线性代数 PPT课件
合集下载
线性代数教材讲解ppt课件
a11
A
a21
a12
a22
a1n a2n
am1 am1 amn
矩阵A的
m, n元
简记为
A Amn
aij
mn
aij
.
这m n个数称为A的元素,简称为元.
元素是实数的矩阵称为实矩阵,
元素是复数的矩阵称为复矩阵.
例如
1 9
0 6
3 4
5 3
是一个 2 4 实矩阵,
0
0
单位阵.
0 0 1
线性变换
x1 y1
cosx siny, sinx cosy.
对应 cos sin sin cos
这是一个以原点为中心
旋转 角的旋转变换.
Y P1 x1, y1
Px, y
O
X
三、小结
(1)矩阵的概念 m行n列的一个数表
a11
A
a21
a12
且对应元素相等,即
aij bij i 1,2,,m; j 1,2,,n,
则称矩阵 A与B相等,记作 A B.
(8)线性变换与矩阵之间关系:
例1 n个变量x1, x2,, xn与m个变量y1, y2,, ym之
间的关系式
y1 a11x1 a12 x2 a1n xn ,
y2 a21x1 a22 x2 a2n xn ,
13 2
6 2
2i 2
是一个
33
复矩阵,
2 2 2
1 2 是一个 3 1 矩阵,
4
2 3 5 9
4
是一个 1 4 矩阵,
是一个 11 矩阵.
矩阵与行列式有本质的区别, 行列式是一个算式, 其行数和列数相同,一个数字行列式经过计算 可求得其值, 而矩阵仅仅是一个数表, 它的行数和 列数可以不同.
线性代数课件PPT
线性代数课件
目录 CONTENT
• 线性代数简介 • 线性方程组 • 向量与矩阵 • 特征值与特征向量 • 行列式与矩阵的逆 • 线性变换与空间几何
01
线性代数简介
线性代数的定义和重要性
1
线性代数是数学的一个重要分支,主要研究线性 方程组、向量空间、矩阵等对象和性质。
2
线性代数在科学、工程、技术等领域有着广泛的 应用,如物理、计算机科学、经济学等。
逆矩阵来求解特征多项式和特征向量等。
06
线性变换与空间几何
线性变换的定义和性质
线性变换的定义
线性变换是向量空间中的一种变换, 它将向量空间中的每一个向量映射到 另一个向量空间中,保持向量的加法 和标量乘法的性质。
线性变换的性质
线性变换具有一些重要的性质,如线 性变换是连续的、可逆的、有逆变换 等。这些性质在解决实际问题中具有 广泛的应用。
特征值与特征向量的应用
总结词
特征值和特征向量的应用非常广泛,包括物理、工程、经济等领域。
详细描述
在物理领域,特征值和特征向量可以描述振动、波动等现象,如振动模态分析、波动分析等。在工程 领域,特征值和特征向量可以用于结构分析、控制系统设计等。在经济领域,特征值和特征向量可以 用于主成分分析、风险评估等。此外,在机器学习、图像处理等领域也有广泛的应用。
经济应用
线性方程组可用于解决经济问题,如投入产出分析、 经济预测等。
03
向量与矩阵
向量的基本概念
向量的模
表示向量的长度或大小,记作|向量|。
ቤተ መጻሕፍቲ ባይዱ
向量的方向
由起点指向终点的方向,可以通过箭头表示。
向量的分量
表示向量在各个坐标轴上的投影,记作x、y、 z等。
目录 CONTENT
• 线性代数简介 • 线性方程组 • 向量与矩阵 • 特征值与特征向量 • 行列式与矩阵的逆 • 线性变换与空间几何
01
线性代数简介
线性代数的定义和重要性
1
线性代数是数学的一个重要分支,主要研究线性 方程组、向量空间、矩阵等对象和性质。
2
线性代数在科学、工程、技术等领域有着广泛的 应用,如物理、计算机科学、经济学等。
逆矩阵来求解特征多项式和特征向量等。
06
线性变换与空间几何
线性变换的定义和性质
线性变换的定义
线性变换是向量空间中的一种变换, 它将向量空间中的每一个向量映射到 另一个向量空间中,保持向量的加法 和标量乘法的性质。
线性变换的性质
线性变换具有一些重要的性质,如线 性变换是连续的、可逆的、有逆变换 等。这些性质在解决实际问题中具有 广泛的应用。
特征值与特征向量的应用
总结词
特征值和特征向量的应用非常广泛,包括物理、工程、经济等领域。
详细描述
在物理领域,特征值和特征向量可以描述振动、波动等现象,如振动模态分析、波动分析等。在工程 领域,特征值和特征向量可以用于结构分析、控制系统设计等。在经济领域,特征值和特征向量可以 用于主成分分析、风险评估等。此外,在机器学习、图像处理等领域也有广泛的应用。
经济应用
线性方程组可用于解决经济问题,如投入产出分析、 经济预测等。
03
向量与矩阵
向量的基本概念
向量的模
表示向量的长度或大小,记作|向量|。
ቤተ መጻሕፍቲ ባይዱ
向量的方向
由起点指向终点的方向,可以通过箭头表示。
向量的分量
表示向量在各个坐标轴上的投影,记作x、y、 z等。
