微积分第二章 导数与微分
第二章 一元函数的导数和微分
第二章 一元函数的导数和微分微分学是微积分的重要组成部分,它的基本概念是导数与微分,其中导数反映出函数相对于自变量的变化而变化的快慢程度,而微分则指明当自变量有微小变化时,函数值变化的近似值.第一节 导数的概念在科学研究和工程技术中,常常遇到求变量的变化率的问题。
例如,物体作匀速直线运动时,其速度为物体在时刻t 0到t 的位移差s (t )-s (t 0) 与相应的时间差t -t 0的商00()()--s t s t v =t t .如果物体作变速直线运动,则上面的公式就不能用来求物体在某一时刻的瞬时速度了.不过,我们可先求出物体从时刻t 0到t 的平均速度,然后假定t →t 0,求平均速度的极限00()()lim→--t t s t s t t t ,并以此极限作为物体在t 0时刻的瞬时速度.从数学角度来看,00()()--f x f x x x 叫做函数y =f (x )在x 0与x 的差商,而把x →x 0时,该差商的极限值(如果存在的话)叫做函数f (x )在x 0处的导数.一般说来,工程技术中一个变量相对于另一个变量的变化率问题,可以化成求导数的问题进行处理.一、导数的定义定义 设函数y =f (x )在U (x 0)内有定义.如果极限00()()lim→--x x f x f x x x存在,则称该极限值为f (x )在点x 0处的导数,记为000()()()lim→-'=-x x f x f x f x x x , (2-3-1)此时也称函数f (x )在点x 0可导.函数f (x )在点x 0处的导数还可记为0d d =y x x x ;0d ()d =f x x x x ;0'=y x x .导数f ′(x 0)可以表示为下面的增量形式00000()()()limlim ∆→∆→+∆-∆'==∆∆x x f x x f x yf x x x. (2-3-2)如果(2-3-1)式和式(2-3-2)中右边的极限不存在,则称f (x )在点x 0不可导.当00()()lim→--x x f x f x x x = ∞时,我们通常说函数y = f (x )在点x 0处的导数为无穷大.如果函数y =f (x )在开区间(a ,b )内的每一点处都可导,则称f (x )在此开区间(a ,b )内可导.这时,∀x ∈(a ,b ),对应着f (x )的一个确定的导数值,这是一个新的函数关系,称该函数为原来函数f (x )的导函数,记为f ′(x ),y ′,d ()d f x x ,d d yx等,此时 0()()()lim ∆→+∆-'=∆x f x x f x f x x, x ∈(a ,b ).显然,f (x )在点x 0∈(a ,b )的导数f ′(x 0)就是导函数f ′(x )在点x =x 0处的函数值:00()()''==f x f x x x .为方便起见,我们简称函数的导函数为导数.由函数y =f (x )在点x 0处的导数f ′(x 0)的定义可知,它是一种极限:000()()()lim→-'=-x x f x f x f x x x ,而极限存在的充要条件是左、右极限都存在且相等.因此f ′(x 0)存在(即f (x )在点x 0可导)的充要条件应是下面的左、右极限00()()lim -→--x x f x f x x x ,000()()lim +→--x x f x f x x x 都存在且相等.我们将这两个极限分别称为函数f (x )在x 0处的左导数和右导数,记为f ′-(x 0)和f ′+(x 0),即000()()()lim --→-'=-x x f x f x f x x x ,000()()()lim ++→-'=-x x f x f x f x x x或写成增量形式:0000()()()lim --∆→+∆-'=∆x f x x f x f x x,0000()()()lim ++∆→+∆-'=∆x f x x f x f x x.定理1 函数y =f (x )在点x 0可导的充要条件是f ′-(x 0)及f ′+(x 0)存在且相等.该定理实际上是第一章第四节中定理2的推论. 例1 函数f (x )=|x |在点x =0处是否可导? 解 因为(0)(0)sgn()∆-+∆-==∆∆∆x f x f x x x,所以0(0)lim sgn()1++∆→'=∆=x f x ,0(0)lim sgn()1--∆→'=∆=-x f x ,由于f ′+(0)≠f ′-(0),因此f (x )=|x |在x =0处不可导.例2 研究函数,0,()ln(1),0<⎧=⎨+≥⎩x x f x x x 在点x =0处的可导性.解 易知f (x )在点x =0处连续,而0()(0)(0)lim ++→-'=x f x f f x0ln(1)0lim +→+-=x x x1lim ln(1)1+→=+=xx x , 00()(0)0(0)lim lim 1---→→--'===x x f x f x f x x, 由于f ′+(0)=f ′-(0)=1,故f (x )在点x =0处可导,且f ′(0)=1.例3 求函数f (x )=C ,x ∈(-∞,+∞)的导数,其中C 为常数.解 00()()()limlim 0∆→∆→+∆--'===∆∆x x f x x f x C Cf x x x, 即(C )′=0.通常说成:常数的导数等于零.例4 设y =x n ,n 为正整数,求y ′.解 0()lim ∆→+∆-'∆n nx x x x y =x12210lim(C ()())---∆→+∆++∆ n n n n x =nxxx x 1-=n nx ,即 (x n )′=nx n -1.特别地,n =1时,有(x )′=1. 例5 设y =sin x ,求y ′.解 0sin()sin limx x x xy x∆→+∆-'=∆022cos sin22limx x x x x∆→+∆=∆ 022cos 22lim cos x x x x x x∆→∆+∆⋅==∆即 (sin x )′=cos x .例6 设y =cos x ,x ∈(-∞,+∞),求y ′.解 0cos()cos limx x x xy x∆→+∆-'=∆02sin()sin 22limx x x x x∆→∆∆-+=∆ 02sin()22limsin x x x x x x∆→∆∆-⋅+==-∆, 即 (cos x )′=-sin x .例7 设y =a x ,x ∈(-∞,+∞),a >0,求y ′. 解 注意到u →0时,e u -1~u ,从而00(1)lim lim x x x x x x x a a a a y x x+∆∆∆→∆→--'==∆∆ln 00e 1ln limlim ln x a xx x x x x aa a a a x x∆∆→∆→-∆===∆∆, 即(a x )′=a x ln a (a >0).特别地 (e x )′=e x . 例8 设y =log a x ,x ∈(0,+∞),a >0且a ≠1,求y ′.解 00log (1)log ()log limlima a a x x xx x xx y xx∆→∆→∆++∆-'==∆∆00111lim log (1)lim log e =ln x x a a x x x x x x x a∆∆→∆→∆=+=,即 (log a x )′=1ln x a. 特别地 1(ln )x x'=.例9 设y =x 3,求y ′|x =2.解 因为 y ′=(x 3)′=3x 3-1=3x 2, 所以 y ′|x =2 =3x 2|x =2 =3×22=12.下面我们讨论可导与连续的关系.定理2 若y =f (x )在点x 0可导,则f (x )在点x 0必连续. 证 因为f (x )在点x 0可导,即000()()lim()x x f x f x f x x x →-'=-存在.由无穷小量与函数极限的关系得000()()()f x f x f x x x α-'=+-,其中α→0(x →x 0),于是0000()()()()()f x f x f x x x x x α'-=-+-故 [][]00000lim ()()lim ()()()0x x x x f x f x f x x x x x α→→'-=-+-=.即f (x )在点x 0连续.例10 研究函数1sin ,0,()0,0x x f x xx ⎧≠⎪=⎨⎪=⎩ 在点x =0处的连续性和可导性.解 因为1lim ()lim sin0(0)x x f x x f x→→===, 所以f (x )在点x =0处连续,但是0001sin 0()(0)1lim lim limsin 0x x x x f x f x x x x→→→--==- 不存在,故f (x )在点x =0处不可导.此例说明“连续不一定可导”,连续只是可导的必要条件. 二、导数的几何意义连续函数y =f (x )的图形在直角坐标系中表示一条曲线,如图2-1所示.设曲线y =f (x )上某一点A 的坐标是(x 0,y 0),当自变量由x 0变到x 0+Δx 时,点A 沿曲线移动到点B (x 0+Δx ,y 0+Δy ),直线AB 是曲线y =f (x )的割线,它的倾角记作β.从图形可知,在直角三角形AB C 中,tan CB y AC x β∆==∆,所以yx∆∆的几何意义是表示割线AB 的斜率.图2-1当Δx →0时,B 点沿着曲线趋向于A 点,这时割线AB 将绕着A 点转动,它的极限位置为直线AT ,这条直线AT 就是曲线在A 点的切线,它的倾角记作α.当Δx →0时,既然割线趋近于切线,所以割线的斜率yx∆∆=tan β必然趋近于切线的斜率tan α,即 00()lim tan x yf x xα∆→∆'==∆.由此可知,函数y =f (x )在x 0处的导数f ′(x 0)的几何意义就是曲线y =f (x )在对应点A (x 0,y 0)处的切线的斜率.曲线y =f (x )在点A (x 0,y 0)的切线方程可写成:(1) f ′(x 0)存在,切线方程为y -f (x 0)= f ′(x 0)(x -x 0);(2) f (x )在点x 0处连续,f ′(x 0)=∞,则切线方程为x =x 0.例11 求过点(2,0)且与曲线y =1x 相切的直线方程. 解 显然点(2,0)不在曲线y =1x上.由导数的几何意义可知,若设切点为(x 0,y 0),则y 0=1x ,且所求切线的斜率k 为 02011()x x k xx ='==-, 故所求切线方程为020011(2)y x x x -=--. 又切线过点(2,0),所以有020011(2)x x x -=--. 于是得x 0=1,y 0=1,从而所求切线方程为y -1= -(x -1),即y =2-x .