纯直觉模糊数算术集结算子及其在决策中的应用

合集下载

直觉模糊多属性决策方法综述

直觉模糊多属性决策方法综述

直觉模糊多属性决策方法综述一、本文概述随着信息时代的到来,决策问题变得越来越复杂,多属性决策问题在各个领域中都得到了广泛的研究和应用。

在多属性决策中,决策者常常面临属性值模糊、不完全或不确定的情况,这使得决策过程更加困难。

为了解决这些问题,直觉模糊多属性决策方法应运而生,它结合了直觉模糊集理论和多属性决策方法,为处理模糊信息提供了一种有效的工具。

本文旨在综述直觉模糊多属性决策方法的研究现状和发展趋势,分析不同方法的优缺点,为决策者提供更为全面和深入的理论支持和实践指导。

本文将对直觉模糊多属性决策方法进行概述,介绍直觉模糊集的基本概念和性质,以及其在多属性决策中的应用。

然后,将重点综述现有的直觉模糊多属性决策方法,包括基于直觉模糊集的权重确定方法、属性约简方法、决策规则等。

通过对这些方法的分析和比较,揭示各种方法的特点和适用范围。

本文将探讨直觉模糊多属性决策方法在实际应用中的挑战和解决方案。

针对决策过程中可能出现的模糊信息、不确定性等问题,提出相应的处理策略和方法,以提高决策的准确性和有效性。

本文将展望直觉模糊多属性决策方法的发展前景和趋势。

随着、大数据等技术的快速发展,直觉模糊多属性决策方法将在更广泛的领域得到应用,同时也将面临新的挑战和机遇。

因此,本文将分析未来的研究方向和发展趋势,为相关领域的研究和实践提供参考和借鉴。

本文将对直觉模糊多属性决策方法进行全面的综述和分析,旨在为决策者提供更为科学、有效的决策方法和工具,推动多属性决策理论和方法的发展和应用。

二、直觉模糊集理论直觉模糊集(Intuitionistic Fuzzy Sets, IFSs)是Zadeh模糊集理论的一种扩展,由Atanassov在1986年提出。

直觉模糊集不仅考虑了元素对模糊集合的隶属度,还考虑了元素对模糊集合的非隶属度和犹豫度,从而提供了更丰富的信息描述方式。

在直觉模糊集中,每个元素x在一个直觉模糊集A中的隶属度用μ_A(x)表示,非隶属度用ν_A(x)表示,而犹豫度π_A(x)则为1 - μ_A(x) - ν_A(x)。