线性代数第2章矩阵PPT课件
线性代数第2章矩阵ppt 课件
目录 CONTENT
• 矩阵的定义与性质 • 矩阵的逆与行列式 • 矩阵的秩与线性方程组 • 矩阵的特征值与特征向量 • 矩阵的对角化与相似变换
01
矩阵的定义与性质
矩阵的基本概念
矩阵是一个由数字组 成的矩形阵列,行数 和列数可以不同。
矩阵的维度是指行数 和列数的数量。
矩阵的元素通常用方 括号括起来,并用逗 号分隔。
矩阵的运算规则
01
02
03
加法
两个矩阵的加法是将对应 位置的元素相加。
数乘
一个数乘以一个矩阵是将 该数乘以矩阵的每个元素。
乘法
两个矩阵的乘法只有在第 一个矩阵的列数等于第二 个矩阵的行数时才能进行。
特殊类型的矩阵
对角矩阵
对角线上的元素非零,其他元素为零的矩阵。
行列式的递推公式法
递推公式法是一种常用的计算行列式 的方法,它通过递推关系式将n阶行 列式转化为低阶行列式进行计算。这 种方法在计算较大行列式时非常有效。
03
矩阵的秩与线性方程组
矩阵的秩
矩阵的秩定义
矩阵的秩是其行向量组或列向量 组的一个极大线性无关组中向量 的个数。
矩阵的秩的性质
矩阵的秩是唯一的,且满足行秩 等于列秩。矩阵的秩等于其任何 子矩阵的秩。
02
特征值和特征向量与矩阵的乘法 运算有关,即如果Ax=λx,那么 (kA)x=(kλ)x,其中k是任意常数。
03
特征值和特征向量与矩阵的转置 运算有关,即如果Ax=λx,那么 A^Tx=(λ^T)x。
特征值与特征向量的计算方法
定义法
根据特征值和特征向量的定义, 通过解方程组Ax=λx来计算特
征值和特征向量。
目录 CONTENT
• 矩阵的定义与性质 • 矩阵的逆与行列式 • 矩阵的秩与线性方程组 • 矩阵的特征值与特征向量 • 矩阵的对角化与相似变换
01
矩阵的定义与性质
矩阵的基本概念
矩阵是一个由数字组 成的矩形阵列,行数 和列数可以不同。
矩阵的维度是指行数 和列数的数量。
矩阵的元素通常用方 括号括起来,并用逗 号分隔。
矩阵的运算规则
01
02
03
加法
两个矩阵的加法是将对应 位置的元素相加。
数乘
一个数乘以一个矩阵是将 该数乘以矩阵的每个元素。
乘法
两个矩阵的乘法只有在第 一个矩阵的列数等于第二 个矩阵的行数时才能进行。
特殊类型的矩阵
对角矩阵
对角线上的元素非零,其他元素为零的矩阵。
行列式的递推公式法
递推公式法是一种常用的计算行列式 的方法,它通过递推关系式将n阶行 列式转化为低阶行列式进行计算。这 种方法在计算较大行列式时非常有效。
03
矩阵的秩与线性方程组
矩阵的秩
矩阵的秩定义
矩阵的秩是其行向量组或列向量 组的一个极大线性无关组中向量 的个数。
矩阵的秩的性质
矩阵的秩是唯一的,且满足行秩 等于列秩。矩阵的秩等于其任何 子矩阵的秩。
02
特征值和特征向量与矩阵的乘法 运算有关,即如果Ax=λx,那么 (kA)x=(kλ)x,其中k是任意常数。
03
特征值和特征向量与矩阵的转置 运算有关,即如果Ax=λx,那么 A^Tx=(λ^T)x。
特征值与特征向量的计算方法
定义法
根据特征值和特征向量的定义, 通过解方程组Ax=λx来计算特
征值和特征向量。
线性代数第-章向量空间PPT课件
3
子空间在映射下的变化
线性映射可以导致子空间中的向量发生旋转、平 移或拉伸等变化。
子空间与线性映射的相互影响
子空间对线性映射的限制
子空间的性质可以影响线性映射的作用范围和结果。
线性映射对子空间的构造
通过选择特定的线性映射,可以构造出具有特定性质的子空间。
子空间与线性映射的关系
子空间和线性映射之间存在密切的关系,它们在许多数学问题中都 扮演着重要的角色。
详细描述
子空间是向量空间的一个非空子集,这个子集中的向量之间同样可以进行加法运算和数乘运算,并且这些运算也 满足封闭性、结合性和交换性等性质。子空间的定义是为了研究向量空间的一个特定部分,以便更好地理解和应 用向量空间。
向量空间的基与维数
总结词
基是向量空间中线性无关的向量组,它能够生成整个向量空间;维数则是向量空间的基 所包含的向量个数。
向量空间的推广到矩阵空 间
将向量空间中的元素推广到矩阵,形成矩阵 空间,使得线性变换和矩阵运算的结合更加 紧密,为解决实际问题提供更多数学工具。
向量空间的推广到函数空 间
将向量空间的元素推广到函数,形成函数空 间,使得函数的线性组合、内积等运算成为 可能,为解决实际问题提供更多数学工具。
向量空间的应用前景
判定条件二
如果存在一个线性映射f:V→W,使得V和W的基底之间存在一一对应关系,并且 这种对应关系保持向量加法和标量乘法的运算关系,则称V和W同构。
同构的应用场景
线性变换
几何变换
同构映射可以应用于线性变换中,将 一个向量空间中的线性变换转移到另 一个向量空间中。