例12 在曲线32y x =上求一点,使该点处的曲线的切线与直线y =3x -1平行. 解 在32y x =上的任一点M (x ,y )处切线的斜率k 为32()k y x ''===而已知直线y =3x -1的斜率k 1=3.令k =k 13=,解之得x =4,代入曲线方程得 3248y ==.故所求点为(4,8).三、函数四则运算的求导法定理3设函数u =u (x ),v =v (x )在点x 处可导,k 1,k 2为常数,则下列各等式成立: (1) [k 1u (x )+k 2v (x )]′=k 1u ′(x )+k 2v ′(x ); (2) [(u (x )v (x )]′=u ′(x )v (x )+u (x )v ′(x );(3) 2()()()()()()()u x u x v x u x v x v x v x '''⎡⎤-=⎢⎥⎣⎦[v (x )≠0]. 证 仅以(3)为例进行证明.记g (x )=()()u x v x ,且v (x )≠0,则01()()()lim()()x u x x u x g x x v x x v x ∆→⎡⎤+∆'=-⎢⎥∆+∆⎣⎦ 01()()()()lim()()()()x u x x u x v x x v x v x u x v x v x x x x ∆→+∆-+∆-⎡⎤=-⎢⎥+∆∆∆⎣⎦ 0001()()()()lim()lim ()lim ()()x x x u x x u x v x x v x v x u x v x v x x x x ∆→∆→∆→+∆-+∆-⎡⎤=-⎢⎥+∆∆∆⎣⎦ 2()()()()()u x v x u x v x v x ''-=.定理中的(1)式和(2)式均可推广至有限多个函数的情形.读者不难自行完成. 例13 设52434y x x =-+,求y ′.解 52(434)y x x ''=-+52(4)(3)(4)x x '''=-+4206x x =-.例14 设y =x 3cos x sin x ,求y ′.解 3(c o s s i n )y x x x''= 333()cos sin (cos )sin cos (sin )x x x x x x x x x '''=++232323cos sin sin cos x x x x x x x =-+.例15 设y =tan x ,求y ′.解 sin (tan )()cos xy x x'''== 2(sin )cos sin (cos )cos x x x x x''-=2222cos sin 1cos cos x x x x+==,即 (tan x )′=21cos x=sec 2x =1+tan 2x . 类似可得2221(cot )csc (1cot )sin x x x x'=-=-=-+. 例16 设y =sec x ,求y ′.解 在定理3的(3)中,取u (x )≡1,则有21()()()v x v x v x ''⎛⎫=- ⎪⎝⎭. 于是y ′=(sec x )′=21(cos )cos cos x x x ''⎛⎫=- ⎪⎝⎭2sin sec tan cos xx x x==,即 (sec x )′=sec x tan x .类似可得 (csc x )′=-csc x cot x .第二节 求导法则一、复合函数求导法定理1(链导法) 若u =φ(x )在点x 处可导,而y =f (u )在相应点u =φ(x )处可导,则复合函数y =f (φ(x ))在点x 处可导,且d d d d d d y y u x u x=⋅,或记为 [f (φ(x ))]′=f ′(φ(x ))·φ′(x ). (2-2-1)证 因为y =f (u )在u 的导数0()limu yf u x∆→∆'=∆存在,所以()yf u xα∆'=+∆,其中α→0(Δu →0), 故 ()y f u x x α'∆=∆+∆,从而 00limlim ()x x y u u f u x x x α∆→∆→∆∆∆⎛⎫'=+ ⎪∆∆∆⎝⎭000()limlim lim x x x u uf u x xα∆→∆→∆→∆∆'=+∆∆.又u =φ(x )在点x 处可导,故φ(x )必在点x 处连续,因此Δx →0时必有Δu →0.于是000lim()()lim lim x u x y uf u x x xϕα∆→∆→∆→∆∆''=+∆∆()()(())()f u x f x x ϕϕϕ''''==,而[]0lim(())x yf x xϕ∆→∆'=∆,定理证毕.例1 设f (x )=x μ,μ ∈R ,x >0,求f ′(x ). 解 由于x μ=e μln x ,x >0.令u =μln x ,则x μ系由y =e u 及u =μln x 复合而成.d(e )d(ln )()d d u x f x u xμ'=⋅ln 11e e u x x x xμμμμμ-===, 即 (x μ)′=μx μ-1,μ∈R ,x >0.例2 设y =e -x ,求y ′.解 令u = -x ,则y =e u ,从而d d d d(e )d()d d d d d u y y u x x u x u x-=⋅=⋅ e (1)e u x -=-=-.即 (e -x )′= -e -x .对复合函数的分解熟练后,就不必再写出中间变量,而可按下列各题的方式进行计算.例3 设1sin1y x=+,求y ′. 解 21111cos()cos 11(1)1y x x x x''==++++. 例4设y =y ′.解2)x y '''==22(e )x x '=222e ()x x x '=⋅22e 2x x x =⋅22x x=.例5设ln(y x =,求y ′. 解ln(y x x '⎡⎤''==+⎣⎦21⎡⎤'==⎢⎢⎣=.二、反函数求导法定理2 设函数y =f (x )与x =φ(y )互为反函数,f (x )在点x 可导,φ(y )在相应点y 处可导,且d ()0d xy yϕ'=≠,则 d 1d d d x y yx=,或1()()f x y ϕ'='. 简单地说成:反函数的导数是其直接函数导数的倒数.证 由x =φ(y )=φ(f (x ))及y =f (x ),x =φ(y )的可导性,利用复合函数的求导法,得1=φ′(f (x ))f ′(x )=φ′(y )f ′(x ),故 1(),()0()f x y y ϕϕ''=≠'. 例6 设y =arcsin x ,求y ′. 解 由定理2及x =sin y 可知11(sin )cos y y y y '====' 这里记号(sin )y y '表示求导是对变量y 进行的.由上式得(arcsin )x '=.同理可得:(arccos )x '=,21(arctan )1x x '=+,21(arccot )1x x-'=+. 三、参数方程求导法若方程x =φ(t )和y =ψ(t )确定y 与x 间的函数关系,则称此函数关系所表达的函数为由参数方程(),(),x t y t ϕψ=⎧⎨=⎩t ∈(α,β) (2-2-2) 所确定的函数.下面我们来讨论由参数方程所确定的函数的导数.设t =φ-1(x )为x =φ(t )的反函数,在t ∈(α,β)中,函数x =φ(t ),y =ψ(t )均可导,这时由复合函数的导数和反函数的导数公式,有111d (())(())(())d y x x x x ψϕψϕϕ---'''⎡⎤==⎣⎦ 11()(())()()t x t t ψψϕϕϕ-''=='' (φ′(t )≠0). 于是由参数方程(2-2-2)所确定的函数y =y (x )的导数为d d ()d d d ()d yy t t x x t tψϕ'=='(φ′(t )≠0). (2-2-3) 例7 设33cos ,sin ,x a t y a t ⎧=⎨=⎩求d d yx .解 3232(cos )d 3sin cos tan d (sin )3cos (sin )t t a t y a t tt x a t a t t '===-'-(2n t π≠,n 为整数).例8 设2223,13,1at x t aty t ⎧=⎪⎪+⎨⎪=⎪+⎩ -∞<t <+∞,求d d yx.解 222222223()d 6(1)6213d 3(1)61()1t taty at t at tt at x a t at t t '+-+===+--'+ (t ≠±1).例9 求极坐标方程r =e a θ(0<θ<π/4,a >1)所确定的函数y =y (x )的导数.解 由极坐标与直角坐标的关系,得cos e cos ,sin e sin ,a a x r y r θθθθθθ⎧==⎨==⎩故 (e cos )d e sin +e cos sin cos d (e sin )e cos e sin cos sin a a a a a a y a a x a a θθθθθθθθθθθθθθθθθθ'+==='--.例10 求椭圆cos ,sin x a t y bt =⎧⎨=⎩在t =π/4处的切线方程和法线方程.解 d (sin )cot d (cos )yb t bt x a t a '==-',所以在椭圆上对应于t =π/4的点处的切线和法线的斜率为4d cot d 4t=ybbk x a a ππ==-=-切,a kb =法.切线方程和法线方程分别为bx +ay =和ax -by =a 2-b 2).四、隐函数求导法如果在含变量x 和y 的关系式F (x ,y )= 0中,当x 取某区间I 内的任一值时,相应地总有满足该方程的惟一的y 值与之对应,那么就说方程F (x ,y )=0在该区间内确定了一个隐函数y =y (x ).这时y (x )不一定都能用关于x 的表达式表示.例如方程e y +xy -e -x =0和y =cos(x +y )都能确定隐函数y =y (x ).如果F (x ,y )=0确定的隐函数y =y (x )能用关于x 的表达式表示,则称该隐函数可显化.例如x 3+y 5-1=0,解出y =,就把隐函数化成了显函数.若方程F (x ,y )=0确定了隐函数y =y (x ),则将它代入方程中,得F (x ,y (x ))≡0.对上式两边关于x 求导(若可导),并注意运用复合函数求导法则,就可以求出y ′(x )来. 例11 求方程y =cos(x +y )所确定的隐函数y =y (x )的导数.解 将方程两边关于x 求导,注意y 是x 的函数,得y ′= -sin(x +y )(1+y ′),即 sin()1sin()x y y x y -+'=++ , 1+sin(x +y )≠0. 例12 求由方程e y +xy -e -x = 0所确定的隐函数y = y (x )的导数.