广义正交模糊IOWA算子及其在多属性决策中的应用

广义正交模糊IOWA算子及其在多属性决策中的应用

㊀第52卷第4期郑州大学学报(理学版)Vol.52No.4㊀2020年12月J.Zhengzhou Univ.(Nat.Sci.Ed.)Dec.2020收稿日期:2020-07-02基金项目:国家自然科学基金项目(61806182);郑州大学青年教师专项科研启动基金项目(32220326);郑州大学经济学管理学新兴学科孵化研究基地项目(101/32610168);河南省高等学校青年骨干教师培养计划项目㊂作者简介:杜文胜(1987 ),男,河南濮阳人,副教授,主要从事决策理论与决策分析研究,E-mail:wsdu@;通信作者:闫雅楠(1996 ),女,河南许昌人,硕士研究生,主要从事多属性决策研究,E-mail:yan0251@㊂广义正交模糊IOWA 算子及其在多属性决策中的应用杜文胜,㊀闫雅楠(郑州大学商学院㊀河南郑州450001)摘要:广义正交模糊集是直觉模糊集和毕达哥拉斯模糊集的推广,诱导有序加权平均算子(IOWA)是一种常用的聚合算子㊂将广义正交模糊集和诱导有序加权平均算子相结合,引入了广义正交模糊诱导有序加权平均算子,研究了它的一些重要性质,同时提出了一种基于广义正交模糊诱导有序加权平均算子的多属性决策方法㊂通过一个评奖实例说明了该方法的有效性,并分析了参数q 对决策结果的影响,决策结果表明了广义正交模糊诱导有序加权平均算子的稳定性㊂关键词:广义正交模糊集;IOWA 算子;多属性决策中图分类号:O159;C934㊀㊀㊀㊀㊀文献标志码:A㊀㊀㊀㊀㊀文章编号:1671-6841(2020)04-0053-07DOI :10.13705/j.issn.1671-6841.20202060㊀引言多属性决策是现代决策科学的一个重要组成部分㊂由于决策环境的复杂性,导致人们对于信息认知和表达的不确定性,决策评价者很难精确地表示决策事物的属性值㊂文献[1]提出了模糊集理论,可以描述不确定现象㊂随后,文献[2]对模糊集理论进行了推广,提出了直觉模糊集理论㊂文献[3-4]定义了直觉模糊集上的加法运算㊁数乘运算㊁乘法运算和指数运算㊂随着模糊理论的发展,模糊信息的适用范围在不断拓宽㊂美国学者Yager 提出了毕达哥拉斯模糊集理论[5]和广义正交模糊集理论[6]㊂毕达哥拉斯模糊集的约束条件是隶属度与非隶属的平方和不大于1㊂广义正交模糊集的约束条件是隶属度与非隶属度的q 次方之和小于或者等于1㊂文献[7]提出了一系列广义正交模糊加权算术平均和加权几何平均算子㊂文献[8]提出了一簇广义正交模糊Bonferroni 平均算子㊂文献[9]提出了一系列广义正交模糊Heronian 平均算子㊂文献[10]提出了一簇广义正交模糊Maclaurin 对称平均算子㊂随后许多专家学者在该领域做出了研究与探索[11-14]㊂美国学者Yager 首先提出了有序加权平均(ordered weighted average,OWA)算子的概念[15],并得到广泛应用㊂随后,Yager 又提出了诱导有序加权平均(induced ordered weighted average,IOWA)算子[16],该算子的特点是权重只与集结过程中的位置有关㊂自提出以来,IOWA 算子在很多研究领域被扩展和应用[17-21]㊂但是在广义正交模糊环境下的IOWA 算子及其应用仍待研究㊂本文利用IOWA 算子集结广义正交模糊信息,提出广义正交模糊IOWA (q -rung orthopair fuzzy inducedordered weighted average,q -ROFIOWA)算子,并考察算子的性质,将该算子应用在多属性决策问题中,通过实例分析了方法的有效性与稳定性㊂1㊀预备知识1.1㊀广义正交模糊集定义1[6]㊀设X 为一个非空一般集合,则定义在X 上的广义正交模糊集A 的表达式为A ={ x ,u A (x ),v A (x )⓪x ɪX },(1)郑州大学学报(理学版)第52卷图1㊀各模糊集的隶属度空间范围Figure 1㊀Membership spaces of differenttypes of fuzzy sets其中:u A (x )和v A (x )分别表述元素x 属于集合X 的隶属度和非隶属度,并且满足0ɤu A (x )ɤ1,0ɤv A (x )ɤ1以及0ɤu A (x )q +v A (x )q ɤ1(q ȡ1)㊂为了方便,记α=(u ,v )为一个广义正交模糊数㊂显然,广义正交模糊数的隶属度空间比毕达哥拉斯和直觉模糊的隶属度空间都大,如图1所示㊂定义2[7]㊀设α1=(u 1,v 1)和α2=(u 2,v 2)为两个广义正交模糊数,并且λ为任意正数,则广义正交模糊数的运算法则为:1)α1 α2=((u q 1+u q 2-u q 1u q 2)1/q,v 1v 2);2)α1 α2=(u 1u 2,(v 1q +v q 2-v q 1v q 2)1/q );3)λα1=((1-(1-u q 1)λ)1/q ,v λ1);4)αλ1=(u λ1,(1-(1-v q 1)λ)1/q)㊂定义3[7]㊀设α=(u ,v )为一个广义正交模糊数,则α的得分函数定义为S (α)=u q -v q ,α的精确函数定义为H (α)=u q +v q ㊂对于任意两个广义正交模糊数α1=(u 1,v 1)和α2=(u 2,v 2),则有:1)若S (α1)>S (α2),则α1>α2;2)若S (α1)=S (α2),则:若H (α1)>H (α2),则α1>α2;若H (α1)=H (α2),则α1=α2;若α1>α2或α1=α2,记作α1ȡα2㊂1.2㊀诱导有序加权平均算子定义4[16]㊀设有二元数对 πi ,a i ⓪(i =1,2, ,n ),称满足下述关系的f ω为诱导有序加权平均算子,f ω( π1,a 1⓪, π2,a 2⓪, , πn ,a n ⓪)=ðnj =1ωj b j,(2)其中:ω=(ω1,ω2, ,ωn )是与f ω相关联的加权向量,并满足0ɤωi ɤ1(i =1,2, ,n )及ðni =1ωi =1;二元数对 πi ,a i ⓪(i =1,2, ,n )称为有序加权平均对,第1个分量πi 称为诱导分量,第2个分量a i 称为数值分量;b j 表示(π1,π2, ,πn )中第j 大的元素所在的OWA 对中的第2个分量㊂2㊀广义正交模糊IOWA 算子2.1㊀基本定义定义5㊀设αi =(u i ,v i )(i =1,2, ,n )为一组广义正交模糊数,若q-ROFIOWA ( π1,α1⓪, π2,α2⓪, , πn ,αn ⓪)= nj =1ωj βj ,(3)则称q-ROFIOWA 为广义正交模糊诱导有序加权平均算子㊂定义5给出了IOWA 算子在广义正交模糊环境下的数学表达式㊂可以看出,IOWA 算子在实数环境与广义正交模糊环境下的数学表达形式是类似的㊂需要注意的是,在广义正交模糊环境下IOWA 算子需要遵循广义正交模糊集的运算法则(定义2)㊂根据定义2和定义5可以得到如下定理㊂定理1㊀设αi =(u i ,v i )(i =1,2, ,n )为一组广义正交模糊数,则利用q-ROFIOWA 算子集结后的结果仍然是广义正交模糊数,且q-ROFIOWA ( π1,α1⓪, π2,α2⓪, , πn ,αn ⓪)=((1-ᵑnj =1(1-u j q)ωj)1q,ᵑnj =1v j ωj )㊂(4)㊀㊀证明㊀首先证明等式成立,再证明集结结果仍为广义正交模糊数㊂根据定义2可以得到ωj βj =((1-(1-u j q)ωj)1q,v j ωj )㊂因此45㊀第4期杜文胜,等:广义正交模糊IOWA 算子及其在多属性决策中的应用nj =1ωj βj =((1-ᵑnj =1(1-u j q)ωj)1q,ᵑnj =1v j ωj )㊂所以q-ROFIOWA ( π1,α1⓪, π2,α2⓪, , πn ,αn ⓪)=((1-ᵑnj =1(1-u j q)ωj)1q,ᵑnj =1v j ωj )㊂由于u q +v q ɤ1,则u q ɤ1-v q ,因此1-ᵑnj =1(1-u q j)ωj+ᵑnj =1v ωj qjɤ1-ᵑnj =1(1-(1-v q j))ωj+ᵑnj =1v ωj qj=1,故算子聚合的结果也是一个广义正交模糊数㊂2.2㊀算子性质性质1㊀置换不变性设( π1,α1⓪, π2,α2⓪, , πn ,αn ⓪)是任一数据向量,( πᶄ1,αᶄ1⓪, πᶄ2,αᶄ2⓪, , πᶄn ,αᶄn ⓪)是( π1,α1⓪, π2,α2⓪, , πn ,αn ⓪)的任一置换,则q-ROFIOWA ( π1,α1⓪, π2,α2⓪, , πn ,αn ⓪)=q-ROFIOWA ( πᶄ1,αᶄ1⓪, πᶄ2,αᶄ2⓪, , πᶄn ,αᶄn ⓪)㊂㊀㊀证明㊀由于q-ROFIOWA ( π1,α1⓪, π2,α2⓪, , πn ,αn ⓪)= nj =1ωj βj 中βj 表示(π1,π2, ,πn )中第j 大的元素所对应的αi (i =1,2, ,n ),由于诱导分量是给定的,所以任一置换q-ROFIOWA ( πᶄ1,αᶄ1⓪, πᶄ2,αᶄ2⓪, , πᶄn ,αᶄn ⓪)= nj =1ωj βj 中的βj 是相等的,即q-ROFIOWA 算子具有置换不变性㊂性质2㊀幂等性设( π1,α1⓪, π2,α2⓪, , πn ,αn ⓪)是任一数据向量,若对任意的i 有αi =α=(u ,v ),则有q-ROFIOWA ( π1,α1⓪, π2,α2⓪, , πn ,αn ⓪)=α㊂㊀㊀证明㊀由于αi =α=(u ,v )对于所有i 都成立,根据定理1可得q-ROFIOWA ( π1,α1⓪, π2,α2⓪, , πn ,αn ⓪)=((1-ᵑnj =1(1-u q j)ωj)1q,ᵑnj =1v j ωj )=((1-ᵑnj =1(1-u q )ωj )1q,ᵑnj =1v ωj )=((1-(1-u q ))1q,v )=(u ,v )=α,即q-ROFIOWA 算子具有幂等性㊂性质3㊀单调性令αi =(u i ,v i )和βi =(s i ,t i )(i =1,2, ,n )为两组广义正交模糊数,若u i ɤs i ㊁v i ȡt i 对于任意i 都成立,则有q-ROFIOWA ( π1,α1⓪, π2,α2⓪, , πn ,αn ⓪)ɤq-ROFIOWA ( π1,β1⓪, π2,β2⓪, , πn ,βn ⓪)㊂㊀㊀证明㊀记q-ROFIOWA ( π1,α1⓪, π2,α2⓪, , πn ,αn ⓪)=(u ,v )和q-ROFIOWA ( π1,β1⓪, π2,β2⓪, , πn ,βn ⓪)=(s ,t )㊂由于u i ɤs i 对于所有的i 都成立,则有u q iɤs q i,进而可以得到ᵑni =1(1-u q i)ωiȡᵑni =1(1-s q i )ωi,所以(1-ᵑni =1(1-u q i)ωi)1qɤ(1-ᵑni =1(1-s q i)ωi)1q,也就是u ɤs ㊂同理可得v ȡt ,此时两个广义正交模糊数(u ,v )和(s ,t )的得分函数值有以下两种情况:若u <s v >t{,u =s v >t{或u <s v =t{,则u q -v q <s q -t q ;若u =s v =t{,则u q +v q =s q +t q ㊂根据定义3,两个广义正交模糊数(u ,v )和(s ,t )之间的大小关系是(u ,v )ɤ(s ,t ),即q-ROFIOWA ( π1,α1⓪, π2,α2⓪, , πn ,αn ⓪)ɤq-ROFIOWA ( π1,β1⓪, π2,β2⓪, , πn ,βn ⓪)㊂性质4㊀界值性设αi =(u i ,v i )(i =1,2, ,n )为一组广义正交模糊数,则有55郑州大学学报(理学版)第52卷α-ɤq-ROFIOWA ( π1,α1⓪, π2,α2⓪, , πn ,αn ⓪)ɤα+,其中:α-=(min ni =1(u i ),max ni =1(v i ));α+=(max ni =1(u i ),min ni =1(v i ))㊂㊀㊀证明㊀根据性质2可得q-ROFIOWA ( π1,α-⓪, π2,α-⓪, , πn ,α-⓪)=α-,q-ROFIOWA ( π1,α+⓪, π2,α+⓪, , πn ,α+⓪)=α+㊂㊀㊀根据性质3可得q-ROFIOWA ( π1,α-⓪, π2,α-⓪, , πn ,α-⓪)ɤq-ROFIOWA ( π1,α1⓪, π2,α2⓪, , πn ,αn ⓪),q-ROFIOWA ( π1,α+⓪, π2,α+⓪, , πn ,α+⓪)ȡq-ROFIOWA ( π1,α1⓪, π2,α2⓪, , πn ,αn ⓪)㊂㊀㊀综上可得α-ɤq-ROFIOWA ( π1,α1⓪, π2,α2⓪, , πn ,αn ⓪)ɤα+㊂3㊀实例分析本节用青年创新创业奖金的实例说明q-ROFIOWA 算子在多属性决策中的应用㊂最后将其与其他算子进行比较分析,观察其排序结果是否相同㊂3.1㊀基于广义正交模糊IOWA 算子的多属性决策方法设有一广义正交模糊环境下的多属性决策问题,有m 个备选方案x i (i =1,2, ,m ),n 个属性集G j (j =1,2, ,n ),ω=(ω1,ω2, ,ωn )T ㊂设决策者给出的广义正交模糊决策矩阵为R =αij =(u ij ,v ij )m ˑn ,αij =(u ij ,v ij )表示第i 个备选方案在第j 个属性下由决策者给出的评估值㊂假设诱导变量为评估值的得分函数,基于q-ROFIOWA 算子的多属性决策方法如下㊂步骤1㊀标准化决策矩阵㊂在实际的多属性决策问题中,属性往往分为效益型属性(I 1)与成本型属性(I 2)两种㊂因此需要用以下公式对决策矩阵进行标准化㊂αij =(u ij ,v ij )=(u ij ,v ij ),R j ɪI 1,(v ij ,u ij ),R j ɪI 2㊂{㊀㊀之后根据q -阶正交模糊数的大小比较规则将诱导变量排序㊂步骤2㊀利用q-ROFIOWA 算子集结决策矩阵,得到每个备选方案的综合属性值αi ㊂αi =q-ROFIOWA ( π1,α1⓪, π2,α2⓪, , πn ,αn ⓪)=((1-ᵑnj =1(1-u j q)ωj)1q,ᵑnj =1v j ωj )㊂㊀㊀特别说明的是,在计算时确定权重ω的方法有很多种,这里仅介绍OWA 算子常用的正态分布赋权法[22]㊂徐泽水教授从正态分布出发,提出了离散正态分布,给出了位置权重向量,ωj =(e-(j -μn )22σ2n)/(ðn i =1e-(i -μn )22σ2n),j =1,2, ,n ,(5)其中:μn 代表评价者对第n 个指标评分的数学期望;σn 代表评价者对第n 个指标评分的标准差㊂步骤3㊀根据定义3计算每个备选方案的得分函数值,将备选方案排序并进行分析㊂3.2㊀问题描述假设某公司设立一项青年创新创业奖金,分为3个梯度的金额奖励,每年对本市的3个青年创业团队进行资助,这3个团队记作{x 1,x 2,x 3}㊂通过层层选拔进入最终评议的3支队伍,有5个属性来评价其项目优劣㊂属性1表示经营情况(G 1),属性2表示发展潜力(G 2),属性3表示科创能力(G 3),属性4表示社会责任(G 4),属性5表示环境友好(G 5)㊂假设ω=(0.22,0.18,0.25,0.17,0.18)Τ,该项奖金在5个属性下的决策信息以广义正交模糊集的形式给出,如表1所示㊂3.3㊀决策过程步骤1㊀由于所有属性都是效益型属性,无须对其进行标准化处理㊂根据定义3广义正交模糊数的得分函数规则(q =3),将诱导变量排序,得到对应的综合信息决策矩阵,如表2所示㊂步骤2㊀由广义正交模糊诱导有序加权平均算子集结决策矩阵,得到不同团队的综合属性值㊂即65㊀第4期杜文胜,等:广义正交模糊IOWA 算子及其在多属性决策中的应用表1㊀广义正交模糊决策矩阵Table 1㊀Q -rung orthopair fuzzy decision matrix团队G 1G 2G 3G 4G 5x 1(0.6,0.2)(0.4,0.2)(0.5,0.4)(0.3,0.3)(0.7,0.4)x 2(0.5,0.2)(0.6,0.4)(0.4,0.3)(0.4,0.4)(0.6,0.1)x 