同构映射可以应用于几何变换中,如 旋转、平移等,将一个向量空间中的 几何变换转移到另一个向量空间中。
线性代数7PPT课件
向量空间的性质
零向量和负向量的存在
在向量空间中,存在一个特殊的向量,称为零向量,它与任何向量进行加法运算结果仍为 该向量本身。同时,对于每个非零向量,都存在一个与其相反的向量,称为该向量的负向 量。
向量的线性组合
对于任意标量和向量,以及任意数量的标量,都可以进行线性组合,得到一个新的向量。
向量的线性无关
二次型的性质
01
实定性
如果一个二次型在某个基下的矩 阵是对称的,那么这个二次型是 实定的。
正定性
02
03
半正定性
如果一个实定的二次型在某个基 下的矩阵是正定的,那么这个二 次型是正定的。
如果一个实定的二次型在某个基 下的矩阵是半正定的,那么这个 二次型是半正定的。
二次型与矩阵的相似性的关系
二次型与矩阵的相似性
07
二次型与矩阵的相似性
二次型的定义
二次型
一个n元二次型是一个n维向量空间上的多 线性函数,其一般形式为$f(x) = sum_{i=1}^{n} sum_{ j=1}^{n} a_{ij} x_i x_j$,其中$a_{ij}$是常数。
二次型的矩阵表示
对于一个二次型$f(x) = x^T A x$,其中 $A$是一个对称矩阵。
特征值和特征向量的性质还包括:如 果λ是A的特征值,那么kλ(k≠0)也 是A的特征值;如果x是A的对应于λ的 特征向量,那么kx也是A的对应于λ的 特征向量。
特征值与特征向量的应用
在物理和工程领域中,特征值和特征向量的应用非常广泛。例如,在振动分析中,系统的固有频率和 振型可以通过求解系统的质量矩阵和刚度矩阵的特征值和特征向量得到。
02
19世纪中叶,德国数学家克罗内克等人开始系统地 研究线性代数,并为其建立了基础。
线性代数-行列式PPT课件
矩阵的秩和行列式
矩阵的秩和行列式之间也存在关系。矩阵的 秩等于其行向量或列向量生成的子空间的维 数,而行向量或列向量生成的子空间的维数 又等于该矩阵的阶数与非零特征值的个数之 和减去一,而一个矩阵的非零特征值的个数 又等于该矩阵的行列式的值。
05
特殊行列式介绍
二阶行列式
定义
二阶行列式表示为2x2的矩 阵,其计算公式为a11*a22a12*a21。
对于任何n阶方阵A,其行列式|A|和转置行列式|A^T|相等,即|A^T| = |A|。
行列式的乘法规则
总结词
行列式的乘法规则
详细描述
行列式的乘法规则是两个矩阵的行列式相乘等于它们对应元素相乘后的行列式。即,如果矩阵A和B分别是m×n 和n×p矩阵,那么它们的行列式相乘|AB| = |A||B|。
向量和向量的外积
行列式可以用来描述向量的外积,即两个向量的叉积。叉积 的结果是一个向量,其方向垂直于作为叉积运算输入的两个 向量,大小等于这两个向量的模的乘积与它们之间夹角的正 弦的乘积。
在线性方程组中的应用
解线性方程组
行列式可以用来判断线性方程组是否有 解,以及解的个数。如果一个线性方程 组的系数矩阵的行列式不为零,则该线 性方程组有唯一解;如果系数矩阵的行 列式为零,则该线性方程组可能无解、 有唯一解或有无穷多解。
线性代数-行列式ppt课件
• 引言 • 行列式的计算方法 • 行列式的性质 • 行列式的应用 • 特殊行列式介绍 • 行列式的计算技巧
01
引言
主题简介
01
行列式是线性代数中的基本概念 之一,用于描述矩阵的某些性质 和运算规则。
02
行列式在数学、物理、工程等领 域有广泛的应用,是解决实际问 题的重要工具。
《线性代数》课件
《线性代数》PPT课件
通过本PPT课件,帮助您深入了解线性代数的原理和应用,从基本概念到实例 讲解,全面提升您的线性代数知识。
课程介绍
了解线性代数的重要性和应用领域,介绍课程内容和学习目标。
基本概念和定义
1 向量
2 矩阵
介绍向量的定义和性质, 包括向量的运算和几何 表示。
解释矩阵的概念、矩阵 的运算和特殊类型的矩 阵。
对角化
探索对角化矩阵的定义和性质,以及 如何对角化一个矩阵。
应用物理学等领域中的应用实例,激发学习者对线性代数的兴趣和学习 动力。
介绍高斯消元法解线性方程组 的步骤和应用。
矩阵表示
讲解线性方程组的矩阵表示和 矩阵方程的求解。
向量空间
深入研究向量空间的定义和性质,探讨基、维数和子空间的相关概念。
特征值和特征向量
1
特征向量
2
解释特征向量的概念和性质,以及特
征向量与特征值之间的关系。
3
特征值
介绍特征值的定义和求解,以及特征 值的几何意义和应用。
3 行列式
探讨行列式的计算和性 质,以及行列式在线性 代数中的应用。
矩阵运算
加法与减法
介绍矩阵的加法和减法运算, 以及相关的性质和规则。
数乘
详细讲解数乘运算的定义和 性质,以及数乘对矩阵的影 响。
乘法
解释矩阵的乘法运算,包括 矩阵乘法的定义和运算法则。
线性方程组
什么是线性方程组?
