到基因和DNA的结构和功能。

1.DNA的复制与遗传稳定性规律:通过研究DNA的复制过程,发现DNA复制是基因遗传的基础,也是细胞分裂的基础。

遗传学的三大定律知识点

遗传学的三大定律知识点

遗传学的三大定律知识点一、知识概述《遗传学的三大定律》①基本定义:- 分离定律:简单说就是控制生物性状的一对等位基因在形成配子时会彼此分离,然后进入不同的配子。

比如,猫的毛色有白色和黑色基因,在繁殖产生配子(类似精子和卵子)时,白色基因和黑色基因会分开。

- 自由组合定律:当有两对或两对以上相对独立的等位基因时,在形成配子时,等位基因彼此分离,同时非等位基因可以自由组合。

例如,我们同时考虑豌豆的高矮和种子的圆皱这两对性状。

- 连锁与交换定律:处于同一条染色体上的基因大多会连在一起,并作为一个整体传递给后代。

但有时候同源染色体之间会发生染色体片段的交换,从而使基因重新组合。

就像是一排紧紧相连的小球串在两根绳子之间,偶尔两根绳子之间会交换一部分连着小球的片段。

②重要程度:在遗传学中是基石般的存在。

这三大定律就像是密码,帮我们理解生物的性状是怎样从亲代传到子代的,为什么生物会有这么多不同的形态等。

③前置知识:得了解生物的基本结构,知道基因大概是什么东西,还有雌雄配子结合这种最基础的生殖知识。

要是连基因在哪都不清楚,就很难理解遗传学定律了。

④应用价值:育种上大大有用。

比如说培育高产抗病的农作物品种,就可以利用这些定律研究农作物的性状遗传。

在医学上也有用,如果一种遗传病是符合相关定律的遗传模式,就能根据家族成员的发病情况来预测后代患病的概率。

二、知识体系①知识图谱:这三大定律是遗传学的核心内容,在学习遗传学的步步深入过程中,很多知识点都是从这三大定律展开或者以它们为基础进行研究的。

②关联知识:与基因结构、孟德尔豌豆实验、基因频率还有细胞的减数分裂等知识点都有联系。

像减数分裂过程产生配子这个环节就和三大定律紧密相关,因为这些定律其实就是对生殖细胞形成过程中基因行为的总结。

③重难点分析:- 重点:掌握定律里基因的行为模式、比例关系还有不同定律的适用范围等。

- 难点:对于连锁与交换定律,理解它的机制比较难。

因为染色体上的基因连锁和交换不是那么直观,不像分离定律中对等位基因分离看得那么清楚。

遗传学三大定律

遗传学三大定律

3. 有丝分裂中,姐妹染色单体分开;减数分裂第一 次同源染色体配对并分离,减数分裂第二次姐妹染 色单体分离 4. 有丝分裂的结果:亲、子代细胞染色体数目相同; 经减数分裂,子代细胞只有亲代细胞染色体数目的 一半
⑴ 分离定律
Law of Segregation
• 在减数分裂过 程中,同源染 色体分离。
Mendel遗传学第二定律:自由组合定律
综右图,其遗传型为3n=32 =9种(1:1:1:1:2:2:2:2:4) (A+a)2=A2+2Aa+a2 (B+b) 2=B2+2Bb+b2
A2B2+2AaB2+a2 B2+2A2Bb+4AaBb+2a2Bb+A2b2+2Aab2+a2b2
其表现型为2n=22=4种(9:3:3:1) 用圆形黄色的品种和皱形绿色的品种共杂交 15个植株, 产生了 556个种子,其中: 315个圆形黄色(315/ 32=9.8) 所有的种子 101个皱形黄色(101/32=3.1) 次年都种下 108个圆形绿色(108/32=3.3) 了 32个皱形绿色(32/32=1) 在 315 个圆黄的种子中有 11 个没有产生植株,并且 3 个植株没有形成种子。在其余的里面: 38个有圆黄的 种子(AABB);65个圆黄和绿色的种子(AABb); 60个 圆黄和皱黄的种子( AaBB) ; 138 个圆黄和绿,皱黄和 绿的种子(AaBb)。 在101个皱黄的种子中,96株形 成 植 株 产 生 了 种 子 , 其 中 28 株 只 有 皱 黄 的 种 子 (aaBB);68株有皱黄和绿的种子 (aaBb)。 在 108个圆绿 的种子中,102株形成的植株结了子,其中 35株有圆绿 的种子( AAbb) ; 67 株有圆和皱绿的种子( Aabb) 。 在皱绿的30个种子中,长成了30个植株,只结皱绿种子; 它们保持了(aabb)的稳定性。