3(0.8,0.4)(0.5,0.3)(0.6,0.5)(0.3,0.4)(0.6,0.3)表2㊀综合信息决策矩阵Table 2㊀Comprehensive information decision matrix团队12345x 1(0.7,0.4)(0.6,0.2)(0.5,0.4)(0.4,0.2)(0.3,0.3)x 2(0.6,0.1)(0.6,0.4)(0.5,0.2)(0.4,0.3)(0.4,0.4)x 3(0.8,0.4)(0.6,0.3)(0.5,0.3)(0.6,0.5)(0.3,0.4)α1=(0.5535,0.2980),α2=(0.5225,0.2361),α3=(0.6259,0.3671)㊂㊀㊀步骤3㊀计算综合属性值的得分函数,可以得到s (α1)=0.1431,s (α2)=0.1295,s (α3)=0.1957㊂㊀㊀因此创业团队的排序结果为x 3>x 1>x 2㊂根据排序结果可知,应对团队3进行第1梯度的资助,对团队1进行第2梯度的资助,对团队2进行第3梯度的资助㊂图2㊀q-ROFIOWA 算子随q 变化的决策结果Figure 2㊀Decision results of the q-ROFIOWAoperator changing with q3.4㊀参数对排序结果及最优选项的比较为了考察算子中参数q 对排序结果的影响,我们赋予参数不同取值对其得分函数及排序结果进行观察㊂参数q ȡ2的取值对结果的影响较大,给广义正交模糊IOWA 算子中的参数q 赋予不同的值,则得分函数和排序结果如图2所示㊂从图中可以看出,随着q 的增大,团队的得分值减小,q ȡ3时,不同的q 值得到不同的得分,但是排序结果相同㊂因此可以得出广义正交模糊诱导有序加权平均算子具有较强的稳定性㊂3.5㊀比较分析为了验证该方法的优点,将本文提出的多属性决策方法与现有的方法进行对比,这些方法包括文献[7]提出的基于广义正交模糊加权算数平均算子及基于广义正交模糊加权几何平均算子的多属性决策方法,文献[8]提出的基于广义正交模糊Bonferroni 平均算子多属性决策方法,以及文献[9]提出的基于广义正交模糊Heronian 平均算子的多属性决策方法㊂利用这些方法解决上述问题的得分函数值和排序结果如表3所示㊂表3㊀利用不同的方法得到的得分函数和排序结果Table 3㊀Score functions and ranking results obtained by different methods方法团队的得分函数排序结果基于广义正交模糊加权算数平均算子的多属性决策方法(q =3)[7]s (α1)=0.1399,s (α2)=0.1193,s (α3)=0.1972x 3>x 1>x 2基于广义正交模糊加权几何平均算子的多属性决策方法(q =3)[7]s (α1)=0.0799,s (α2)=0.0835,s (α3)=0.0995x 3>x 2>x 1基于广义正交模糊Bonferroni 平均算子的多属性决策方法(s =t =1,q =3)[8]s (α1)=0.1152,s (α2)=0.1059,s (α3)=0.1481x 3>x 1>x 2基于广义正交模糊加权Heronian 平均算子的多属性决策方法(s =t =1,q =3)[9]s (α1)=0.0348,s (α2)=0.0263,s (α3)=0.0468x 3>x 1>x 2基于广义正交模糊诱导有序加权平均算子的多属性决策方法(q =3)s (α1)=0.1431,s (α2)=0.1295,s (α3)=0.1957x 3>x 1>x 27585郑州大学学报(理学版)第52卷㊀㊀不同的多属性决策方法具有不同的特点,其中文献[7]的方法没有考虑变量间的相关关系;文献[8-9]的方法可以考虑两个变量间的相关关系;但文献[7-9]的方法都没有区分不同位置之间的权重关系㊂本文提出的多属性决策方法的特点在于权重值只与集结过程中的位置有关,更适合解决属性较多情况下的实际问题㊂从表3中可知,虽然不同的决策方法得到的得分函数值不同,但只有基于广义正交加权几何平均算子的多属性决策方法的排序结果为x3>x2>x1,其他方法的排序结果都是x3>x1>x2,与本文的决策结果相同㊂说明基于广义正交模糊诱导有序加权平均算子的多属性决策方法具有有效性㊂4 结束语本文在IOWA算子的基础上提出了广义正交模糊IOWA算子,同时研究了该算子的4个性质,包括置换不变性㊁幂等性㊁单调性和界值性㊂另外基于q-ROFIOWA算子提出了一种新的解决模糊多属性决策问题的方法,并且分析了不同参数q对决策结果的影响,说明了该算法的稳定性㊂通过实例以及比较分析,说明了该算子在多属性决策应用中的有效性㊂参考文献:[1]㊀ZADEH L A.Fuzzy sets[J].Information and control,1965,8(3):338-353.[2]㊀ATANASSOV K T.Intuitionistic fuzzy sets[J].Fuzzy sets and systems,1986,20(1):87-96.[3]㊀ATANASSOV K T.New operations defined over the intuitionistic fuzzy sets[J].Fuzzy sets and systems,1994,61(2):137-142.[4]㊀DE S K,BISWAS R,ROY A R.Some operations on intuitionistic fuzzy sets[J].Fuzzy sets and systems,2000,114(3):477-484.[5]㊀YAGER R R.Pythagorean membership grades in multicriteria decision making[J].IEEE transactions on fuzzy systems,2014,22(4):958-965.[6]㊀YAGER R R.Generalized orthopair fuzzy sets[J].IEEE transactions on fuzzy systems,2017,25(5):1222-1230.[7]㊀LIU P D,WANG P.Some q-rung orthopair fuzzy aggregation operators and their applications to multiple-attribute decision mak-ing[J].International journal of intelligent systems,2018,33(2):259-280.[8]㊀LIU P D,LIU J L.Some q-rung orthopair fuzzy Bonferroni mean operators and their application to multi-attribute group decisionmaking[J].International journal of intelligent systems,2018,33(2):315-347.[9]㊀WEI G W,GAO H,WEI Y.Some q-rung orthopair fuzzy Heronian mean operators in multiple attribute decision making[J].International journal of intelligent systems,2018,33(7):1426-1458.[10]王军,张润彤,朱晓敏.广义正交模糊Maclaurin对称平均算子及其应用[J].计算机科学与探索,2019,13(8):1411-1421.WANG J,ZHANG R T,ZHU X M.Generalized orthopair fuzzy Maclaurin symmetric mean operators and their application[J].Journal of frontiers of computer science and technology,2019,13(8):1411-1421.