解 将方程两边关于x 求导,得e y y ′+y +xy ′+e -x =0,故 e exy y y x -+'=-+ (x +e y ≠0). 在计算幂指函数的导数以及某些乘幂、连乘积、带根号函数的导数时,可以采用先取对数再求导的方法,简称对数求导法.它的运算过程如下:在y =f (x )(f (x )>0)的两边取对数,得ln y =ln f (x ).上式两边对x 求导,注意到y 是x 的函数,得y ′=y (ln f (x ))′.例13 求2242(2)(1)(1)x y x x +=+++的导数. 解 先在两边取对数,得242ln 2ln(2)ln(1)ln(1)y x x x =+-+-+.上式两边对x 求导,注意到y 是x 的函数,得3242442211y x x x y x x x '=--+++, 于是 3242442211x x x y y x x x ⎛⎫'=-- ⎪+++⎝⎭,即22342242(2)442(1)(1)211x x x x y x x x x x ⎛⎫+'=-- ⎪+++++⎝⎭.例14 设()()v x y u x =,u (x )>0,其中u (x ),v (x )均可导,求y ′.解 两边取对数得ln y =v (x )ln u (x ),两边对x 求导,得()()ln ()()()y u x v x u x v x y u x '''=+, 于是 ()()()()()ln ()()v x v x u x y u x v x u x u x '⎛⎫''=+ ⎪⎝⎭. 特别地,当()()u x v x x ==时,()(1ln )x x x x x '=+.例15 求y =x sin x (x >0)的导数.解 两边取对数得ln y =sin x ln x .两边对x 求导,得sin cos ln y x x x y x'=+. 于是 sin sin cos ln x x y x x x x ⎛⎫'=+ ⎪⎝⎭. 第三节 函数的微分一、微分的概念定义1 设函数y =f (x )在U (x 0)内有定义,若∃A ∈R ,使Δy =A Δx +o (Δx ) (2-3-1)成立,则称函数y =f (x )在点x 0处可微分(简称可微),线性部分A Δx 称为f (x )在x 0处的微分,记为d y =A Δx (其中Δx =x -x 0),A 称为微分系数.定义中的式(2-3-1)可写为0000000()()()()()lim lim 0x x x x f x f x A x x f x f x A x x x x →→⎛⎫----=-= ⎪--⎝⎭, (2-3-2) 即式(2-3-1)成立的充要条件为 000()()limx x f x f x A x x →-=-. 于是便有下面的定理.定理1 函数y =f (x )在点x 0可微的充要条件是函数y =f (x )在点x 0可导.当f (x )在点x 0处可微时,必有d y =f ′(x 0)Δx . 该定理说明函数的可微性与可导性是等价的.函数y =f (x )在任意点x 的微分,称为函数的微分,记为d y =f ′(x )Δx . (2-3-3)例1 设y =x ,求d y .解 因为y ′=(x )′=1,所以d y =1×Δx =Δx .为方便起见,我们规定:自变量的增量称为自变量的微分,记为d x =Δx .于是式(2-3-3)可记为d y =f ′(x )d x . (2-3-4)例2 求y =sin x 当x =π/4,d x =0.1时的微分.解 d y =(sin x )′d x =cos x d x .当x =π/4,d x =0.1时,有d cos 0.10.07074y π=⨯=≈. 在几何上,y =f (x )在x 0处的微分d y =f ′(x 0)d x 表示曲线y =f (x )在点M (x 0,f (x 0))处切线MT 的纵坐标相应于Δx 的改变量PQ (见图2-2),因此d y =Δx tan α.图2-2二、微分的运算公式1.函数四则运算的微分设u =u (x ),v =v (x )在点x 处均可微,则有d(Cu )=C d u (C 为常数),d(u +v )=d u +d v ,d(uv )=u d v +v d u ,2d()=,0u vdu udv v v v -≠. 这些公式由微分的定义及相应的求导公式立即可证得.2.复合函数的微分若y =f (u )及u =φ(x )均可导,则复合函数y =f (φ(x ))对x 的微分为d y =f ′(u )φ′(x )d x . (2-3-5)注意到d u =φ′(x )d x ,则函数y =f (u )对u 的微分为d y =f ′(u )d u . (2-3-6)将(2-3-6)式与(2-3-4)式比较可知,无论u 是自变量还是另一个变量的可微函数,微分形式d y =f ′(u )d u 保持不变.此性质称为一阶微分的形式不变性.由此性质,我们可以把导数记号d d y x ,d d y u等理解为两个变量的微分之商了,因此,导数有时也称微商.用微商来理解复合函数的导数以及求复合函数的导数就方便多了.例3 设y =d y .解 记u =a 2+x 2,则yd du y y u u '==.又 d u =u ′x d x =2x d x ,故d 2d y x x x ==.为了读者使用的方便,我们将一些基本初等函数的导数和微分对应列表如下.表2-1第四节 高阶导数与高阶微分一、高阶导数若函数y =f (x )在U (x )内可导,其导函数为f ′(x ),且极限0()()lim x f x x f x x∆→''+∆-∆ 存在,则称该极限值为函数f (x )在点x 处的二阶导数,记为f ″(x ), 22d d y x,y ″等. 函数y =f (x )的二阶导数f ″(x )仍是x 的函数,如果它可导,则f ″(x )的导数称为原函数f (x )的三阶导数,记为()f x ''',33d d y x,y '''等. 一般说来,函数y =f (x )的n -1阶导数仍是x 的函数,如果它可导,则它的导数称为原来函数f (x )的n 阶导数,记为()()n f x ,d d n n y x,()n y 等.通常四阶和四阶以上的导数都采用这套记号,而不用“′”.一阶、二阶和三阶导数则采用“′”的记号.由以上叙述可知,求一个函数的高阶导数,原则上是没有什么困难的,只需运用求一阶导数的法则按下列公式计算()(1)()n n y y -'= (n =1,2,…)或写成11d d d d d d n n-n n y y x x x -⎛⎫= ⎪⎝⎭,()(1)()(())n n f x f x -'=. 如果函数y =f (x )在区间I 上有直到n 阶的连续的导数,我们使用记号f (x )∈C n (I )来表示. 例1 设y =x n ,n 为正整数,求它的各阶导数.解 1()n n y x nx -''==,12()(1)n n y nx n n x --'''==-,……()(1)(1)k n k y n n n k x -=--+ ,……()(1)321!n y n n n =⨯-⨯⨯⨯⨯= ,(1)()()(!)0n n y y n +''===.显然,y =x n 的n +1阶以上的各阶导数均为0.例2 设y =sin x ,求它的n 阶导数()n y .解 cos sin()2y x x π'==+,()cos()sin(2)22y y x x ππ''''==+=+⨯,设 ()sin()2k y x k π=+⋅,则 (1)()()cos()sin (1)22k k y y x k x k +ππ⎡⎤'==+=++⎢⎥⎣⎦.由数学归纳法,知()(sin )sin()2n nx x =+π,n =1,2,….由此式我们可得到y =cos x 的高阶导数公式:()(1)1(cos )(sin )sin()cos()22n n n nx x x x --=-=-+π=+π,即 ()(cos )cos()2n nx x =+π,n =1,2,….例3 设y =ln(1+x ),求()n y .解 11y x '=+,211()()1(1)y y x x '''''===-++,2312()(1)(1)y y x x '⎡⎤''''''==-=⎢⎥++⎣⎦,运用数学归纳法可知()1(1)!(1)(1)n n n n y x --=-+,n =1,2,3,….例4 设y =a x (a >0),求()n y .解 ()ln x x y a a a ''==,2(ln )ln x x y a a a a '''==.设 ()ln k x k y a a =,则 ()(1)1ln ln k x k x k+y a a a a +'==.故 ()()ln x n x n a a a =, n =1,2,….特别地,有 ()(e )e x n x =, n =1,2,….对于高阶导数,有下面的运算法则:设函数u =u (x )和v =v (x )在点x 处都具有直到n 阶的导数, 则u (x )±v (x ),u (x )v (x )在点x 处也具有n 阶导数,且(u ±v )(n )=u (n )±v (n ), (2-4-1)()()(1)(2)(1)()2!n n n n n n u v u v n u v u v ---'''⋅=⋅+⋅⋅++ ()(1)(1)!n n n n k uv k --++ =()()0C n i n i i ni u v -=⋅⋅∑, (2-4-2) 其中u (0)=u ,v (0)= v ,(1)(1)C !i n n n n i i --+= .(2- 4-2)式称为莱布尼茨(Leibniz)公式,将它与二项展开式对比,就很容易记住. (2-4-1)式由数学归纳法易证.(2-4-2)式证明如下:当n =1时,由(uv )′=u ′v +uv ′知公式成立.设当n =k 时公式成立,即()()()()(1)(2)()(1)C 2!kk i k i i k k k k k i k k y u v u v ku v u v uv ---=-'''=⋅⋅=++++∑ .两边求导,得(1)(1)()()(1)k k k k k y u v u v k u v u v ++-''''⎡⎤⎡⎤=+++⎣⎦⎣⎦(1)(2)()(1)(1)2!k k k k k k u v u v u v uv --++''''''⎡⎤⎡⎤+++++⎣⎦⎣⎦1(1)()10C k i k i i k i u v ++-+==⋅⋅∑,即n =k +1时公式(2-4-2)也成立,从而(2-4-2)成立.例5 设y =x 2·e 2x ,求y (20).解 设u =e 2x ,v =x 2,则u (i )=2i ·e 2x (i =1,2,…,20),v ′=2x ,v ″=2,v (i )=0 (i =3,4,…,20).