高斯消元法
解释线性方程组的概念和解法, 包括矩阵法和消元法。
通过本PPT课件,帮助您深入了解线性代数的原理和应用,从基本概念到实例 讲解,全面提升您的线性代数知识。
课程介绍
了解线性代数的重要性和应用领域,介绍课程内容和学习目标。
基本概念和定义
1 向量
2 矩阵
介绍向量的定义和性质, 包括向量的运算和几何 表示。
解释矩阵的概念、矩阵 的运算和特殊类型的矩 阵。
对角化
探索对角化矩阵的定义和性质,以及 如何对角化一个矩阵。
应用物理学等领域中的应用实例,激发学习者对线性代数的兴趣和学习 动力。
介绍高斯消元法解线性方程组 的步骤和应用。
矩阵表示
讲解线性方程组的矩阵表示和 矩阵方程的求解。
向量空间
深入研究向量空间的定义和性质,探讨基、维数和子空间的相关概念。
特征值和特征向量
1
特征向量
2
解释特征向量的概念和性质,以及特
征向量与特征值之间的关系。
3
特征值
介绍特征值的定义和求解,以及特征 值的几何意义和应用。
3 行列式
探讨行列式的计算和性 质,以及行列式在线性 代数中的应用。
矩阵运算
加法与减法
介绍矩阵的加法和减法运算, 以及相关的性质和规则。
数乘
详细讲解数乘运算的定义和 性质,以及数乘对矩阵的影 响。
乘法
解释矩阵的乘法运算,包括 矩阵乘法的定义和运算法则。
线性方程组
什么是线性方程组?
高斯消元法
解释线性方程组的概念和解法, 包括矩阵法和消元法。
《线性代数》课件第1章
3
1
1 r1 6
1131
1113
1 1 1 1 r2 r1 1 1 1 1
1 3 1 1 r3 r1 0 2 0 0
6
6
48
1 1 3 1 r4 r 1 0 0 2 0
11 1 3
0002
例1.3.4 计算
a1 a1 0 0
0
a2 a2
0 .
0 0 a3 a3
11 1 1
解 根据行列式的特点,可将第1列加至第2列,然后将
an1 an2
a nj
a nn
an1 an2
bn
a nn
性质6 把行列式的某一行(列)的各元素乘以同一数然后 加到另一行(列)对应的元素上去,行列式的值不变,即
a11
a1n
a11
a1n
ai1
ain ri krj ai1 ka j1
ain a jn
a j1
a jn
(1.3.1.3) a1…alabb1…bmc1…cn
再作m+1次相邻对换,式(1.1.4) a1…albb1…bmac1…cn
(1.1.2) (1.1.3) (1.1.4) ( 1.1.5)
1.2 行列式的定义
1.2.1
定义1.2.1 由4个元素aij(i=1,2;j=1,2)排成两行两列, 并定义
3a11 a12
5a23 2 3a21 a22
5a33
3a31 a32
a11 2 (3) 5 a21
a31
5a13 5a23 5a33
a12 a13 a22 a23 a32 a33
2 (3) 51 30.
例1.3.2 计算
3 1 1 2 5 1 3 4 D 2 0 1 1 1 5 3 3
线性代数线性方程组解的结构ppt课件
k1
k2
设
ξ
=
kr kr +1
是方程组的任一解.
kr+2
则
kn
y1 = c1,(r+1) yr+1 + + c1n yn
y2
=
c y 2,(r+1) r+1
+
+ c2n yn
(*)
yr = cr,(r+1) yr+1 + + crn yn
k1 = c k 1,(r+1) r+1 + k2 = c k 2,(r+1) r+1 + kr = c k r,(r+1) r+1 +
定义3 设x1, x2, , xs 都是AX=o的解,并且 (1) x1, x2, , xs线性无关; (2) AX=o的任一个解向量都能由x1, x2, , xs线性表示,
则称x1, x2, , xs为线性方程组AX=o的一个基础解系.