[11]DU W S.Minkowski-type distance measures for generalized orthopair fuzzy sets[J].International journal of intelligent systems,2018,33(4):802-817.[12]DU W S.Correlation and correlation coefficient of generalized orthopair fuzzy sets[J].International journal of intelligent sys-tems,2019,34(4):564-583.[13]DU W S.Weighted power means of q-rung orthopair fuzzy information and their applications in multiattribute decision making[J].International journal of intelligent systems,2019,34(11):2835-2862.[14]林宏宇,张海锋,肖箭,等.基于q-rung orthopair模糊相似测度的多属性决策方法[J].价值工程,2019,38(33):251-255.LIN H Y,ZHANG H F,XIAO J,et al.A multi-attribute decision making method based on q-rung orthopair fuzzy similarity measure[J].Value engineering,2019,38(33):251-255.[15]YAGER R R.On ordered weighted averaging aggregation operators in multicriteria decisionmaking[J].IEEE transactions onsystems,man,and cybernetics,1988,18(1):183-190.[16]YAGER R R,FILEV D P.Induced ordered weighted averaging operators[J].IEEE transactions on systems,man and cybernet-ics,1999,29(2):141-150.95㊀第4期杜文胜,等:广义正交模糊IOWA算子及其在多属性决策中的应用[17]陈华友,刘春林.基于IOWA算子的组合预测方法[J].预测,2003(6):61-65.CHEN H Y,LIU C L.A kind of combination forecasting method baesd on induced ordered weighted averaging(IOWA)opera-tors[J].Forecasting,2003(6):61-65.[18]徐泽水.基于IOWA算子的模糊语言偏好矩阵排序方法[J].系统工程与电子技术,2003,25(4):440-442,488.XU Z S.A priority method based on induced ordered weighted averaging(IOWA)operator for fuzzy linguistic preference matri-ces[J].Systems engineering and electronics,2003,25(4):440-442,488.[19]陈启明,陈华友.基于IOWA算子的两类准则下的最优组合预测模型及其应用[J].数理统计与管理,2013,32(5):847-853.CHEN Q M,CHEN H Y.The optimal combined forecasting model and application under the two kinds of criterions based on IO-WA operator[J].Application of statistics and management,2013,32(5):847-853.[20]李喜华,王傅强,陈晓红.基于证据理论的直觉梯形模糊IOWA算子及其应用[J].系统工程理论与实践,2016,36(11):2915-2923.LI X H,WANG F Q,CHEN X H.Intuitionistic trapezoidal fuzzy IOWA operator based on dempster-shafer theory and its appli-cation[J].Systems engineering-theory and practice,2016,36(11):2915-2923.[21]圣文顺,徐爱萍,涂洁,等.基于模糊层次法的分布式故障诊断系统安全评估[J].信阳师范学院学报(自然科学版),2020,33(3):438-442.SHENG W S,XU A P,TU J,et al.Research on safety evaluation for distributed fault diagnostic system of overhead transmis-sion lines based on fuzzy analytic hierarchy process[J].Journal of Xinyang normal university(natural science edition),2020, 33(3):438-442.[22]XU Z S.An overview of methods for determining OWA weights[J].International journal of intelligent systems,2005,20(8):843-865.Generalized Orthopair Fuzzy IOWA Operator and Its Applicationsto Multi-attribute Decision MakingDU Wensheng,YAN Yanan(School of Business,Zhengzhou University,Zhengzhou450001,China) Abstract:Generalized orthopair fuzzy set was an extension of intuitionistic and Pythagorean fuzzy sets and the induced ordered weighted average(IOWA)operator was a common used aggregation operator. The q-rung orthopair fuzzy IOWA(q-ROFIOWA)operator was introduced,and some of its important properties were investigated.The method based on the proposed operator was developed and applied to multi-attribute decision making problems.An example of the award evaluation was illustrated the effec-tiveness of the method.The influence of parameter within in the operator on the decision results was ana-lyzed,which showed the robustness of the q-ROFIOWA operator.Key words:generalized orthopair fuzzy set;IOWA operator;multi-attribute decision making(责任编辑:方惠敏)。