遗传的三大基本规律的具体内容

遗传的三大基本规律的具体内容

遗传的三大基本规律的具体内容
1、分离规律
分离规律是遗传学中最基本的一个规律。

它从本质上阐明了控制生物性状的遗传物质是以自成单位的基因存在的。

基因作为遗传单位在体细胞中是成双的,它在遗传上具有遗传学三大基本定律高度的独立性,因此,在减数分裂的配子形成过程中,成对的基因在杂种细胞中能够彼此互不干扰,独立分离,通过基因重组在子代继续表现各自的作用。

这一规律从理论上说明了生物界由于杂交和分离所出现的变异的普遍性。

2、独立分配规律
独立分配规律(又称自由组合定律) 该定律是在分离规律基础上,进一自由组合规律--生物遗传学三大基本定律之一步揭示了多对基因间自由组合的关系,解释了不同基因的独立分配是自然界生物发生变异的重要来源之一。

3、连锁遗传规律
连锁遗传规律1900年孟德尔遗传规律被重新发现后,人们以更多的动植物为材料进行杂交试验,其中属于两对性状遗传的结果,有的符合独立分配定律,有的不符。

摩尔根以果蝇为试验材料进行研究,最后确认所谓不符合独立遗传规律的一些例证,实际上不属独立遗传,而属另一类遗传,即连锁遗传。

于是继孟德尔的两条遗传规律之后,连锁遗传成为遗传学中的第三个遗传规律。

所谓连锁遗传定律,就是
原来为同一亲本所具有的两个性状,在F2中常常有连系在一起遗传的倾向,这种现象称为连锁遗传。

简述遗传的三大定律

简述遗传的三大定律

遗传的三大定律引言遗传学是关于遗传现象和遗传规律的研究,它揭示了物种多样性的本质和机制。

遗传学的发展离不开三大定律,它们为我们理解物种的遗传规律提供了重要的指导。

本文将详细介绍遗传的三大定律,并对其原理和应用进行深入探讨。

第一定律:孟德尔的分离定律1.1 孟德尔的实验约翰·格雷戈尔·孟德尔是遗传学的奠基人之一,他通过对豌豆花的杂交实验,总结出了一系列重要的规律,被称为孟德尔的分离定律。

他发现,豌豆花的某些性状并不是由简单的混合产生的,而是通过遗传因子的分离和重新组合来决定的。

1.2 分离定律的原理孟德尔的分离定律包括两个方面的内容:一是同一物种每个个体都有一对遗传因子,分别来自父母;二是遗传因子的分离在个体的生殖过程中是随机进行的,每个个体只能传递给下一代的一个因子。