代入莱布尼茨公式,得y (20)=(x 2·e 2x )(20)202219218220192e 202e 22e 22!x x x x x ⋅=⋅⋅+⋅⋅⋅+⋅⋅⋅20222e (2095)x x x =⋅⋅++.例6 设e x +y -xy =1,求y ″(0).解 方程两边对x 求导,得(1+y ′)e x +y -y -xy ′=0.上式两边再对x 求导,得(1+y ′)2e x +y +y ″e x +y -2y ′-xy ″=0.令x =0,可得y =0,y ′(0)= -1,将这些值代入上式得y ″(0)= -2.例7已知cos,sin,x a ty b t=⎧⎨=⎩求22ddyx.解d(sin)coscot d(cos)siny b t b t bt x a t a t a'==-=-'.注意dcotdy btx a=-,x=a cos t仍是参数方程,所以仍须用参数方程求导法则,从而22d d cot()d d ddd(cos)dby ty at xxx a tt'⎛⎫- ⎪⎝⎭=='2321csc cscsinb bt ta a t a=⋅⋅=-⋅-.*二、高阶微分对于函数y=f(x),类似于高阶导数可以定义高阶微分.设f(x)有直至n阶的导数,自变量的增量仍为d x,则二阶微分定义为d2y=d(d y)=d(f′(x)d x)=d(f′(x))d x=f″(x)d x·d x=f″(x)d x2;三阶微分定义为d3y=d(d2y)=d(f″(x)d x2)=d(f″(x))d x2=f'''(x)d x d x2=f'''(x)d x3;一般地,定义n阶微分为d n y=d(d n-1y)=f(n)(x)d x n. (2-4-3) 以上公式中的x都是自变量,d x n表示n个d x的乘积(n=2,3,4,…).对于复合函数来说,二阶及二阶以上的微分已不再具有公式(2-4-3)的形式了.例如,设y=f(u),u=φ(x),且都具有相应的可微性,则d y=f′(u)d u,而d2y=d(f′(u)d u)=d(f′(u))d u+f′(u)d(d u)=f″(u)d u2+f′(u)d2u. (2-4-4)这是因为d u不再是固定的了,它依赖于自变量x,即d u=φ′(x)d x.(2-4-4)式说明高阶微分已不再具有形式不变性了.这是高阶微分与一阶微分的重要区别之一.例8 设y=x sin x,求d2y.解d y=(x sin x)′d x=(sin x+x cos x)d x;d2y=d(d y)=(sin x+x cos x)′d x2=(cos x+cos x-x sin x)d x2=(2cos x-x sin x)d x2.例9设u=u(x),v=v(x)均有二阶导数,y=u(x)v(x),求d2y.解d y=y′d x=[u(x)v(x)]′d x=[u′(x)v(x)+u(x)v′(x)]d xd 2y =d(d y )=d [(u ′(x )v (x )+u (x )v ′(x ))d x ]=[u ′(x )v (x )+u (x )v ′(x )]′d x 2=[u ″(x )v (x )+2u ′(x )v ′(x )+ u (x )v ″(x )]d x 2.第五节 微分中值定理本节介绍微分学中有重要应用的反映导数更深刻性质的微分中值定理.定理1 [罗尔(Ro lle)定理] 若f (x )∈C ([a ,b ]),f (x )在(a ,b )内可导,且f (a )=f (b ),则∃ξ∈(a ,b )使得f ′(ξ)=0.证 由f (x )∈C ([a ,b ])知f (x )在[a ,b ]上必取得最大值M 与最小值m .若M >m ,则M 与m 中至少有一个不等于f (x )在区间端点的值.不妨设M ≠f (a ).由最值定理,∃ξ∈(a ,b ),使f (ξ)=M .又0()()()lim 0x f x f f xξξξ++∆→+∆-'=≤∆,0()()()lim 0x f x f f x ξξξ--∆→+∆-'=≥∆, 故 f ′(ξ)=0.若M =m ,则f (x )在[a ,b ]上为常数,故(a ,b )内任一点都可成为ξ,使f ′(ξ)=0. 罗尔定理的几何意义是:若y =f (x )满足定理的条件,则其图像在[a ,b ]上对应的曲线弧AB 上一定存在一点具有水平切线,如图2-3所示.图2-3定理2[拉格朗日(L ag r ang e)中值定理] 若f (x )∈C ([a ,b ]),f (x )在(a ,b )内可导,则∃ξ∈(a ,b )使得f (b )-f (a )=f ′(ξ)(b -a ). (2-5-1)证 考虑辅助函数Φ(x )=f (x )-λx (其中λ待定),为了使Φ(x )满足定理1的条件,令Φ(a )=Φ(b )得 λ=()()f b f a b a--, 即 Φ(x )=f (x )-()()f b f a b a --x . 于是由定理1,∃ξ∈(a ,b ),使Φ′(ξ)=0,即f (b )-f (a )=f ′(ξ)(b -a ).如图2-4所示,连结曲线弧 AB 两端的弦AB ,其斜率为()()f b f a b a--.因此,定理的几何意义是:满足定理条件的曲线弧 AB 上一定存在一点具有平行于弦AB 的切线.图2-4显然,罗尔定理是拉格朗日中值定理的特殊情形.式(2-5-1)称为拉格朗日中值公式,显然,当b <a 时,式(2-5-1)也成立.设x 和x +Δx 是(a ,b )内的两点,其中Δx 可正可负,于是在以x 及x +Δx 为端点的闭区间上有f (x +Δx )-f (x )=f ′(ξ)Δx ,其中ξ为x 与x +Δx 之间的某值,记ξ = x +θΔx ,0<θ<1,则f (x +Δx )-f (x )=f ′(x +θΔx )Δx (0<θ<1). (2-5-2)(2-5-2) 式称为有限增量公式.推论1 若函数f (x )在区间I 上的导数恒为零,则f (x )在区间I 上为一常数. 证 x 1,x 2∈I ,x 1<x 2,在[x 1,x 2]上应用定理2,得f (x 2)-f (x 1) =f ′(ξ)(x 2-x 1),ξ∈(x 1,x 2).由于f ′(ξ)=0,故f (x 2)=f (x 1).由x 1,x 2的任意性可知,函数f (x )在区间I 上为一常数.在第一节我们知“常数的导数为零”,推论1就是其逆命题.由推论1立即可得以下结论. 推论2 若∀x ∈I ,f ′(x )=g ′(x ),则在I 上f (x )=g (x )+C (C 为常数).例1 求证arcsin x +arccos x =π2,x ∈[-1,1]. 证 令f (x )=arcsin x +arccos x ,则f ′(x )=,x ∈(-1,1).由推论1得f (x )=C ,x ∈(-1,1).又 因f (0)=π2,且f (±1)= π2. 故 f (x )=arcsin x +arccos x =π2,x ∈[-1,1].例2 证明不等式arc tan x 2-arc tan x 1≤x 2-x 1(其中x 1<x 2).证 设f (x )=arc tan x ,在[x 1,x 2]上利用拉格朗日中值定理, 得 arc tan x 2-arc tan x 1=211ξ+(x 2-x 1),x 1<ξ<x 2. 因为211ξ+≤1,所以 arc tan x 2-arc tan x 1≤x 2-x 1.例3 设函数f (x )=x (x -2)(x -4)(x -6),说明方程f ′(x )=0在(-∞,+∞)内有几个实根,并指出它们所属区间.解 因为f ′(x )是三次多项式,所以方程f ′(x )=0在(-∞,+∞)内最多有3个实根.又由于f (0)=f (2)=f (4)=f (6)=0,f (x )在区间[0,2],[2,4],[4,6]上满足罗尔定理的条件.故 ξ1∈(0,2),ξ2∈(2,4),ξ3∈(4,6),使f ′(ξ1)=0,f ′(ξ2)=0,f ′(ξ3)=0.即方程f ′(x )=0在(-∞,+∞)内有3个实根,分别属于区间(0,2),(2,4),(4,6).例4 若f (x )>0在[a ,b ]上连续,在(a ,b )内可导,则∃ξ∈(a ,b ),使得()()ln()()()f b f b a f a f ξξ'=-. 证 原式即()ln ()ln ()()()f f b f a b a f ξξ'-=-. 令φ(x )=ln f (x ),有 φ′(x )=()()f x f x '.显然φ(x )在[a ,b ]上满足拉格朗日中值定理的条件,在[a ,b ]上应用定理可得所证. 下面再考虑由参数方程x =g (t ),y =f (t ),t ∈[a ,b ]给出的曲线段,其两端点分别为A (g (a ),f (a )),B (g (b ),f (b )).连结A ,B 的弦AB 的斜率为()()()()f b f ag b g a -- (见图2-5),而曲线上任何一点处的切线斜率为d ()d ()x f t y g t '='.图2-5若曲线上存在一点C [对应参数t =ξ∈(a ,b )],在该点曲线的切线与弦AB 平行,则可得()()()()()()f b f a fg b g a g ξξ'-='-.定理3[柯西(CaUchy )中值定理] 若f (x ),g (x )∈C ([a ,b ])均在(a ,b )内可导,且g ′(x )≠0,则∃ξ∈(a ,b )使得()()()()()()f b f a fg b g a g ξξ'-='-.证 由g ′(x )≠0和拉格朗日中值定理得g (b )-g (a )=g ′(η)(b -a )≠0, η∈(a ,b ).由此有g (b )≠g (a ),考虑辅助函数Φ(x )=f (x )-λg (x )(λ待定).为使Φ(x )满足罗尔中值定理的条件,令Φ(a )=Φ(b ),得λ=()()()()f b f ag b g a --.取λ的值如上,由罗尔定理知∃ξ∈(a ,b ),使Φ′(ξ)=0,即()()()()0()()f b f a fg g b g a ξξ-''-=-,即()()()()()()f b f a fg b g a g ξξ'-='-. 由此定理得证.显而易见,若取g (x )≡x ,则定理3成为定理2,因此定理3是定理1,2的推广,它是这三个中值定理中最一般的形式.例5 设函数f (x )在[x 1,x 2]上连续,在(a ,b )内可导,且x 1·x 2>0,证明∃ξ∈(x 1,x 2),使112212()()()()x f x x f x f f x x ξξξ-'=--.证 原式可写成122121()()()()11f x f x x x f f x x ξξξ-'=--. 