通解(方程组的全部解)可以表示为:k1x1 + k2x2 + + ksxs
0 0
c1nkn
c2
n
kn
+
crn kn 0
0
kn
c1r+1
1 -2 4 3 3 -5 14 12
-1 4 1 5
r2-3r1 —r—3+r1
1 -2 01
4 2
3 3
0258
r3-2r2 1 -2 4 3 —— 0 1 2 3
0012
下页
消元法与矩阵的初等行变换
用消元法解线性方程组的过程,实质上就是对该方程组
线性代数总复习讲义PPT课件
在金融学中,线性代数用于描述资产价格和风险等经济量,以及计算收益 率和波动率等金融指标。
在计算机科学中的应用
01
Байду номын сангаас
02
03
04
线性代数在计算机科学中也有 着广泛的应用,如图像处理、 机器学习和数据挖掘等领域。
线性代数在计算机科学中也有 着广泛的应用,如图像处理、 机器学习和数据挖掘等领域。
线性代数在计算机科学中也有 着广泛的应用,如图像处理、 机器学习和数据挖掘等领域。
100%
相似变换法
通过相似变换将矩阵对角化,从 而得到其特征值和特征向量。
80%
数值计算法
对于一些大型稀疏矩阵,可以使 用数值计算方法来计算其特征值 和特征向量。
特征值与特征向量的应用
01
在物理、工程等领域中,特征值和特征向量被广泛 应用于求解振动、波动等问题。
02
在图像处理中,特征值和特征向量被用于图像压缩 和图像识别。
二次型的应用与优化问题
总结词
了解二次型在解决优化问题中的应用
详细描述
二次型的一个重要应用是在解决优化问题中, 特别是在求解二次规划问题时。通过将问题 转化为二次型的形式,可以方便地应用各种 优化算法进行求解,如梯度下降法、牛顿法 等。此外,二次型在统计分析、机器学习等 领域也有着广泛的应用。
06
矩阵的逆与行列式的值
要点一
总结词
矩阵的逆和行列式的值是线性代数中的重要概念,它们在 解决线性方程组、向量空间和特征值等问题中有着广泛的 应用。
要点二
详细描述
矩阵的逆是矩阵运算的一个重要概念,它表示一个矩阵的 逆矩阵与其原矩阵相乘为单位矩阵。逆矩阵的存在条件是 矩阵的行列式值不为零。行列式的值是一个由n阶方阵构 成的代数式,表示n个未知数的n阶线性方程组的解的系数 。行列式的值可以用来判断线性方程组是否有解以及解的 个数。同时,行列式的值也与特征值和特征向量等问题密 切相关。
在计算机科学中的应用
01
Байду номын сангаас
02
03
04
线性代数在计算机科学中也有 着广泛的应用,如图像处理、 机器学习和数据挖掘等领域。
线性代数在计算机科学中也有 着广泛的应用,如图像处理、 机器学习和数据挖掘等领域。
线性代数在计算机科学中也有 着广泛的应用,如图像处理、 机器学习和数据挖掘等领域。
100%
相似变换法
通过相似变换将矩阵对角化,从 而得到其特征值和特征向量。
80%
数值计算法
对于一些大型稀疏矩阵,可以使 用数值计算方法来计算其特征值 和特征向量。
特征值与特征向量的应用
01
在物理、工程等领域中,特征值和特征向量被广泛 应用于求解振动、波动等问题。
02
在图像处理中,特征值和特征向量被用于图像压缩 和图像识别。
二次型的应用与优化问题
总结词
了解二次型在解决优化问题中的应用
详细描述
二次型的一个重要应用是在解决优化问题中, 特别是在求解二次规划问题时。通过将问题 转化为二次型的形式,可以方便地应用各种 优化算法进行求解,如梯度下降法、牛顿法 等。此外,二次型在统计分析、机器学习等 领域也有着广泛的应用。
06
矩阵的逆与行列式的值
要点一
总结词
矩阵的逆和行列式的值是线性代数中的重要概念,它们在 解决线性方程组、向量空间和特征值等问题中有着广泛的 应用。
要点二
详细描述
矩阵的逆是矩阵运算的一个重要概念,它表示一个矩阵的 逆矩阵与其原矩阵相乘为单位矩阵。逆矩阵的存在条件是 矩阵的行列式值不为零。行列式的值是一个由n阶方阵构 成的代数式,表示n个未知数的n阶线性方程组的解的系数 。行列式的值可以用来判断线性方程组是否有解以及解的 个数。同时,行列式的值也与特征值和特征向量等问题密 切相关。
线性代数完整版ppt课件
a 31 a 32 a 33 a13a22a31a12a21a33a11a23a32
规律:
1. 三阶行列式共有6项,即3!项.
2. 每一项都是位于不同行不同列的三个元素的乘积.
3. 每一项可以写成 a1p1a2p2(a3正p3负号除外),其中
是1、2、3的某个排列.
p1 p2 p3
4. 当 p1 p2 是p3偶排列时,对应的项取正号;
(方程组的系数行列式)
D1
b1 b2
a12 a22
D2
a11 a 21
b1 b2
则上述二元线性方程组的解可表示为
x1
b1a22 a11a22
a12b2 a12a21
D1 D
x2
a11b2b1a21 a11a22a12a21.
D2 D
10
例1
求解二元线性方程组
32x1x1 2xx22
12 1
3 2
1.4
.
14
例3 求解方程 1 1 1
2 3 x 0. 4 9 x2
解 方程左端 D 3 x 2 4 x 1 9 x 8 2 x 2 12 x25x6,
由 x25x60得
x2或 x3.
.
15
§2 全排列及其逆序数
问题 把 n 个不同的元素排成一列,共有多少种不同的 排法?
定义 把 n 个不同的元素排成一列,叫做这 n 个元素 的全排列. n 个不同元素的所有排列的种数,通常用 Pn 表示.