这些因子决定了个体的性状表现。

1.3 分离定律的应用孟德尔的分离定律为遗传学的研究提供了基本的方法和思路。

通过对基因的遗传、变异和表达进行研究,可以揭示物种的遗传机制和进化规律。

分离定律也被广泛应用于育种和基因工程等领域,为选择性育种和基因编辑等技术提供了理论支持。

第二定律:孟德尔的自由组合定律2.1 自由组合定律的发现孟德尔在杂交实验中发现,豌豆花的不同性状是相互独立的,即一个性状的表现不受其他性状的影响。

这一规律被称为孟德尔的自由组合定律,强调不同基因座上的基因在遗传中是独立进行组合的。

2.2 自由组合定律的原理孟德尔的自由组合定律表明,在有性繁殖中,每个个体的配子的组合是随机的,每个基因座上的基因会以1:1的比例组合在不同的配子中。

这是由于在减数分裂的过程中,染色体的组合是随机的,使得不同基因座上的基因可以自由组合。

2.3 自由组合定律的应用自由组合定律的应用可以帮助我们理解物种的遗传变异和表型多样性的形成。

通过对基因座的研究,可以揭示不同基因之间的相互作用和联锁规律,为物种进化的研究提供重要依据。

此外,自由组合定律也为遗传育种和基因组选择等领域提供了指导。

三大遗传定律及其细胞学基础

三大遗传定律及其细胞学基础

三大遗传定律是指孟德尔遗传定律,包括以下三个方面:
定律一:单因素遗传规律,也称分离规律。

孟德尔通过对豌豆花的杂交实验,发现性状表现会按照一定比例分离出现在子代中。

这个比例是3:1。

它的细胞学基础是在有丝分裂时,染色体成对分离,每个子细胞获得一份染色体。

定律二:双因素遗传规律,也称自由组合规律。

孟德尔通过对豌豆花的杂交实验,发现两个性状会同时遗传,而不是分别遗传。

它的细胞学基础是在减数分裂过程中,染色体成对分离,每个子细胞获得一份染色体,因此可以随意组合。

定律三:连锁遗传规律,也称联锁规律。

这个定律是由摩尔根通过对果蝇的杂交实验发现的。

他发现,某些基因是联锁的,它们位于同一条染色体上,因此有时会一起遗传。

它的细胞学基础是染色体在减数分裂过程中并不总是成对分离,有时会发生染色体互换,导致基因的连锁性发生变化。

摩根提出的遗传学三大定律

摩根提出的遗传学三大定律

摩根提出的遗传学三大定律摩根(Thomas Hunt Morgan)是20世纪初期最重要的遗传学家之一,他在果蝇遗传学研究中提出了三大定律,为遗传学的发展奠定了基础。

本文将介绍摩根提出的遗传学三大定律,并探讨其对遗传学的贡献。

第一定律:染色体的连锁遗传摩根通过研究果蝇的眼色突变体,发现一些性状总是同时遗传给后代。

他发现这些性状是位于同一染色体上的遗传因子所致,这就是连锁遗传。

摩根的实验证实了遗传物质位于染色体上的假设,为后来的遗传学研究奠定了基础。

他还通过测定连锁性与染色体的距离,提出了连锁图谱的概念,使人们能够更好地了解遗传物质的分布情况。

第二定律:基因的自由组合摩根发现,在染色体的连锁遗传中,虽然遗传物质位于同一染色体上,但并非所有基因都会同时遗传给后代。

他通过交叉配对实验证明,染色体上的基因可以重新组合,产生新的基因组合。

这个发现揭示了基因之间的自由组合性,为遗传变异和进化提供了理论依据。

摩根的实验结果还表明,基因的自由组合并非完全随机,而是受到染色体的连锁性以及交叉互换的影响。

第三定律:染色体的随机分离摩根通过进一步的实验研究发现,染色体在减数分裂过程中会随机分离,即每对同源染色体在分裂时会分到不同的子细胞中。

这个发现揭示了遗传物质的随机性分布,为遗传学的定量研究提供了基础。

摩根还通过实验证明了染色体的分离是独立发生的,即染色体的分离是互相独立的事件。

这个发现为后来的遗传连锁分析提供了重要依据。

摩根提出的遗传学三大定律对遗传学的发展产生了重要影响。

它们不仅为遗传学提供了理论基础,还为后来的遗传学研究提供了重要方法。

摩根的研究成果使人们对遗传规律的认识更加深入,为遗传学的进一步发展奠定了基础。

总结:摩根提出的遗传学三大定律包括染色体的连锁遗传、基因的自由组合和染色体的随机分离。

这些定律为遗传学的发展提供了重要的理论基础和实验方法。

通过研究果蝇,摩根揭示了遗传物质位于染色体上的假设,并发现了基因的自由组合性和染色体的随机分离。

遗传学三大基本定律[孟德尔和摩尔根提出的定律]

遗传学三大基本定律[孟德尔和摩尔根提出的定律]