令φ(x )=()f x x ,ψ(x )=1x.它们在[x 1,x 2]上满足柯西中值定理的条件,且有 ()()x x ϕψ''=f (x )-xf ′(x ). 应用柯西中值定理即得所证.第六节 泰勒公式在本章前面已知道,如果f (x )在点x 0处可微,则f (x )=f (x 0)+f ′(x 0)(x -x 0)+o (x -x 0).此式表明:对于任何在x 0处有一阶导数的函数,在U (x 0)内能用关于(x -x 0)的一个一次多项式来近似表示它,多项式的系数就是该函数在x 0处的函数值和一阶导数值,这种近似表示的误差是比(x -x 0)高阶的无穷小.于是,人们猜想:如果函数f (x )在点x 0处有n 阶导数,则可以用一个关于(x -x 0)的n 次多项式来近似表示f (x ),该多项式的系数仅与函数f (x )在点x 0的函数值和各阶导数值有关,这种近似表示的误差是比(x -x 0)n 高阶的无穷小.泰勒(Tayl o r)对这个猜想进行了研究,并得到了下面的结论.定理1(泰勒中值定理) 若f (x )在U (x 0)内具有n +1阶导数,则∀x ∈U (x 0),有f (x )=()000()()()!k nk n k f x x x R x k =-+∑, (2-6-1) 其中R n (x )=o ((x -x 0)n ),且(1)1000(())()()(1)!n n n f x x x R x x x n θ+++-=-+, 0<θ<1. (2-6-2)公式(2-6-1)称为f (x )在点x 0的n 阶泰勒公式,式中R n (x )称为余项.式(2-6-2)表示的余项称为拉格朗日余项,而R n (x )=o ((x -x 0)n )称为皮亚诺(Peano)余项.()000()()()!k nk n k f x P x x x k ==-∑称为n 阶泰勒多项式.运用泰勒多项式近似表示函数f (x )的误差可由余项进行估计.例如,若∀x ∈U (x 0),有|f (n +1)(x )|≤M ,则可得误差估计式10()()()(1)!n n n M R x f x P x x x n +=-≤-+.特别地,当公式(2-6-1)中的x 0=0时,通常称为麦克劳林(MaclaUrin)公式,即f (x )=∑nk =0f (k )(0)k !xk +Rn (x ), (2-6-3)其中 (1)1()()(1)!n n n f x R x x n θ++=+,0<θ<1.很显然,拉格朗日中值公式是带拉格朗日余项的零阶泰勒公式,泰勒中值定理也是拉格朗日中值定理的推广.例1 求f (x )=e x 的n 阶麦克劳林公式.解 f (k )(x )=e x ,f (k )(0)=1(k =0,1,2,…).e x=21()2!!nn x x x o x n +++++. 其拉格朗日余项为1e ()(1)!xn n R x x n θ+=+,θ∈(0,1).例2 求f (x )=sin x 的n 阶麦克劳林公式.解 f (k )(x )=πsin()2x k +⋅ (k =0,1,2,…),故()0,2(0)(1),21k jk jf k j =⎧=⎨-=+⎩ (j=0,1,2,…). 取n =2m ,得sin x =352112(1)()3!5!(21)!m m m x x x x o x m ---+-+-+- .其拉格朗日余项为212(21)πsin 2()(21)!m m m x R x x m θ++⎡⎤+⎢⎥⎣⎦=+21cos (1)(21)!mm x xm θ+=-+, θ∈(0,1). 类似地有cos x =242211(1)()2!4!(2)!mm m x x x o x m +-+-+-+ , 其拉格朗日余项为12221cos ()(1)(22)!m m m x R x x m θ+++=-+, θ∈(0,1).例3 求f (x )=ln(1+x )的n 阶麦克劳林展开式. 解 ()1(1)!()(1)(1)k k kk fx x --=-+ ,(k =1,2,…), 故f (k )(0)=(-1)k -1(k -1)! (k =1,2,…,n ).又 f (0)=0,f (n +1)(ξ)1!(1)(1)n n ξ+=-+, 其中,ξ在0与x 之间.于是,当x ∈(-1,+∞)时,ln(1+x )=234111(1)(1)2!3!4!(1)(1)nn n nn x x x x x x n n ξ+-+-+-++-+-++ , 其中ξ在0与x 之间.利用泰勒公式可以求极限.例4 求极限2240cos e limx x x x -→-.解 利用泰勒公式,有cos x =2441()2!4!x x o x -++, 2222421e1()2!2!2!x x x o x -⎛⎫⎛⎫=+-+-+ ⎪ ⎪⎝⎭⎝⎭,于是 24421cos e ()12x x x o x --=-+. 所以244244001()cos e 112limlim 12x x x x o x x x x -→→-+-==-. 第七节 洛必达法则本节我们将利用微分中值定理来考虑某些重要类型的极限.由第二章我们知道在某一极限过程中,f (x )和g (x )都是无穷小量或都是无穷大量时,f (x )/g (x )的极限可能存在,也可能不存在.通常称这种极限为不定式(或待定型),并分别简记为00或∞∞. 洛必达(L’H ospital)法则是处理不定式极限的重要工具,是计算00型、∞∞型极限的简单而有效的法则.该法则的理论依据是柯西中值定理.一、型不定式 定理1设f (x ),g (x )满足: (1) 0lim x x →f (x )=0,0lim x x →g (x )=0;(2)在U ︒(x 0)内可导,且g ′(x )≠0; (3) 0limx x →()()f xg x ''存在(或为∞), 则 0limx x →()()f xg x = 0lim x x →()()f x g x ''. 证 由于极限0limx x →()()f xg x 与f (x )和g (x )在x =x 0处有无定义没有关系,不妨设f (x 0)=g (x 0)=0.这样,由条件(1)、(2)知f (x )及g (x )在U (x 0)连续.设x ∈U (x 0),则在[x ,x 0]或[x 0,x ]上,柯西中值定理的条件得到满足,于是有00()()()()()()()()f x f x f x fg x g x g x g ξξ'-=='-, 其中ξ在x 与x 0之间.令x →x 0(从而ξ→x 0),上式两端取极限,再由条件(3)就得到limx x →()()f x g x =0lim x ξ→()()f g ξξ''= 0lim x x →()()f xg x '', 对于当x →∞时的型不定式,洛必达法则也成立. 推论1 f (x ),g (x )满足 (1)lim x →∞f (x )=0,lim x →∞g (x )=0;(2) 当|x |>X 时可导,且g ′(x )≠0; (3) limx →∞()()f xg x ''存在(或为∞), 则 ()()limlim()()x x f x f x g x g x →∞→∞'='. 证 令t =1x,则x →∞时t →0,从而 01lim ()lim ()0t x f f x t →→∞==,1lim ()lim ()0x x g g x t→∞→∞==. 由定理1,得2002111()()()()()lim lim lim lim 111()()()()()x t t x f f f x f x t t t g x g x g g t t t→∞→→→∞'-'===''-. 显然,若lim ()()f xg x ''仍为00型不定式,且f ′(x ),g ′(x )满足定理条件,则可继续使用洛必达法则而得到()()()limlim lim ()()()f x f x f xg x g x g x '''==''',且仍然可以依此类推.例1 求33221216lim 248x x x x x x →-+--+.解 32322222121631263lim lim lim 248344642x x x x x x x x x x x x x →→→-+-===--+---.例2 求πarctan 2lim x x x→+∞-. 解 2221πa r c t a n 12l i m l i m l i m 1111x x x x xx x x x→+∞→+∞→+∞--+===+-. 二、∞∞型不定式定理2设f (x ),g (x )满足 (1) 0lim x x →f (x )=∞,0lim x x →g (x )=∞;(2) 在U ︒(x 0)内可导,且g ′(x )≠0;(3) 0limx x →()()f xg x ''存在(或为∞), 则 00()()limlim()()x x x x f x f x g x g x →→'='. 该定理也是应用柯西中值定理来证明的,因过程较繁,故略. 推论2若f (x ),g (x )满足 (1) lim x →∞f (x )=∞,lim x →∞g (x )=∞;(2) 当|x |>X 时可导,且g ′(x )≠0; (3) limx →∞()()f xg x ''存在(或为∞), 则 ()()limlim ()()x x f x f x g x g x →∞→∞'='. 例3 求ln limax xx →+∞ (α>0).解 11l n 1l i m l i m l i m 0a a a x x xxx x a x a x-→+∞→+∞→+∞===. 例4 求lim eax x x →+∞ (α>0).解 1lim lim e e a a x xx x x ax -→+∞→+∞=.若0<α≤1,则上式右端极限为0;若α>1,则上式右端仍是∞∞型不定式,这时总存在自然数n 使n -1<α≤n ,逐次应用洛必达法则直到第n 次有1lim lim e ea a x x x x x ax -→+∞→+∞== (1)(1)lim 0e a nxx a a a n x n -→+∞--+= (次). 故 lim 0eax x x →+∞= (α>0).例5 求π2tan limtan 3x xx →.。
《导数与微分》word版