相减而得.
.
7
二元线性方程组
a11x1 a12x2 b1 a21x1 a22x2 b2
其求解公式为
x1
x
2
b1a 22 a11a 22 a11b2 a11a 22
规律:
1. 三阶行列式共有6项,即3!项.
2. 每一项都是位于不同行不同列的三个元素的乘积.
3. 每一项可以写成 a1p1a2p2(a3正p3负号除外),其中
是1、2、3的某个排列.
p1 p2 p3
4. 当 p1 p2 是p3偶排列时,对应的项取正号;
(方程组的系数行列式)
D1
b1 b2
a12 a22
D2
a11 a 21
b1 b2
则上述二元线性方程组的解可表示为
x1
b1a22 a11a22
a12b2 a12a21
D1 D
x2
a11b2b1a21 a11a22a12a21.
D2 D
10
例1
求解二元线性方程组
32x1x1 2xx22
12 1
3 2
1.4
.
14
例3 求解方程 1 1 1
2 3 x 0. 4 9 x2
解 方程左端 D 3 x 2 4 x 1 9 x 8 2 x 2 12 x25x6,
由 x25x60得
x2或 x3.
.
15
§2 全排列及其逆序数
问题 把 n 个不同的元素排成一列,共有多少种不同的 排法?
定义 把 n 个不同的元素排成一列,叫做这 n 个元素 的全排列. n 个不同元素的所有排列的种数,通常用 Pn 表示.
相减而得.
.
7
二元线性方程组
a11x1 a12x2 b1 a21x1 a22x2 b2
其求解公式为
x1
x
2
b1a 22 a11a 22 a11b2 a11a 22
线性代数PPT
n
T
叫做 n 维向量空间.
x ( x1 , x 2 ,, x n ) a1 x1 a 2 x 2 a n x n b
T
n维向量空间 Rn中的 n 1 维超平面. 叫做
n 维向量的实际意义
确定飞机的状态,需 要以下6个参数: 机身的仰角
机翼的转角
机身的水平转角
第三章 向量组的线性相关性
• • • •
n维向量及其运算 向量组的线性相关性 向量组的秩 向量空间简介
第三章 向量组的线性相关性
3.1 n维向量及其运算
3.1.1 n维向量的概念
定义1
n 个有次序的数 a1 , a2 , , an 所组成的数
组称为n维向量,这n个数称为该向量的n个分量, 第i个数ai 称为第i个分量 .
系
代数形象: 向量空 间 中 的 平 面
( x, y, z ) ax by cz d r ( x , y, z )
P ( x, y, z )
一 一 对 应
T
ax by cz d
T
r ( x, y, z )
n n 3时, 维向量没有直观的几何形象.
R x ( x1 , x 2 ,, x n ) x1 , x 2 ,, x n R
b j k1 j 1 k 2 j 2
k11 k12 k 21 k 22 ( b1 , b2 ,, bs ) 1 , 2 ,, m ) ( k m1 k m 2 矩阵K m s ( k ij )称为这一线性表示的系
k1 s k2s k ms 数矩阵 .
v1 0.
例5. 向量组
T
叫做 n 维向量空间.
x ( x1 , x 2 ,, x n ) a1 x1 a 2 x 2 a n x n b
T
n维向量空间 Rn中的 n 1 维超平面. 叫做
n 维向量的实际意义
确定飞机的状态,需 要以下6个参数: 机身的仰角
机翼的转角
机身的水平转角
第三章 向量组的线性相关性
• • • •
n维向量及其运算 向量组的线性相关性 向量组的秩 向量空间简介
第三章 向量组的线性相关性
3.1 n维向量及其运算
3.1.1 n维向量的概念
定义1
n 个有次序的数 a1 , a2 , , an 所组成的数
组称为n维向量,这n个数称为该向量的n个分量, 第i个数ai 称为第i个分量 .
系
代数形象: 向量空 间 中 的 平 面
( x, y, z ) ax by cz d r ( x , y, z )
P ( x, y, z )
一 一 对 应
T
ax by cz d
T
r ( x, y, z )
n n 3时, 维向量没有直观的几何形象.
R x ( x1 , x 2 ,, x n ) x1 , x 2 ,, x n R
b j k1 j 1 k 2 j 2
k11 k12 k 21 k 22 ( b1 , b2 ,, bs ) 1 , 2 ,, m ) ( k m1 k m 2 矩阵K m s ( k ij )称为这一线性表示的系
k1 s k2s k ms 数矩阵 .
v1 0.