遗传学三大基本定律[孟德尔和摩尔根提出的定律]遗传学三大基本定律孟德尔和摩尔根提出的定律遗传学三大基本定律是孟德尔、摩尔根于1856-1864年期间提出来的。

三大基本定律分别是基因分离定律、基因自由组合定律、基因的连锁和交换定律。

[2]基本信息中文名遗传学三大基本定律外文名Three basic laws of genetics提出者孟德尔摩尔根分离定律内容及阐释遗传学三大基本定律在杂合子细胞中,位于一对同源染色体上的等位基因,具有一定的独立性;当细胞进行减数分裂时,等位基因会随着同源染色体的分离而分开,分别进入两个配子当中,独立地随配子遗传给后代。

分离规律是遗传学中最基本的一个规律。

它从本质上阐明了控制生物性状的遗传物质是以自成单位的基因存在的。

遗传学三大基本定律基因作为遗传单位在体细胞中是成双的,它在遗传上具有高度的独立性,因此,在减数分裂的配子形成过程中,成对的基因在杂种细胞中能够彼此互不干扰,独立分离,通过基因重组在子代继续表现各自的作用。

这一规律从理论上说明了生物界由于杂交和分离所出现的变异的普遍性。

以孟德尔的豌豆杂交试验为例(如右图),可见,红花与白花杂交所产生的F1植株,全开红花。

在F2群体中出现了开红花和开白花两类,比例3∶1。

孟德尔曾反过来做白花为花的杂交,结果完全一致,这说明F1 和F2的性状表现不受亲本组合方式的影响,父本性状和母本性状在其后代中还将是性状分离的。

3∶1的比例为性状分离比。

[3]若将分离定律用基因型表示,以A代表显性性状,a代表隐性性状,则如右图,发现子二代基因型占比为AA∶Aa∶aa=1∶2∶1。

发现人奥地利生物学家孟德尔遗传学说奠基人孟德尔(Gregor Johann Mendel)于1856-1864年间作为假说提出并初步验证。

适用范围1.有性生殖生物的性状遗传2.真核生物的性状遗传3.细胞核遗传4.一个同源染色体上的一对等位基因限制因素基因分离定律的F1和F2要表现特定的分离比应具备以下条件:1.所研究的每一对相对性状只受一对等基因控制,而且等位基因要完全显性。

遗传学三大规律总结课件

遗传学三大规律总结课件

减数分裂时发生
多个等位基因组合
在自由组合定律中,多个等位基因可 以自由组合,形成多种基因型组合的 配子。
基因自由组合定律在减数分裂过程中 发生,随着非同源染色体的分离,非 等位基因也自由组合。
适用范围
01
02
03
真核生物
基因自由组合定律适用于 真核生物,包括动植物和 人类。
非同源染色体
定律适用于位于非同源染 色体上的基因,这些基因 在减数分裂时会发生自由 组合。
实质的比较
基因分离定律的实质是等位基因随配子的分离,基因自由组合定律的实质是非等位基因随配子的自由组 合,连锁定律的实质是等位基因和连锁基因随配子的连锁遗传。
05
三大定律在遗传学研究中的 应用
基因定位与作图
基因定位
通过遗传学三大定律,科学家们能够 确定基因在染色体上的位置,这对于 理解基因功能和疾病关联至关重要。
传学规律的理解。
表观遗传学与疾病研究
表观遗传学在疾病研究中的应用逐渐广泛,例如在肿瘤、神经性疾病等领域。研究表观 遗传学机制有助于发现新的疾病标记和药物靶点,为疾病诊断和治疗提供新的思路。
基因编辑技术的挑战与机遇
基因编辑技术的挑战
基因编辑技术虽然带来了巨大的机遇,但也面临着伦理、法律和技术上的挑战。如何合理、合法、安全地应用基 因编辑技术,避免潜在的风险和负面影响,是需要深入思考和解决的问题。
基因组编辑技术
基因组编辑技术如CRISPR-Cas9等的 发展,使得科学家能够更加精确地编 辑基因,纠正遗传缺陷,治疗遗传性 疾病,为遗传学应用开辟了新的途径。
表观遗传学的影响
表观遗传学研究
表观遗传学研究揭示了基因表达的调控机制,包括DNA甲基化、组蛋白修饰等。这些 机制可以影响基因的表达,进而影响生物体的性状。表观遗传学的发展将深化我们对遗