第二章 导数与微分教学要求:正确理解导数概念及其几何意义.知道导数值与导数的联系与区别.熟练掌握求导方法,记住求导的基本公式及求导法那么(四那么运算法那么,反函数、复合函数、隐函数、参数式函数的求导法那么,对数求导法).知道利用定义求导数的方法,会求分段函数分界点处的导数.会计算较简单的导数应用题.会求曲线在某点的切线和法线方程;会求一些物理量的变化率;会计算一些简单的相关变化率问题.理解高阶导数的定义,熟练掌握求二阶导数的方法.会求一些简单的初等函数(如1,,sin ,ln ,ln(1)x e x x x x). 正确理解微分的定义及其与导数的关系.理解微分与函数增量的关系,会用微分近似计算函数改变量和函数值的近似值.理解一阶微分形式不变性.明确可微(可导)与连续之间的关系.教学重点:导数与微分的概念;导数的几何意义和作为变化率的各种实际意义及其应用;函数连续、可导、 可微相互之间的关系;各类函数的求导法那么与求导方法;基本初等函数的导数与微分公式. 教学难点:复合函数求导法那么与高阶导数求导方法的应用.数学中研究导数、微分及其应用的部分称为微分学,研究不定积分、定积分及其应用的部分称为积分学. 微分学与积分学统称为微积分学.微积分学是高等数学最基本、最重要的组成部分,是现代数学许多分支的基础,是人类认识客观世界、探索宇宙奥秘乃至人类自身的典型数学模型之一.恩格斯(1820-1895)曾指出:“在一切理论成就中,未必再有什么像17世纪下半叶微积分的发明那样被看作人类精神的最高胜利了”. 微积分的发展历史曲折跌宕,撼人心灵,是培养人们正确世界观、科学方法论和对人们进行文化熏陶的极好素材(本部分内容详见光盘).积分的雏形可追溯到古希腊和我国魏晋时期,但微分概念直至16世纪才应运萌生. 本章及下一章将介绍一元函数微分学及其应用的内容.第一节 导数概念从15世纪初文艺复兴时期起,欧洲的工业、农业、航海事业与商贾贸易得到大规模的发展,形成了一个新的经济时代. 而十六世纪的欧洲,正处在资本主义萌芽时期,生产力得到了很大的发展. 生产实践的发展对自然科学提出了新的课题,迫切要求力学、天文学等基础科学的发展,而这些学科都是深刻依赖于数学的,因而也推动了数学的发展. 在各类学科对数学提出的种种要求中,下列三类问题导致了微分学的产生:(1) 求变速运动的瞬时速度;(2) 求曲线上一点处的切线;(3) 求最大值和最小值.这三类实际问题的现实原型在数学上都可归结为函数相对于自变量变化而变化的快慢程度,即所谓函数的变化率问题. 牛顿从第一个问题出发,莱布尼茨从第二个问题出发,分别给出了导数的概念.内容分布图示★ 引言★ 变速直线运动的瞬时速度★ 平面曲线的切线★ 导数的定义 ★ 关于导数的几点说明★利用定义求导数与求极限 ★例1★例2★ 例3★ 例4★ 例5 ★ 例6 ★ 例7★ 左右导数★ 例8 ★ 例9★ 导数的几何意义 ★ 例10 ★ 例11★ 导数的物理意义★ 可导与连续的关系★ 例12 ★ 例13 ★ 例14★ 内容小结★ 课堂练习★返回内容要点:一、引例: 引例1: 变速直线运动的瞬时速度; 引例2: 平面曲线的切线二、导数的定义:xx f x x f x y x f x x ∆-∆+=∆∆='→∆→∆)()(lim lim )(00000 注:导数概念是函数变化率这一概念的精确描述,它撇开了自变量和因变量所代表的几何或物理等方面的特殊意义,纯粹从数量方面来刻画函数变化率的本质: 函数增量与自变量增量的比值x y ∆∆是函数y 在以0x 和x x ∆+0为端点的区间上的平均变化率,而导数0|x x y ='那么是函数y 在点0x 处的变化率,它反映了函数随自变量变化而变化的快慢程度.根据导数的定义求导,一般包含以下三个步骤:1. 求函数的增量: );()(x f x x f y -∆+=∆2. 求两增量的比值:x x f x x f x y ∆-∆+=∆∆)()(; 3. 求极限 .lim0xy y x ∆∆='→∆ 三、左右导数定理1 函数)(x f y =在点0x 处可导的充要条件是:函数)(x f y =在点0x 处的左、右导数均存在且相等.四、用定义计算导数五、导数的几何意义六、函数的可导性与连续性的关系定理2 如果函数)(x f y =在点0x 处可导,那么它在0x 处连续.注:上述两个例子说明,函数在某点处连续是函数在该点处可导的必要条件,但不是充分条件. 由定理2还知道,若函数在某点处不连续,那么它在该点处一定不可导.在微积分理论尚不完善的时候,人们普遍认为连续函数除个别点外都是可导的. 1872年得多数学家魏尔斯特拉构造出一个处处连续但处处不可导的例子,这与人们基于直观的普遍认识大相径庭,从而震惊了数学界和思想界. 这就促使人们在微积分研究中从依赖于直观转向理性思维,大大促进了微积分逻辑基础的创建工作.例题选讲:导数概念的应用例1 求函数3x y =在1=x 处的导数)1(f '.例2试按导数定义求下列各极限(假设各极限均存在).(1);)2()2(lim ax a f x f a x --→ (2) ,)(lim 0xx f x → 其中.0)0(=f 用定义计算导数例3 求函数C x f =)((C 为常数)的导数.例4设函数,sin )(x x f = 求)(sin 'x 及4|)(sin π='x x . 例5 求函数n x y =(n 为正整数)的导数.例6 求函数)1,0()(≠>=a a a x f x 的导数.例7 求函数)1,0(log ≠>=a a x y a 的导数.左右导数例8 求函数⎩⎨⎧=,,sin )(x x x f 00≥<x x 在0=x 处的导数. 例9 设)(x f 为偶函数,且)0(f '存在. 证明.0)0(='f例10求等边双曲线x y 1=在点⎪⎭⎫ ⎝⎛2,21处的切线的斜率, 并写出在该点处的切线方程和法线方程. 例11 求曲线x y =在点)2,4(处的切线方程.例12 讨论函数||)(x x f =在0=x 处的连续性与可导性.例13 讨论⎪⎩⎪⎨⎧=≠=0,00,1sin )(x x x x x f 在0=x 处的连续性与可导性. 例14设函数⎩⎨⎧<≤+<=,10,10,)(2x x x a x f 问a 取何值时,)(x f 为可导函数. 注:上述两个例子说明,函数在某点处连续是函数在该点处可导的必要条件,但不是充分条件. 由定理2还知道,若函数在某点处不连续,那么它在该点处一定不可导.在微积分理论尚不完善的时候,人们普遍认为连续函数除个别点外都是可导的. 1872年得多数学家魏尔斯特拉构造出一个处处连续但处处不可导的例子(如第十一章第一节的Koch 雪花曲线描述的函数),这与人们基于直观的普遍认识大相径庭,从而震惊了数学界和思想界. 这就促使人们在微积分研究中从依赖于直观转向理性思维,大大促进了微积分逻辑基础的创建工作.课堂练习1. 函数)(x f 在某点0x 处的导数)(0x f '与导函数)(x f '有什么区别与联系?2. 设)(x ϕ在a x =处连续, )()()(22x a x x f ϕ-=, 求)(a f '.3. 求曲线32x x y -=上与x 轴平行的切线方程.莱布尼茨 (Friedrich , Leibniz ,1597~1652)-----博学多才的数学符号大师出生于书香门第的莱布尼兹是德国一们博学多才的学者。
高等数学-第2章 导数与微分§2.1 导数的概念
第2章 导数与微分本章简介:(2′)微积分可以分为两部分:微分学和积分学。
微分学研究导数、微分及其应用,积分学研究不定积分、定积分及其应用,微分学是积分学的基础。
本章及第3章介绍微分学部分的内容,第4章及第5章介绍积分学部分的内容。
§2.1 导数的概念新课引入:(3′)中学里学过的速度、加速度表述的是在单位时间物体运动所走过的路程及速度变化的快慢程度,其实都是研究函数(运动函数、速度函数)相对于自变量(时间)变化的快慢程度,即研究函数的变化率问题,本节将用上一章学过的极限为工具来研究变化率问题,从实际例子出发介绍导数的概念及其计算方法。
一、变化率问题举例(15′) 1.平面曲线的切线斜率设曲线C 的方程为()y f x =,求曲线C 在点M 处切线的斜率. 为此,需先明确曲线的切线的含义。
如图 2.1,设N 是曲线C 上与点M 邻近的一点,连结点M 和N 的直线M N 称为曲线C 的割线,如果当点N 沿着曲线C 趋近于点M 时,割线M N 绕着点M 转动而趋近于极限位置M T ,则称直线M T 为曲线C 在点M 处的切线。
这里极限位置的含义是:只要弦长||M N 趋近于零,N M T ∠也趋近于零。
斜率表示直线上点的纵坐标相对于横坐标变化的快慢程度,切线M T 的斜率不易直接图2.2图2.1求得,先求割线M N 的斜率。
如图 2.2,设点M 、N 的坐标分别为00(,)x y 、00(,)x x y y +∆+∆,割线M N 的倾角为ϕ,切线M T 的倾角为α,则割线M N 的斜率为00()()tan f x x f x y xxϕ+∆-∆==∆∆。
显然,x ∆越小,即点N 沿曲线C 越趋近于点M ,割线M N 的斜率越趋近于切线M T 的斜率。
当点N 沿曲线C 无限趋近于点M ,即0x ∆→时,若割线M N 的斜率的极限存在,则此极限值就是曲线C 在点M 处切线的斜率,即()()000tan lim tan limlimx x x f x x f x y xxαϕ∆→∆→∆→+∆-∆===∆∆。
同济大学(高等数学)_第二章_导数与微分知识分享
3 x) 3x
f (x0 )
3 f ( x0 )
6.
( 2) lim f ( x0 h) f ( x0 h) lim f ( x0 h) f ( x0 ) f ( x0 ) f ( x0 h)
h0
h
h0
h
lim f (x0 h)
h0
h
f (x0)
lim f (x0
h0
h) f (x0) h
2 f ( x0 )
内可导;
( 2)若函数 y f ( x) 在区间 (a, b) 内可导,在区间左端点 a 的右导数 f (a) 和区间右
端点 b 的左导数 f (b) 均存在,则称 y f (x) 在闭区间 [ a,b] 上可导. 定义 4 若函数 y f ( x) 在区间 I (可以是开区间、闭区间或半开半闭区间)上可导,
x
x x0
x x0
值为 y f ( x) 在点 x0 的 左导数 ,记为 f ( x0 ) ,即
f ( x0 ) lim f ( x0 x0
x)
f (x0)
f (x) lim
f ( x0 ) .
x
x x0
x x0
( 2)设函数 y f ( x) 在点 x0 的某右邻域内有定义,当自变量 x 在点 x0 右侧取得增量
v(t0 ) lim v t0
1.1.2 平面曲线的切线斜率问题
s lim t0 t
lim s(t0
t0
t) s(t0) . t
已知曲线 C : y f ( x) ,求曲线 C 上点 M 0 ( x0 , y0 ) 处的切线斜率.
欲求曲线 C 上点 M 0( x0 , y0) 的切线斜率,由切线为割线的极限位置,容易想到切线的
(完整版)导数的定义
设运动规律 s s(t )(例如自由落体 : s 1 gt 2 ) ,
2
求在t t0时刻的瞬时速度v ( t0 ).