例5. 向量组
线性代数ppt课件
VS
线性代数的特点
线性代数具有抽象性、实用性、广泛性等 特点,是数学中重要的分支之一。
线性代数的历史背景
线性代数的起源
线性代数起源于17世纪,主要目的 是为了解决线性方程组的问题。
线性代数的发展
随着数学的发展,线性代数逐渐成为 一门独立的数学分支,并在20世纪得 到了广泛的应用和发展。
线性代数的应用领域
转置矩阵
一个矩阵A的转置矩阵是满足$A^T_{ij}=A_{ ji}$的矩阵
行列式与高斯消元
03
法
行列式的定义及性质
总结词
行列式是线性代数中重要的工具之一,它具有特殊的性质和计算规则。
详细描述
行列式是由一组方阵中的元素按照一定规则组成的,它是一个方阵是否可逆的判断标准,同时也有一 些重要的性质和计算规则,如交换两行或两列、对角线上的元素相乘等。了解行列式的定义和性质是 学习线性代数的基础。
矩阵的运算规则
加法
两个相同大小的矩阵,对应位置的元素相加
数乘
用一个数乘以矩阵的每一个元素
减法
两个相同大小的矩阵,对应位置的元素相减
乘法
要求两个矩阵满足乘法运算的规则,即第一 个矩阵的列数等于第二个矩阵的行数
矩阵的逆与转置
逆矩阵
一个矩阵A的逆矩阵是满足$AA^{-1}=I$的矩阵,其中$I$是单位矩阵
高斯消元法的原理
总结词
高斯消元法是一种解线性方程组的直接方法 ,其原理是将方程组转化为阶梯形矩阵。
详细描述
高斯消元法的基本思想是通过一系列的行变 换将线性方程组转化为阶梯形矩阵,这样就 可以直接求解方程组。高斯消元法包括三种 基本的行变换:将两行互换、将一行乘以非 零常数、将一行加上另一行的若干倍。通过 这些行变换,我们可以将矩阵转化为阶梯形 矩阵,从而求解方程组。
(完整版)《大学线性代数》PPT课件
下特页点
结束
a11 a12 … a1n
a21
…
a22 … a2n … ……
=
(-1) N ( j1 j2 jn ) a1 j1 a2 j2 anjn 。
an1 an2 … ann
n阶行列式共有n!项,且冠以正号的项和冠以负号的 项各占一半。
在行列式中,a1 j1 a2 j2 anjn 是取自不同行不同列
结束
例2.计算 n 阶下三角形行列式D的值: a11 0 0 … 0 a21 a22 0 … 0
D = a31 a32 a33 … 0 … … … …… an1 an2 an3 … ann
其中aii0(i=1, 2, , n)。
解:为使取自不同行不同列的元素的乘积不为零,
第一行只能取a11,第二行只能取a22,第三行只能取a33, , 第 n 行只能取ann。 这样不为零的乘积项只有
结束
对换:
在一个排列i1isitin中,将两个数码 is与it对调, 就得到另一个排列 i1 it is in ,这样的变换称为一个 对换,记为对换(is , it)。
例如,排列 21354 经对换(1, 4),得到排列24351。 提问:
排列 21354 经对换 (1, 4),得到的排列是 24351, 排列的奇偶性有无变化? 提示:
的 n 个元素的乘积。
a1 j1 a2 j2 anjn 之前的符号是 (-1) N(j1 j2 jn) 。
行列式有时简记为| a ij |。一阶行列式|a|就是a。
首页
上页
四阶行列式
a11 a12 a13 a14 a21 a22 a23 a24 a31 a32 a33 a34 a41 a42 a43 a44
线性代数及其应用PPT课件
金融数据的线性模型分析
线性回归模型
利用线性代数中的矩阵运算和线性方 程组求解方法,对金融数据进行回归 分析,预测未来趋势。
主成分分析
通过线性代数中的特征值和特征向量 计算,将金融数据降维,提取主要影 响因素,便于分析和决策。
图像处理中的矩阵运算
图像变换
利用矩阵运算对图像进行缩放、旋转 、平移等几何变换,实现图像的精确 控制。
征值和Байду номын сангаас征向量。
特征值计算 的算法
特征值计算是矩阵分析中的重要内容,可以用于解决 许多实际问题,如振动分析、控制论、经济学等。
数据降维与可视化
数据降维的必要性
数据降维的方法
可视化的意义
可视化的工具和技术
在处理高维数据时,数据的维 度可能非常高,导致数据难以 分析和处理。数据降维可以将 高维数据降为低维数据,便于 分析和可视化。
矩阵分解与特征值计算
矩阵分解是将一个复杂的矩阵分解为几个简单的、易 于处理的矩阵,以便进行计算和分析。
输入 矩阵标分题解的
方法
常见的矩阵分解方法包括LU分解、QR分解、SVD分 解等。这些方法可以将一个矩阵分解为一个下三角矩 阵、一个上三角矩阵和一个正交矩阵等。
矩阵分解的 定义
特征值计算 的应用
特征值计算的常用算法有QR算法、Jacobi方法、 Power方法等。这些算法可以用于计算给定矩阵的特
数值计算稳定性
数值计算稳定性
在进行数值计算时,由于计算机的舍入误差,可能会导致 计算结果的误差。线性代数中的一些算法和技巧可以帮助 提高数值计算的稳定性,减少误差。
数值稳定性的评估
评估数值稳定性的方法包括观察计算结果的收敛性和稳定 性,以及比较不同算法的误差和稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定理2:任意两个 n 元排列都可以经过一些对换变互
换。
定理3:n 元排列共有 n! 个,其中奇、偶排列的 个数相等,各有 n!/2 个。
2018/6/30
10
第二节 n阶行列式的定义
返回
2018/6/30 11
一、二阶行列式与三阶行列式
a11 a12 a11a22 a12a21 a21 a22 a11 a12 a13 a11a22a33 a12a23a31 a13a21a32 a21 a22 a23 a13a22a31 a12a21a33 a11a23a32 a31 a32 a33
返回
2018/6/30 3
第一节
排 列
2018/6/30
4
一、排列和逆序数
1.全排列:由n 个数码1,2,…,n排成的有序数组称为n阶全排列
(简称排列)。
例1:1,2,3这3个数码的全体不同排列共有6个,他们是: 123,132,231,213,312,321.
n个数码的不同排列共有n!个.