摩根提出的遗传学三大定律

摩根提出的遗传学三大定律

摩根提出的遗传学三大定律摩根是20世纪初期的一位著名遗传学家,他在研究果蝇遗传时提出了遗传学三大定律,这些定律对后来的遗传学研究产生了深远的影响。

本文将详细介绍摩根提出的三大定律,并解释其在遗传学中的重要性。

一、染色体的连锁遗传定律摩根通过研究果蝇的遗传变异,发现了染色体的连锁遗传现象。

他发现一些基因在染色体上的位置非常接近,因此它们很容易同时遗传给后代。

这一发现揭示了基因在染色体上的排列和分布规律,为后来的遗传学研究奠定了基础。

染色体的连锁遗传定律不仅揭示了基因在染色体上的空间位置关系,还有助于解释为什么某些基因总是同时遗传给后代。

通过研究连锁基因,科学家可以推断它们在染色体上的相对位置,从而推测其他基因的位置,为遗传图谱的绘制提供了重要的线索。

二、基因重组的定律摩根的第二个定律是关于基因重组的。

他发现,染色体在有丝分裂和减数分裂过程中会发生交叉互换,导致基因的重组。

这一发现解释了为什么即使父母有相同的基因,子代也可能表现出不同的特征。

基因重组是遗传变异的主要原因之一,它增加了遗传多样性,有利于物种的适应和进化。

基因重组的定律在遗传学研究中具有重要的意义。

通过研究基因重组的频率和模式,科学家可以推断基因在染色体上的相对位置,并进一步了解不同基因之间的遗传关系。

这为遗传学家在育种和疾病研究中提供了重要的参考。

三、基因与染色体的性别遗传定律摩根的第三个定律是关于性别遗传的。

他发现,性别决定基因位于性染色体上,不同性别的个体在性染色体上携带的基因不同。

这一发现揭示了性别在遗传中的重要作用,也为后来的性别遗传研究提供了重要线索。

基因与染色体的性别遗传定律对于人类和其他生物的繁殖和性别发育具有重要意义。

它解释了为什么男性和女性在某些特征上有明显的差异,并且为性别相关疾病的研究提供了重要的指导。

摩根提出的遗传学三大定律包括染色体的连锁遗传定律、基因重组的定律以及基因与染色体的性别遗传定律。

这些定律为遗传学的研究提供了重要的理论基础,推动了遗传学的发展。

孟德尔三大定律

孟德尔三大定律

孟德尔三大定律孟德尔三大定律是遗传学中的基础定律,由奥地利的生物学家格雷戈尔·约翰·孟德尔在19世纪中叶发现并提出。

这三大定律是指遗传性状的遗传规律,即遗传因子的分离、独立遗传和基因组合。

这些定律对于理解生物遗传学的基本原理至关重要,对于现代生物学和农业科学等领域的发展产生了深远的影响。

第一定律:因子分离定律孟德尔的第一定律是因子分离定律,也称为分离定律。

这个定律说明了当两个纯种品种杂交时,它们的基因会分离并以随机的方式组合在子代中。

这意味着每个后代都会从父母那里获得一个基因,这个基因可以是来自父亲或母亲,但不会同时来自两个亲本。

例如,当一个纯种豌豆植株与另一个纯种豌豆植株杂交时,它们的子代将会是杂合子,即它们有来自父母的不同基因。

这些杂合子的后代将会有一定的概率表现出来自祖先的不同特征。

第二定律:独立遗传定律孟德尔的第二定律是独立遗传定律,也称为随机分离定律。

这个定律说明了不同基因的遗传是相互独立的,即一个基因的表现不会影响另一个基因的表现。

这意味着子代的基因组合是随机的,而不是受到亲本特征的限制。

例如,当一个杂合子豌豆植株与另一个杂合子豌豆植株杂交时,它们的子代将会有四个不同的基因,这些基因的组合方式是随机的。

这种随机组合使得孟德尔的遗传规律更为复杂,但也更为精确。

第三定律:基因组合定律孟德尔的第三定律是基因组合定律,也称为连锁不平衡定律。

这个定律说明了不同基因之间的相互作用,即某些基因可能会一起遗传,而不是独立遗传。

这种连锁不平衡使得某些特征的表现更为复杂,因为它们受到多个基因的影响。

例如,当豌豆植株的花色和种子形状这两个特征被遗传时,它们可能会同时被遗传,而不是独立遗传。

这是因为这两个特征可能存在于同一个染色体上,而染色体的重组会影响这些特征的表现。