模糊数学和其应用

模糊数学和其应用

04
总结与展望
模糊数学的重要性和意义
模糊数学是处理模糊性现象的一种数学 理论和方法,它突破了经典数学的局限 性,能够更好地描述现实世界中的复杂 问题。
模糊数学的应用领域广泛,包括控制论、信 息论、系统论、人工智能、计算机科学等, 对现代科学技术的发展起到了重要的推动作 用。
模糊数学的出现和发展,不仅丰富 了数学理论体系,也促进了各学科 之间的交叉融合,为解决实际问题 提供了新的思路和方法。
随着计算机技术的发展,模糊 数学的应用越来越广泛,成为 解决复杂问题的重要工具之一 。
模糊数学的基本概念
模糊集合
与传统集合不同,模糊集合的成员关系不再是确 定的,而是存在一定的隶属度。例如,一个人的 身高属于某个身高的模糊集合,其隶属度可以根 据实际情况进行确定。
隶属函数
用于描述模糊集合中元素属于该集合的程度。隶 属函数的确定需要根据实推理规则不再是一 一对应的,而是存在一定的连续性。例如,在医 疗诊断中,病人的症状与疾病之间的关系可能存 在一定的模糊性,通过模糊逻辑可以进行更准确 的推理。
模糊运算
与传统运算不同,模糊运算的结果不再是确定的 数值,而是存在一定的隶属度。例如,两个模糊 数的加法运算结果也是一个模糊数,其隶属度取 决于两个输入的隶属度。
模糊数学在图像处理中的应用
总结词
模糊数学在图像处理中主要用于图像增强和图像恢复。
详细描述
通过模糊数学的方法,可以对图像进行平滑、锐化、边缘检测等操作,提高图像的视觉效果和识别能 力。例如,在医学影像处理中,可以利用模糊数学的方法对CT、MRI等医学影像进行降噪、增强和三 维重建等处理,提高医学诊断的准确性和可靠性。
02
模糊数学的应用领域
模糊控制