设从时刻 t0 到 t0 t 的运动位移为 s
s s ( t0 t ) s ( t0 )
s s( t0 t ) s( t0 )
t
t
Δt 很小,速度近乎均匀,则
平均速度
s(t0 )
s(t0 t)
s
s t v(t0 )
令 t t) 1 gt 2 2
s s(t0 t) s(t0 )
t
t
1 2
g(t0
t)2
1 2
gt
2 0
t
1 2
g(t
2 0
2t0
t
t 2 )
1 2
gt
2 0
t
s(t0 )
s
s(t0 t)
★ 函数f(x)在点x0的导数 f (x0 ) ,
正是该函数的导数 f (x) 在该点x0的值 ,
即
f (x0 ) f (x) |xx0
例5 求函数y=x3在x=2的导数y,并求y|x=2 。
解 先求导函数
y
lim (x x)3 x3
x0
x
lim 3x2x 3x(x)2 (x)3
x0
x2 x 2
练习:求函数 y
f (x)
1在
x
x2
的导数
2.单侧导数
若 lim x x0
f (x) f (x0) x x0
A,称 A为
f ( x)在 x0 的左导数,记作
f' ( x0 ),
f '( x0 0)。
若 lim x x0
《微积分》第2章 导数与微分 单元测试题
第二章 导数与微分 单元测试题考试时间:120分钟 满分:100分 一、选择题(每小题2分,共40分)1.两曲线21y y ax b x ==+,在点1(2)2,处相切,则( ) A .13164a b =-=, B .11164a b ==,C .912a b =-=,D .712a b ==-,2.设(0)0f =,则()f x 在0x =可导的充要条件为( )A .201lim(1cos )h f h h →-存在 B .01lim (1)h h f e h→-存在 C .201lim (sin )h f h h h →-存在 D .[]01lim (2)()h f h f h h→-存在3.设函数()f x 在区间()δδ-,内有定义,若当()x δδ∈-,时恒有2()f x x ≤,则0x =必是()f x 的( )A .间断点B .连续而不可导的点C .可导的点,且(0)0f '=D .可导的点,且(0)0f '≠4.设函数()y f x =在0x 点处可导,x y ,分别为自变量和函数的增量,dy 为其微分且0()0f x '≠,则0limx dy yy→-=( )A .-1B .1C .0D .∞5.设()f x 具有任意阶导数,且[]2()()f x f x '=,则()()n f x =( )A .[]1()n n f x + B .[]1!()n n f x + C .[]1(1)()n n f x ++ D .[]1(1)!()n n f x ++6.已知函数 0() 0x x f x a b x x x ≤⎧⎪=⎨>⎪⎩+cos 在0x =处可导,则( )A .22a b =-=,B .22a b ==-,C .11a b =-=,D .11a b ==-,7.设函数32()3f x x x x =+,则使()(0)n f不存在的最小正整数n 必为( )A .1B .2C .3D .4 8.若()f x 是奇函数且(0)f '存在,则0x =是函数()()f x F x x=的( )A .无穷型间断点B .可去间断点C .连续点D .振荡间断点 9.设周期函数()f x 在()-∞+∞,内可导,周期为4,又0(1)(1)lim12x f f x x→--=-,则曲线()y f x =在点(5(5))f ,处的切线的斜率为( )A .12B .0C .1-D .2- 10.设()f x 处处可导,则( )A .当lim ()x f x →-∞=-∞时,必有lim ()x f x →-∞'=-∞B .当lim ()x f x →-∞'=-∞时,必有lim ()x f x →-∞=-∞C .当lim ()x f x →+∞=+∞时,必有lim ()x f x →+∞'=+∞D .当lim ()x f x →+∞'=+∞时,必有lim ()x f x →+∞=+∞11.若()sin f x x x =,则( )A .(0)f ''存在B .(0)0f ''=C .(0)f ''=∞D .(0)f π''=12.若2()max{2},(04)f x x x x =∈,,,且知()f a '不存在,(04)a ∈,,则必有( )A .1a =B .2a =C .3a =D .12a =13.若函数sin 2 0() 10xx x f x x x ⎧+≠⎪=⎨⎪=⎩,, 则使()f x '在点0x =处( )A .存在但不连续B .不存在C .不仅存在而且连续D .无穷大14.设n1cos 0() 0 0x x f x xx ⎧≠⎪=⎨⎪=⎩ 则使()f x '在点0x =点处连续的最小自然数为( )A .1n =B .2n =C .3n =D .4n =15.若函数()f x 对任意实数x 1,x 2均满足关系式1212()()()f x x f x f x +=,且(0)2f '=,则必有( )A .(0)0f =B .(0)2f =C .(0)1f =D . (0)1f =- 16.若()f x 是在()-∞+∞,内可导的以l 为周期的周期函数,则()f ax b '+(0a a b≠,、为常数)的周期为( )A .lB .l b -C .laD . l a17.函数23()(2)f x x x x x =-- -不可导的点的个数为( ) A .3 B .2 C .1 D . 018.设220()()0x x f x x g x x ⎧>= ≤⎩ 其中()g x 是有界函数,则()f x 在0x =处( ) A .极限不存在 B .极限存在但不连续 C .连续但不可导 D .可导 19.设()f x 在0x =的一个领域内有定义,且(0)0f =,若21cos 1lim()2(1)x x x f x x e →-=-,则()f x 在0x =处( )A .不连续B .连续但不可导C .可导且(0)0f '=D .可导且(0)1f '=20.设()()()f x f x x =--∈-∞+∞,,,且在(0)+∞,内()0()0f x f x '''><,,则在(0)-∞,内( )A .()0()0f x f x '''>>,B .()0()0f x f x '''><,C .()0()0f x f x '''<>,D .()0()0f x f x '''<<,二、填空题(每小题3分,共60分)1.设 1() 1ax b x f x x x 2+≤⎧=⎨ >⎩ 在1x =处可导,则a =____________,b =____________。
安徽农业大学汪宏喜高等数学微积分第二章--导数与微分第1节
4.导数的几何意义与物理意义
(1)几何意义
f ( x0 )表示曲线 y f ( x ) 在点M ( x0 , f ( x0 ))处的 切线的斜率, 即 f ( x0 ) tan , (为倾角) o
y
y f ( x)
T
M
x0
x
切线方程为 y y 0 f ( x 0 )( x x 0 ).
y
y x
o
x
y
例如,
x , f ( x) x,
2
x0 , x0
y x2
yx
0
x
在 x 0处不可导, x 0为 f ( x )的角点.
例如, f ( x ) x 1, 在 x 1处不可导.
3
y
y 3 x 1
例如, 1 x sin , f ( x) x 0,
★ 定理1 函数 f ( x )在点 x 0 处可导 左导数 f ( x 0 )
和右导数 f ( x 0 ) 都存在且相等.
1.左导数:
★ 如果 f ( x ) 在开区间a , b 内可导,且 f (a ) 及
f (b ) 都存在,就说 f ( x ) 在闭区间a , b 上可导.
1 x 2
4.
1 所求切线方程为 y 2 4( x ), 即 4 x y 4 0. 2 1 1 法线方程为 y 2 ( x ), 即 2 x 8 y 15 0. 4 2
(2)物理意义 非均匀变化量的瞬时变化率.
变速直线运动:路程对时间的导数为物体的 瞬时速度. s ds v ( t ) lim . t 0 t dt 交流电路:电量对时间的导数为电流强度.
《微积分》(上下册) 教学课件 02.第2章 导数与微分 高等数学第一章第3-5节
1
记作
f
(
x),
y,
d2y dx2
或
d
2 f (x) dx2
.
二阶导数的导数称为三阶导数,记作
f ( x),
y,
d3y dx3 .
三阶导数的导数称为四阶导数, 记作
f (4)(x),
y(4) ,
d4y dx4 .
一般地, 函数f ( x)的n 1阶导数的导数称为
函数f ( x)的n阶导数, 记作
f (n)(x),
10
一、微分的概念
实例 半径为 x的0 金属圆板受热后面积的改变量.
设半径由x0变到x0 x,
圆板的面积 A x02,
A (x0 x)2 x02
2x0 x (x)2.
(1)
(2)
(1) x的线性函数,且为A的主要部分;
(2) x的高阶无穷小,当x 很小时可忽略.
11
再例如
设函数 y x3在点 x0处的改变量为x时, 求函数的 改变量 y.
§2.3 高阶导数
问题 变速直线运动的加速度.
设 s s(t), 则瞬时速度为v(t) s(t);
因为加速度a是速度v对时间t的变化率,所以
a(t) v(t) s(t).
定义 如果f (x)的导函数f (x)在点x处可导,即
( f (x)) lim f (x x) f (x)
x0
x
存在,则称( f (x))为f (x)在点x处的二阶导数.
dt dx
3a sin2 t cost 3a cos2 t(sint
)
tan t,
dt
d2y dx2
d (dy) dx dx
d ( tan t ) dx
微积分应用基础第二章导数与微分
v(t0 )
lim
t 0
s
t
lim
t 0
s(t0
t) s(t0 ) t
上面这种形式的极限,自然科学中还有很多,尽管它们
的具体含义不同,但其数学模型完全相同,均可归结为函数
的增量与自变量的增量之比当自变量的增量趋于零时的极限。
这种形式的极限就是我们要研究的导数,或者叫做瞬时变化
x x0
结论:函数f(x)在点x0处可导 f x 在点x0的左导数、右导
数都存在并且相等,即:
f (x0)存在 fx0 fx0
函数y=f(x)在点x0处的变化率即导数 是函数y在点x0处变化的快慢程度。
dy dx
,反映的
x x0
第二章 导数与微分
案例2【化学反应速度】
设二元函数z=f(x,y)在点(x0,y0)的某邻域内有定义,
固定自变量y,即取y =y0,而x从x0变化到x0+△x时,若
极限 lim z lim f x0 x, y0 f x0 , y0
x0 x x0
x
存在,则称此极限值z=f(x,y)为函数在点(x0,y0)处关于x
x
y f (x1 ) f (x0 ) f (x0 x) f (x0 )
x
x1 x0
x
这个商—定义函数y关于自变量的平均变化率。
上面引例1中的平均速度及实际问题中的一些平均值,如 平均成本、平均电流强度等就是通常意义下的平均变化率。
第二章 导数与微分
案例1【订货量的变化】
率。
1.一元函数的导数
定义2 设函数y=f(x)在点x0的某一邻域有定义,当自变量 x在点x0处有增量△x(△x ≠0, x0+ △x在定义域内)时, 相应地函数有增量△y=f(x0+△x) -f (x0) ,若极限
导数和微分的定义
则 f ( x) 在点 x0 可导, 且 f '( x0 ) a.
例6. 讨论函数 f ( x) x 在x 0处的可导性.
解 f (0 x) f (0) x ,
x
x
lim f (0 x) f (0) lim x 1,
x0
x
h0 x
lim
f (0 x) f (0)
lim
x
1.