总结孟德尔三大定律是遗传学中的基础定律,对于理解生物遗传学的基本原理至关重要。

这些定律包括因子分离定律、独立遗传定律和基因组合定律。

遗传学三大定律

遗传学三大定律

遗传型为3 n 表现型为2 n (A+a)2=A 2+2Aa+a2
紫花与白花纯种的杂交实验
杂种与隐性亲本的测交
Mendel按上述方法继续对7组相对性状分别进行杂交实验、统计了 子二代植株显性与隐性性状之间的比例,结果都十分相似,总体上都 体现了3:1的规律。
图示:豌豆7组相对性状分别杂交实验结果
⑵自由组合定律
Law of Independent Assortment
在减数分裂过程中,非同源染色体自由组合。
示一对染色体的遗传
(一对染色体可以形成两种类型的配子,四种类型的后代,即21× 21 =4)
⑶联锁互换定律
Law of crossing-over
同一条染色体上的基因是相互联锁的,组成一 个联锁群,随该染色体遗传而遗传。但在减数分裂中, 同源染色体上部分等位基因随同源染色体之间的互换而 改变原有的联锁关系,使同源染色体上的等位基因产生 新的排列。
摩 尔 根 1928 年 8 月 发 表 的 基 因 论 ( The Theory of the gene )奠定了细胞遗传学的基础。摩尔根等通过果蝇突变型 的发现与杂交及相关的细胞学的研究证明: 1、孟德尔的“遗传因子”即基因位于染色体上,染色体的 成对性是孟德尔因子成对性的细胞学基础。 2 、决定同一性状的“因子”位于同对染色体的同一位置 上,谓“等位基因”( allele ),它们在配子形成的减数分 裂中随成对染色体的分离而分离,是孟德尔分离定律的细胞 学基础;位于不同对染色体上基因,在配子形成的减数分裂 中,随不同对染色体之间的分离与组合而自由组合,是孟德 尔自由组合的细胞学基础。 3、基因在染色体上呈直线排列 4、位于同一对染色体上的基因组成一个连锁群,它们在上 下代遗传中随染色体的遗传而联合遗传,同时也随着减数分 裂中同对染色体之间的交换而交换,这就是摩尔根的基因连 锁与交换定律(morgan’s law of Lingage and crossingover)

三大遗传规律—分离定律、自由组合定律、连锁交换定律

三大遗传规律—分离定律、自由组合定律、连锁交换定律

F1代杂种
(Aa) Aa
Aa
隐性纯种
aa (aa)
a
a 配子
F1代杂种 (Aa)
Aa
高茎
aa
隐性纯种
(aa)
矮茎
子代 Aa
Aa
aa aa
显性杂种(1)比 隐性纯种(1)
(Aa)
(aa)
子代 Aa Aa aa aa
合计
64株其中: 高茎30株(1) 比 矮茎34株(1.13)
(Aa)
(aa)
五、孟德尔分离定律(law of segregation)
4n=42=16(如左图)子代个体数
第三节 孟德尔定律的重新发现
与基因在染色体上的“萨顿假说”
1900年三位科学家先后通过自己的豌豆杂交证实了孟德尔发现的颗粒遗传学说。1902年 萨顿(W.Sutton,1877-1916)完成了1种蝗虫的染色体研究,确认其体细胞的染色体为24条, 按形态可区分为12对;在生殖细胞的形成中成对染色体通过配对、再分开,每个配子只能得 到成对染色体的1条,不同对的染色体可以自由组合进入同一配子。1903年他在《遗传中的 染色体》一文中提出了基因在染色体上的“萨顿假说”——染色体携带基因,染色体在减数分 裂 中 的 行 为 符 合 孟 德 尔 的 “ 分 离 与 自 由 组 合 规 律 ” 。 1909 年 , 丹 麦 生 物 学 家 约 翰 逊 (W.L.Johannsen, 1857—1927)给孟德尔的“遗传因子”一词起了一个新名字,叫做“基因” (gene),并且提出了表现型(phenotype)和基因型(genotype)的概念。表现型是指生物 个体表现出来的性状,如豌豆的高茎和矮茎;与表现型有关的基因组成叫做基因型,如高茎 豌豆的基因型是DD或Dd,矮茎豌豆的基因型是dd。控制相对性状的基因,叫做等位基因 (allele),如D和d。