直觉模糊微积分

直觉模糊微积分

直觉模糊微积分引言微积分是数学中的一门重要学科,涉及到函数、极限、导数和积分等概念。

微积分的发展与应用已经深入到各个领域,包括物理学、工程学、经济学等等。

然而,传统的微积分理论在处理模糊问题时存在局限性。

直觉模糊微积分(Intuitionistic Fuzzy Calculus)是一种新兴的数学工具,能够有效地处理模糊问题。

本文将介绍直觉模糊微积分的基本概念、运算规则以及应用领域。

直觉模糊集在介绍直觉模糊微积分之前,我们先来了解直觉模糊集的基本概念。

直觉模糊集是一种扩展的模糊集,它的隶属度函数不仅可以表示模糊程度,还可以表示不确定度。

直觉模糊集的隶属度函数是一个三元组,包括模糊度、确定度以及不确定度三个维度,分别用数值表示。

直觉模糊集可以用来描述人类的直觉认知,更符合人类对不确定性问题的处理方式。

直觉模糊微积分的基本概念直觉模糊微积分通过引入直觉模糊数和直觉模糊函数的概念,将传统微积分理论推广到模糊环境中。

直觉模糊数是一个具有隶属度函数的数值,可以用来表示直觉模糊集合。

直觉模糊函数是一个从直觉模糊集到直觉模糊集的映射,可以看作是一种模糊函数关系。

在直觉模糊微积分中,我们定义了直觉模糊导数和直觉模糊积分的运算规则。

直觉模糊导数可以看作是直觉模糊函数的斜率,它表征了函数在某一点上的变化情况。

直觉模糊积分是直觉模糊函数在某一区间上的累积效应,可以用来计算函数曲线下的面积。

直觉模糊微积分的运算规则直觉模糊微积分的运算规则包括直觉模糊导数和直觉模糊积分的运算性质。

直觉模糊导数具有线性性、乘法性以及链式法则等性质,使得我们可以像传统微积分一样对直觉模糊函数进行求导。

直觉模糊积分具有线性性、区间性以及换元法则等性质,使得我们可以像传统微积分一样对直觉模糊函数进行积分。

直觉模糊微积分的应用领域直觉模糊微积分在多个领域具有广泛的应用。

在工程学中,直觉模糊微积分可以用于模糊控制系统的设计与优化。

在经济学中,直觉模糊微积分可以用于风险分析与决策制定。

毕达哥拉斯模糊数密度算子及其决策应用

毕达哥拉斯模糊数密度算子及其决策应用

毕达哥拉斯模糊数密度算子及其决策应用毕达哥拉斯模糊数密度算子是一种有助于处理不确定数据的工具,是当前数据分析领域中非常广泛使用的一种方法。

一般来说,毕达哥拉斯模糊数密度算子使用距离函数度量数据点之间的关系,以确定由这些点组成的模糊数集的密度。

一、毕达哥拉斯模糊数密度算子介绍1.1 定义毕达哥拉斯模糊数密度算子是应用于不确定及具有多种属性的数据集的一种数学工具,它使用距离函数来表达一个点与另一个点之间的关系,从而创建一个无序模糊数集。

它主要用来描述模糊数集中各个点对密度的影响,这也就意味着该密度算子用来表达点属性及其属性之间的关系。

1.2 运用毕达哥拉斯模糊数密度算子的主要用户是统计学家、计算机科学家、经济学家等领域的专家,他们使用该算子可以提取出更多有用的数据,从而增加学术研究的深度及宽度。

它可用于数据研究、分类及聚类等非结构化数据分析技术,帮助用户更好地理解其中包含的信息。

二、毕达哥拉斯模糊数密度算子的决策应用2.1 生产决策毕达哥拉斯模糊数密度算子也可用于生产决策,它可以从模糊数集中抽取出有用的信息,由此对生产流程及其对结果的影响作出更准确的判断。

由于数据的不确定性有时是由于多种因素引起,因此,这种不确定性数据需要更多元的数据处理方式,而毕达哥拉斯模糊数密度算子是一种比较好的选择。

2.2 管理决策管理决策是企业决策,这也需要更多元的数据处理,比如毕达哥拉斯模糊数密度算子可以帮助我们分析不同决策的影响因素,然后结合不同的条件来制定最佳的决策策略,从而有效提升企业决策的效率及准确度。

三、总结毕达哥拉斯模糊数密度算子是一种应用于不确定数据的特殊工具,它可以被用于数据提取、分类和聚类,以及生产及管理等决策,有助于我们更好地理解模糊数据并制定最佳决策策略。

因此,毕达哥拉斯模糊数密度算子有着许多应用,在当前数据分析领域被广泛应用。

直觉模糊数-一种新的决策工具 (2013.10.17) 3

直觉模糊数-一种新的决策工具 (2013.10.17) 3

徐泽水. 区间直觉模糊信息的集成方法及其在决
策中的应用. 控制与决策, 2007, 22(2): 215219. Cited times: 354. (2007年以来该期刊发
表论文中引用率排名第一)
Z. S. Xu*, X. Q. Cai. Intuitionistic Fuzzy Information Aggregation: Theory and Applications. Springer-Verlag, Science Press, 2012.
n wi
g1 (1,2 ,...,n ) i
i 1
n
wi
wi wi ( i ) , 1 (1 vi ) i 1 i 1
n n
Z. S. Xu, R.R. Yager. Intuitionistic and interval-valued intutionistic fuzzy preference relations and their measures of similarity for the evaluation of agreement within a group. Fuzzy Optimization and Decision Making, 2009, 8(2): 123-139. Cited times: 63
f1 (1,2 ,...,n ) wi i , wi vi i 1 i 1
n n
G. Beliakov, H. Bustince, D. P. Goswami, U. K. Mukherjee, N. R. Pal (印度科学院院士、工程院院
士、IEEE Fellow、IFSA Fellow、IEEE Transactions on Fuzzy Systems前主编). On averaging operators for Atanassov’s intuitionistic fuzzy sets. Information