5
排列、逆序数
4. 计算排列逆序数的方法:设 p1 p2 …pn为1,2,…,n的一个排列, 考虑元素 pi(i=1,2,…n),如果比 pi大的且排在 pi 前面的元素有 i个,就说pi 这个元素的逆序数是 i,于是有 ( p1 p2 …pn)= 1 + 2 +…+ n 这就是排列p1 p2 …pn的逆序数。 例3 求排列45321的逆序数. 解: 4和5的逆序为0,3的逆序为2,2的逆序为3,1的逆序为4.于是, 排列的逆序数为 n(n 1) (45321)=0+0+2+3+4=9
2018/6/30
从上式,我们可以看出三阶行列式的几个特点: 注: (1)三阶行列式是3!个项的代数和。 (2)他的每项都是来自行列式中不同行不同列的三个 该定义称之为对角线法则。 元素的乘积, 12 (3)每项都有确定的符号,且其符号满足下列规律: ( j j j ) 若把一般项记为a1 j1 a2 j2 a3 j3 ,其符号 (1) 1 2 3 。
a b 当 a b
2018/6/30 8
a1...al bb1...bm
a b a1...al ...al bb1...bm (2)a1...al bab1...bm (3)a1...al ab1...bm
2.逆序:一个排列中,若较大的数排在较小数的前面,就称这 两个元素构成了一个逆序。 3.逆序数:一个排列中所有逆序的总和称为这个排列的逆序数 P P ...P 例2: 排列1432P 中 32,42,43构成逆序 3; ti Pi ,排列的逆序数就 i
2018/6/30
1 2
n
ti 排列3412中42,32,41,31构成逆序 ,排列的逆序数是4.
线性代数多媒体课件
线性代数
《线性代数》多媒体教学课件是以蔡光兴教授主编、科学出版社出 版的《线性代数》(第二版)教材为蓝本制作的。课件包含了《线性 代数》课程基本教学内容:基础篇(第一章至第七章)及课后能力拓 展内容:应用篇(第八章至第十一章)、 实验篇(第十二章、第十三 章)。为老师教学提供辅助工具,也为学生课后学习提供方便。
把 (1)作n+1次相邻对换得(2),把(2)再作 n 次相邻对换 可得(3),即共作了 2n+1 次相邻对换由(1)而得到(3)。由 前可知,作一次相邻对换,排列的奇偶性改变一次,故 由(1)到(3)排列的奇偶性就改变了2n+1次,即由原来的 奇排列就变成了偶排列或由原来的偶排列变成了奇排列
2018/6/30 9
n 1 n 2 ... 1 2
思考:求排列n,(n-1),(n-2),…,1的逆序数。
2018/6/30 6
二、排列的奇偶性和对换
逆序数为奇数的函数称为奇排列。 逆序数为偶数的函数称为偶排列。 ►如例2中1432是奇排列,3412是偶排列。
定义1 把一个排列中的两个数字i和j交换位子,而其余 的数字不动,就得到一个新排列,对排列实行这样 的一个交换称为一个对换,并用符号(i,j)表示。 ►如将1432施行对换(1,3)就得到3412。
2018/6/30 7
奇偶性和对换
►定理 1 对换改变排列的奇偶性。 证明:该定理的证明可分为两步来证。第一步来证 明相邻对换的情况,第二步证明一般情况。
a b 设a1...al abb1...bm a1...al bab1...bm
(a1...al abb1...bm ) k (a1 al bab1...bm ) k 1 (a1 al bab1...bm ) k 1 由此可见,相邻对换将改变排列的奇偶性。 再证一般情况,设:
返回
2018/6/30 1
第一章 行列式
行列式是为了求解线性方程组而引入的,但 在线性代数和其它数学领域以及工程技术中, 行列式是一个很重要的工具。本章主要介绍 行列式的定义、性质及其计算方法。
返回
2018/6/30 2
►§1 ►§2 ►§3 ►§4 ►§5
排列 n阶行列式的概念 行列式的主要性质 行列式按行(列)展开 克拉默(Cramer)法则
二 、行列式的定义
定义2 由n×n个数(实或复数)排成一个n行n列的表,
a11 a21 ... an1 a12 a22 ... ... a1n ... a2 n ... ... (aij 表示位于第i行,第j列的数)
an 2 ... ann
所表示的数D称为n阶行列式。这个数D等于所有取自不同行
不同列的n个元素的乘积
a1 j1 a2 j2 ...anjn
的代数和。每项的符号由 (1) ( j1 j2 ... jn )
2018/6/30
来确定。即
13
a11 a21 ... an1
a12 a22 ...
... a1n ... a2 n ... ...
j1 j2 ... jn
(1) ( j1 j2 ... jn ) a1 j1 a2 j2 ...anjn