遗传三大定律(传统)

遗传三大定律(传统)

适用范围
01
适用于真核生物的遗传规律,特 别是哺乳动物和植物。
02
适用于染色体数目和结构相对稳 定的物种。
实验证据
通过染色体显带技术和荧光原位杂交技术观察染色体的结构和基因的排列顺序,证 实基因连锁和交换的存在。
通过果蝇杂交实验,发现不同性状之间存在连锁关系,并利用基因交换重组率进行 遗传定位。
基因连锁定律与基因自由组合定律相互补充
基因连锁定律主要解释了同源染色体上非等位基因的遗传规律,而基因自由组合定律则解释了非同源染色体上非 等位基因的遗传规律,两者共同构成了完整的遗传规律体系。
区别
基因分离定律描述的是同源染色 体上等位基因的遗传规律,而基 因连锁定律描述的是同源染色体
上非等位基因的遗传规律。
概念
在减数分裂过程中,等位基因随着同源染色体的分开而分离,而非等位基因则 自由组合。这意味着每个基因都有独立的概率被遗传给后代。
适用范围
适用于两对或两对以 上的等位基因遗传。
适用于真核生物的性 状遗传。
适用于杂合子自交。
实验证据
测交实验
通过将F1与隐性纯合子进行交配,观察后代的表现型及比例,验证基因自由组合定 律。如果比例符合预期的3:1或9:3:3:1,则证明基因自由组合定律成立。
适用范围
适用于真核生物的细胞核遗传, 包括常染色体遗传和伴性遗传。
适用于二倍体生物的细胞核遗传, 不适用于多倍体、单倍体和无性 繁殖系等特殊遗传类型的生物。
适用于等位基因的遗传,不适用 于多基因遗传和数量性状遗传。
实验证据
孟德尔豌豆杂交实验
通过豌豆杂交实验,孟德尔观察到红 花与白花、圆粒与皱粒等性状在子代 中的分离比为3:1,证明了基因分离定 律的存在。

遗传学三大定律

遗传学三大定律

遗传学三大定律在哲学中,科学最基础的概念就是公理。

这些公理又可以称为定律,它们一般都能揭示自然界的某种内在的联系。

那么,世界上最基本的定律是什么呢?其实,关于定律,有三个已经为人所熟知的概念,分别是“孟德尔定律”、“费希尔定律”和“摩尔根定律”。

今天,我就给大家讲解下这三个定律吧!一、著名的遗传学三大定律:孟德尔定律、费希尔定律和摩尔根定律。

这三个定律被称为遗传学中的三大定律。

可是,随着人们认识的深入,人们发现,这三个定律好像并不适用于所有生物,比如病毒就不遵循孟德尔定律。

正因此,后来诞生了另外两个新的更重要的定律——遗传信息假说和基因的自由组合定律。

二、孟德尔定律研究表明,孟德尔第一次成功地使用了显微镜观察植物的细胞,他证明了同源染色体的独立遗传性,提出了基因分离定律及基因位置的假设等等,推动了近代遗传学的迅速发展。