纯语言多属性群决策方法及其应用研究

纯语言多属性群决策方法及其应用研究

纯语言多属性群决策方法及其应用研究语言多属性群决策是决策理论和现代决策科学的重要内容,其理论与方法在经济管理、工程设计和军事等诸多领域都有着广泛的应用。

在对一些复杂问题进行决策时,由于客观事物的复杂性和人类思维的模糊性,当专家受一些主、客观因素制约时,属性值往往以语言变量、不确定变量、区间数或直觉模糊数等不同形式的模糊决策信息给出。

不仅如此,在很多现实决策问题中,专家权重和属性权重也会以这些模糊语言决策信息给出,称此类问题为纯语言多属性群决策问题。

对这类问题的研究具有很强的理论意义和较高的实际应用价值。

本文对几类纯语言多属性群决策问题进行了深入研究,主要内容包括以下几个方面:1.纯语言信息集结算子研究。

基于语言标度变量集和相应的运算法则提出了一系列集结算子,包括纯语言信息下的混合集结算子、导出的纯语言有序加权算子、不确定纯语言信息集结算子、导出的不确定纯语言信息集结算子和直觉不确定纯语言信息集结算子及其几何形式的集结算子等。

这些集结算子适用于当所给决策信息为语言标度变量、不确定变量和直觉变量环境下的情形。

特别对于提出的模糊决策信息下的各类混合集结算子,它们在决策过程中可以消除个别决策者不公正的主观因素对决策结果的影响,即对那些过高或过低的属性值分配较低的权重,从而避免决策结果的不合理性。

2.直觉模糊距离测度研究。

首先,分别从有序加权几何角度和混合加权几何角度出发,提出了直觉模糊有序加权几何距离测度和直觉模糊混合加权几何距离测度等几种直觉模糊距离测度。

其次,对这些距离测度的相关性质进行了理论分析,并研究了直觉模糊信息下基于混合加权几何距离测度在群体一致性分析中的应用,同时给出了相应的群决策方法,最后通过实际应用说明了方法的实用性和有效性。

3.纯语言信息下基于混合集结算子的多属性群决策方法及应用研究。

在提出的纯语言信息下的混合算术平均算子和混合几何平均算子基础上,给出了基于这两种集结算子的专家权重、属性权重及属性值均以语言标度变量形式给出的纯语言多属性群决策方法,并分别考虑了其在供应链管理领域中的合作伙伴选择问题、商业银行经营绩效评价问题和虚拟企业战略伙伴择优问题中的应用。

基于毕达哥拉斯TODIM和Heronian算子的语言多属性群决策及应用

基于毕达哥拉斯TODIM和Heronian算子的语言多属性群决策及应用

DOI:10.3969/J.ISSN.1672 7983.2020.04.005基于毕达哥拉斯TODIM和Heronian算子的语言多属性群决策及应用岳小云,毛学志,刘思严,杨晓静,邱凤霞(河北科技师范学院数学与信息科技学院,河北秦皇岛,066004)摘要:针对决策信息和属性权重为语言术语的多属性群决策问题,提出一种基于Heronian算子和TODIM的毕达哥拉斯决策方法。

首先,利用Heronian算子集结个体决策矩阵。

其次,利用得分函数改进TODIM方法来适用毕达哥拉斯模糊集;从而建立毕达哥拉斯群决策方法。

最后,通过远程会诊协同质量评价验证了该方法的可行性。

关键词:毕达哥拉斯模糊集;TODIM方法;Heronian算子;多属性群决策中图分类号:C934 文献标志码:A 文章编号:1672 7983(2020)04 0023 08模糊集的概念最早是由Zedah[1]提出的,一代又一代的学术研究者们付出了努力,加速了模糊集理论的不断完善,促使直觉模糊集理论的产生,该理论是由Atanassov[2]提出。

由于直觉模糊集在实际应用中的某些情况不满足适用条件,于是Yager[3]定义了毕达哥拉斯模糊集(PythagoreanFuzzySet)及集结算子。

Zhang[4]研究了TOPSIS方法在毕达哥拉斯模糊集环境下的应用。

Yang[5]针对文献[4]中定理3.4存在的缺陷,提出了新定理及证明过程。

范建平等[6]提出了毕达哥拉斯模糊交叉熵,并用交叉熵代替距离测度,提高了结果的准确性。

杜玉琴[7]定义了毕达哥拉斯梯形模糊语言集及其集结算子,并以企业挑选绿色供应商问题为例验证方法实用性。

李进军等[8]研究了区间毕达哥拉斯模糊集的三类Hamming距离。

施明华等[9]和李素勤[10]均提出,在毕达哥拉斯模糊集环境下的多属性群决策的应用。

在属性和专家权重均未知情形下,Wan等[11~13]拓展相对距离公式、确信度、信息熵和LINMAP方法于毕达哥拉斯模糊群决策,并应用于风险投资、绿色供应链和雾霾治理决策。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

相关文档
最新文档