中考数学压轴题解题技巧超详细

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年中考数学压轴题解题技巧解说

数学压轴题是初中数学中覆盖知识面最广,综合性最强的题型。综合近年来各地中考的实际情况,压轴题多以函数和几何综合题的形式出现。压轴题考查知识点多,条件也相当隐蔽,这就要求学生有较强的理解问题、分析问题、解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识和创新能力,当然,还必须具有强大的心理素质。下面谈谈中考数学压轴题的解题技巧。

如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点.

(1)直接写出点A的坐标,并求出抛物线的解析式;

(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点

C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动

时间为t秒.过点P作PE⊥AB交AC于点E.

①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长

②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形请直接写出相应的t值.

解:(1)点A的坐标为(4,8) (1)

将A (4,8)、C(8,0)两点坐标分别代入y=ax2+bx

8=16a+4b

0=64a+8b

解 得a=-12

,b=4

抛物线的解析式为:

y=-12

x 2

+4x …………………3分

(2)①在Rt △APE 和Rt △ABC 中,tan ∠PAE=

PE AP =BC AB ,即PE AP =4

8

∴PE=1

2

AP=12

t .PB=8-t .

∴点E的坐标为(4+12t ,8-t ).

∴点G 的纵坐标为:-12(4+12t )2

+4(4+12

t )=-18t 2+8. (5)

∴EG=-18

t 2

+8-(8-t) =-18

t 2

+t.

∵-1

8

<0,∴当t=4时,线段EG 最长为2. (7)

刻. …………………8分

t 1=

163, t 2=4013,t 3. (11)

压轴题的做题技巧如下:

1、对自身数学学习状况做一个完整的全面的认识,根据自己的情况考试的时候重心定位准确,防止 “捡芝麻丢西瓜”。所以,在心中一定要给压轴题或几个“难点”一个时间上的限制,如果超过你设置的上限,必须要停止,回头认真检查前面的题,尽量要保证选择、填空万无一失,前面的解答题尽可能的检查一遍。

2、解数学压轴题做一问是一问。第一问对绝大多数同学来说,不是问题;如果第一小问不会解,切忌不可轻易放弃第二小问。过程会多少写多少,因为数学

解答题是按步骤给分的,写上去的东西必须要规范,字迹要工整,布局要合理;过程会写多少写多少,但是不要说废话,计算中尽量回避非必求成分;尽量多用几何知识,少用代数计算,尽量用三角函数,少在直角三角形中使用相似三角形的性质。

3、解数学压轴题一般可以分为三个步骤:认真审题,理解题意、探究解题思路、正确解答。审题要全面审视题目的所有条件和答题要求,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计。解数学压轴题要善于总结解数学压轴题中所隐含的重要数学思想,如转化思想、数形结合思想、分类讨论思想及方程的思想等。认识条件和结论之间的关系、图形的几何特征与数、式的数量、结构特征的关系,确定解题的思路和方法.当思维受阻时,要及时调整思路和方法,并重新审视题意,注意挖掘隐蔽的条件和内在联系,既要防止钻牛角尖,又要防止轻易放弃。

注意

1、动点题肯定是图形题,图形题是中考试重点,分值在100分以上(满分150.包括统计和概率)

2、大部分压轴题都是几何图形和代数函数图形相结合,在动点的运动中存在一些特殊情况下的边长、面积、边边关系、面积和边的关系等。特殊情况是指动点在变化过程中引起图形变化发生质的变化,如由三角形变成四边形,由四边形变成五边形,这时一定要注意分类讨论

3、知识的储备:熟练掌握所有相关图形的性质。a、三角形(等腰、直角三角形)

b、平行四边形(矩形、菱形、正方形)

c、圆

d、函数(一次函数,正比例函数,反比例函数,二次函数)

4、坐标系中的四大金刚:① 两个一次函数平行,K 值相等;② 两个一次函数互相垂直,K 值互为负倒数。③ 任意两点的中点坐标公式;④ 任意两点间距离公式。函数图形与x ,y 坐标轴的交点连线的夹角也常常用到,所以要小心;有些特殊点会形成特殊角,这一点也要特别注意。

5、做题思路,有三种。1、把几何图形放到坐标系中看看数据的变化。2、把坐标系中的图形提出坐标系看看图形的变化。3、把图形最难理解的部分提炼出来重点分析(即去掉无用的图形线段)。

压轴题解题技巧题型分类解说

一、对称翻折平移旋转

1.(南宁)如图12,把抛物线2y x =-(虚线部分)向右平移1个单位长度,再向上平移1个单位长度,得到抛物线1l ,抛物线2l 与抛物线1l 关于y 轴对称.点A 、O 、

B 分别是抛物线1l 、2l 与x 轴的交点,D 、

C 分别是抛物线1l 、2l 的顶点,线段C

D 交y 轴于点

E .

(1)分别写出抛物线1l 与2l 的解析式;

(2)设P 是抛物线1l 上与D 、O 两点不重合的任意一点,Q 点是P 点关于y 轴的对称点,试判断以P 、Q 、C 、D 为顶点的四边形是什么特殊的四边形说明你的理由. (3)在抛物线1l 上是否存在点M ,使得ABM AOED S S ∆∆=四边形,如果存在,求

出M 点的坐标,如果不存在,请说明理由.

2.(福建宁德)如图,已知

抛物线

P ,与x

C 1:()522

-+=x a y 的顶点为

轴相交于A 、B 两点(点A

在点B

12

y x

A

O B

P

M

1

C C

2y x A O B

P

N

C

C Q E F 2

相关文档
最新文档