还有关于孟德尔遗传规律的进一步发现,譬如F基因型频率为1/4, G基因型频率为3/4,则杂交子代中F和G各占多少?答案是:各占50%,也就是说,父母各贡献一半。

而且,相对应的,若是父母双方每人贡献出1/2的一条染色体与小麦杂交,则产生的F基因型和G基因型的数量将分别达到1/16和1/32。

孟德尔定律只能作为亲本之间可以杂交的佐证,但却无法直接从事实中得出结论。

这里需要强调的是,遗传学家虽然普遍承认孟德尔定律具有普遍意义,但仍未完全确认它的实质。

还有关于孟德尔遗传规律的进一步发现,譬如F基因型频率为1/4, G基因型频率为3/4,则杂交子代中F和G各占多少?答案是:各占50%,也就是说,父母各贡献一半。

而且,相对应的,若是父母双方每人贡献出1/2的一条染色体与小麦杂交,则产生的F基因型和G基因型的数量将分别达到1/16和1/32。

孟德尔定律只能作为亲本之间可以杂交的佐证,但却无法直接从事实中得出结论。

这里需要强调的是,遗传学家虽然普遍承认孟德尔定律具有普遍意义,但仍未完全确认它的实质。

遗传学三大定律的内容及其细胞学基础

遗传学三大定律的内容及其细胞学基础

遗传学三大定律的内容及其细胞学基础
题目:
试说明遗传学三大定律的内容、其细胞学基础和各自的适用范围。

答案解析
答:分离定律是指二倍体生物产生配子时等位基因分开进入不同的配子中。

其细胞学基础是减数分裂时同源染色体的分离。

分离定律适用于解释同源染色体上等位基因的遗传行为。

独立分配规律是指二倍体生物产生配子时非同源染色体上的非等位基因自由组合,形成各种配子。

其细胞学基础是减数分裂时非同源染色体的自由组合。

它适用于解释非同源染色体上的非等位基因的遗传行为。

连锁遗传规律是指二倍体生物产生配子时同源染色体上的非等位基因往往联系在一起遗传,除非交换。

其细胞学基础是减数分裂时同源染色体的分离及非姊妹染色单体的交换。

它适用于解释同源染色体上的非等位基因的遗传行为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

其他人在搜的遗传学相关内容定律
3.1 内容 生殖细胞形成过程中,位于同一染色体上的基因是连锁在一起,
作为一个单位进行传递,称为连锁律。在生殖细胞形成时,一 对同源染色体上的不同对等位基因之间可以发生交换,称为交 换律或互换律。 3.2适用范围 位于同源染色体上的非等位基因。
二,遗传学分类
1.经典遗传学 2.生态遗传学 3.分子遗传学 4.群体遗传学 5.数量遗传学
遗传学分类及其三大定律
目录
一,遗传学三大定律分类 二,遗传学分类
一,遗传学三大定律分类
1.分离定律 2.自由组合定律 3.连锁互换定律
1.分离定律
1.1 分离规律是遗传学中最基本的一个规律。它从本质上阐明了控制生物性
状的遗传物质是以自成单位的基因存在的。基因作为遗传单位在体细胞中是 成双的,它在遗传上具有高度的独立性,因此,在减数分裂的配子形成过程 中,成对的基因在杂种细胞中能够彼此互不干扰,独立分离,通过基因重组 在子代继续表现各自的作用。这一规律从理论上说明了生物界由于杂交和分 离所出现的变异的普遍性。
3.所有后代都应处于比较一致的环境中,而且存活率相同。
4.供实验的群体要大、个体数量要足够多。
2.自由组合定律
2.1内容
非等位基因自由组合。这就是说,一对染色体上的等位基因与另一对染色体 上的等位基因的分离或组合是彼此间互不干扰的,各自独立地分配到配子中 去。
2.2适用范围
不连锁基因。对于除此以外的完全连锁、部分连锁以及所谓假连锁基因,遵 循连锁互换规律。
1.4 分离定律适用于下面四种情形。
1.有性生殖生物的性状遗传 2.真核生物的性状遗传
3.细胞核遗传
4.一对相对性状的遗传
1.5 限制因素
基因分离定律的F1和F2要表现特定的分离比应具备以下条件:
1.所研究的每一对相对性状只受一对等基因控制,而且等位基因要完全显性。
2.不同类型的雌、雄配子都能发育良好,且受精的机会均等。
1.2 遗传学说奠基人孟德尔(Gregor Johann Mendel)于1856-1864年间
作为假说提出并初步验证,作者或许是摩尔根。
1.3 在杂合子细胞中,位于一对同源染色体上的等位基因,具有一定的独立
性;当细胞进行减数分裂时,等位基因会随着同源染色体的分离而分开,分 别进入两个配子当中,独立地随配子遗传给后代。
相关文档
最新文档