在 M 点处旳切线
割线 M N 旳极限位置 M T
(当
时)
切线 MT 旳斜率
o
y f (x)
N
CM
T
x0 x x
lim tan
割线 M N 旳斜率 tan
f (x) f (x0 ) x x0
k
lim
x x0
f (x) f (x0 ) x x0
瞬时速度 切线斜率
f (t0 )
o t0
设薄片边长为 x , 面积为 A , 则 A x2 , 当 x 在 x0 取
得增量x 时, 面积旳增量为
x x0x (x)2
有关△x 旳 x 0 时为
线性主部 高阶无穷小
x0 A x02
x0x
故
称为函数在 x0 旳微分
定义: 若函数
在点 x0 旳增量可表达为 Ax o(x)
( A 为不依赖于△x 旳常数)
3. 导数旳几何意义: 切线旳斜率;
4. 可导必连续, 但连续不一定可导;
5. 已学求导公式 :
(C) 0;
(ln x) 1
(cos x) sin x ;
x
不连续, 一定不可导. 6. 判断可导性 直接用导数定义;
看左右导数是否存在且相等.
微积分初步单元辅导二导数微分及其应用
《微积分初步》单元辅导二(导数微分及其应用)微积分初步学习辅导——导数与微分部分学习重难点解析(一)关于导数的概念函数的导数是一个增量之比的极限,即我们把卫称为函数的平均变化率,把lim y称为变化率,若lim y存在则可导,否则不可二x=x导•导数是由极限定义的,故有左导数和右导数• f(x)在点X。
处可导必有函数f (x)在点X。
处左右导数都存在且相等.(二)导数、微分和连续的关系由微分的定义dy二f (x)dx可知(1)函数的可导与可微是等价的,即函数可导一定可微;反之可微一定可导.⑵计算函数f(x)的微分dy,只要计算出函数的导数f(x)再乘上自变量的微分dx即可; 因此,我们可以将微分的计算与导数的计算归为同一类运算.(3)由定理可知,连续是可导的必要条件,那么,函数可微也一定连续.反之不然,即连续函数不一定是可导或可微函数.(三)导数的几何意义由切线问题分析可知,函数y=f(x)在点x。
处的导数就是曲线y = f(x)在点(x。
,f(x。
))处切线的斜率。
于是,y二f(x)在点(x。
,y0)处的切线方程为(四)关于导数的计算掌握导数的计算首先要熟记导数基本公式和求导法则.在我们这门课程中所学习的求导法则和方法有:(1)导数的四则运算法则;(2)复合函数求导法则;(3)隐函数求导方法.对于上述法则和方法在实用中要注意其成立的条件.在导数的四则运算法则中,应该注意乘法法则和除法法则,注意它们的构成形式并注意1— x解题的技巧.例如,y二,求了心.这是一个分式求二阶导数的问题,形式上应该用导1 1数的除法法则求解,但是,如果将函数变形为y -x:再求导数就应该用导数的加法法则了 .假如我们掌握了一些解题的技巧,会使我们的运算变得简单还会减少错误.复合函数求导数是学习的重点也是难点,它的困难之处在于对函数的复合过程的分解 由复合函数求导法则知,复合函数y = f(u),u 二(x)的导数为在求导时将y = f ( “X))分解为y = f(u),u =护(x)(其中u 为中间变量),然后分别对中间 变量和自变量求导再相乘.那么如何进行分解就是解题的关键,一般的说,所设的中间变量 应是基本初等函数或基本初等函数的四则运算,这样就会对于y = f (u),u = "X)分别都要有导数公式或法则可求导.如果分解后找不到求导公式,则说明分解有误.例如函数=sin 2,其分解为 y = u 2, u = sin v,v = x .于是分别求导为,y^2u,u^cosv , 1 — — 1 - .相乘得至U y x = 2 s i n ・.x c o s x - 2 . x 2 , x 2、x 二si n u,u =x ,这样在求导时会发现没有导数公式可以来求y u .隐函数的特点是变量y 与x 的函数关系隐藏在方程中,例如 y=1・xsiny ,其中的sin y 不但是y 的函数,还是x 的复合函数.所以对于sin y 求导数时应该用复合函数求导法则,先 对y 的函数sin y 求导得cosy ,再乘以y 对x 的导数y 〔由于y 对x 的函数关系不能直接写出 来,故而只能把y 对x 的导数写为y .一般地说,隐函数求导数分为下列两步:① 方程两边对自变量x 求导,视y 为中间变量,求导后得到一个关于 y 的一次方程; ② 解方程,求出y 对x 的导数y .总之,导数公式和求导法则是要靠练习来熟悉和理解的,我们应该通过练习掌握方法并 从中获得技巧.微积分初步学习辅导导数与微分部分典型例题例1求下列函数的导数或微分: (1) 设 y = x 3 3x log 3x-33,求 y . (2) 设 y = ^2,求 dyX xsi nx⑶设y ,求y (二).1 +cosx 3分析 这三个函数都是由基本初等函数经过四则运算得到的初等函数, 求导或求微分时,1 1 lsir2. x .有一种错误的分解是V x需要用到导数基本公式和导数的四则运算法则•对于(1)先用导数的加法法则,再用导数基本 公式;对于⑵,可以先用导数除法法则,再用基本公式;但注意到 ⑵ 中函数的特点,先将1 2函数进行整理,y J 二2 =x 3 -2x^',贝U 可用导数的加法法则求导,得到函数的导数后再乘 Vx 2 以dx ,得到函数的微分;对于(3)用导数除法法则,再用基本公式•解(1) y =(x 33xlog 3x-3 3)(x 3) (3x ) (gx) 一(33)21 — 4dy =ydx =(—X 3 x 3)dx.3 3(sin x) (1 cosx) -sin x(1 cosx)2(1 cosx)cosx(1 cosx) -sin x(-sinx) cosx cos 2 x sin 2x(1 + cosx)2(1 + cosx)2= 11 cosx在运用导数的四则运算法则应注意:①在求导或求微分运算中,一般是先用法则,再用基本公式;③ 解题时应先观察函数,看看能否对函数进行变形或化简,在运算中尽可能的避免使 用导数的除法法则.如例1中的⑵ 小题,将y 二x 二j 变形为y 『x-2二X? \x 2 v x 2 数,这种解法比直接用除法法则求解要简便且不易出错 •④ 导数的乘法和除法法则与极限相应的法则不同, 运算也相对复杂得多,计算时要细心. 例2求下列函数的导数或微分:sinl(1) 设 y = e x ,求 dy .3x 23 3x 2 3x —2(2)因为y=—1=x 3 1In 3xl n3In 3 — xln 3 -2x 1所以 y =(x 3) _2(x 3) s x3x3,于是所以y(3)=1 cosx②把根式qx p写成幕次px q的形式,这样便于使用公式且减少出错; 2-2x _3后再求导兀1 22(2)设 y =1 n(x—、1 x2),求 y(、3).(3)设 y =(邛)10,求 y .x +1分析采用复合函数求导法则,所设的中间变量应是基本初等函数或基本初等函数的四则运算.求导时,依照函数的复合层次由最外层起,向内一层层地对中间变量求导,直至对自变量求导为止.1解(1)设y =e u,u =sinv,v二一,利用复合函数求导法则,有x代回还原得在基本掌握复合函数求导法则后,也可以不写出中间变量,如下解法:(2)设y = In u,u = x - v,v = x2 T,利用复合函数求导法则,有代回还原得或着(3)设y = u10 ,u = △ ,v = x2 1,利用复合函数求导法则和导数的四则运算法则有,v代回还原得或着例3求下列方程所确定的隐函数的导数 y或微分dy :(1)x2 y2 xy 二 0,求 dy ;(2)e xy yl n x = cos2x,求 y .分析隐函数的特点是:因变量y与自变量x的对应关系是隐藏在方程中的.因此,在求导数时,不要忘记y是x的函数,在对y的函数求导后切记再乘以y对x的导数yl 依隐函数求导数的步骤求导.解(1)[方法1]由导数得到微分.方程两边对自变量x求导,视y为中间变量,有即(x 2y)y - -(y 2x)整理方程,解出y,得dy = ydx「y 2x dxx +2y[方法2]方程两边对变量求微分,这时变量y和x的地位是相同的,即不再将y看作x的函数.dy_x+2y(2)方程两边对自变量x求导,视y为中间变量,有于是 (xe^ In x)y - -2sin2x-'-ye xyx整理方程解出y •,得分析 如果函数y 二f (x )可导,函数曲线在点X 。
《微积分》各章习题及详细答案
第一章 函数极限与连续一、填空题1、已知x x f cos 1)2(sin +=,则=)(cos x f 。
2、=-+→∞)1()34(lim22x x x x 。
3、0→x 时,x x sin tan -是x 的 阶无穷小。
4、01sin lim 0=→xx kx 成立的k 为 。
5、=-∞→x e xx arctan lim 。
6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b .7、=+→xx x 6)13ln(lim 0 。
8、设)(x f 的定义域是]1,0[,则)(ln x f 的定义域是__________。
9、函数)2ln(1++=x y 的反函数为_________。
10、设a 是非零常数,则________)(lim =-+∞→xx ax a x 。
11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数________=a 。
12、函数xxx f +=13arcsin )(的定义域是__________。
13、lim ____________x →+∞=。
14、设8)2(lim =-+∞→xx ax a x ,则=a ________.15、)2)(1(lim n n n n n -++++∞→=____________。
二、选择题1、设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则 中所给的函数必为奇函数。
(A))()(x g x f +;(B))()(x h x f +;(C ))]()()[(x h x g x f +;(D ))()()(x h x g x f 。
2、xxx +-=11)(α,31)(x x -=β,则当1→x 时有 。
(A)α是比β高阶的无穷小; (B)α是比β低阶的无穷小; (C )α与β是同阶无穷小; (D )βα~。
微积分第二章习题参考答案
,
y
3 2(1)3 (t 2)4
3 2(1)3 (t 1)4
,
y(n)
n!(1)n (t 2)n1
n!(1)n (t 1)n1
n!(1)n ( (t
1 2)n1
(t
1 1)n1
).
四.求下列函数所指定阶的导娄数.
1. y sh , y(100) . y sh ch , y 2ch sh , y 3sh ch , y(4) 4ch sh,
五.(1)
1 dy dx d arctan y dx 1 y2 dy,
x0
x0
x
x
2时,f ( x)在x 0处连续.
六.
设f
(
x
)存在,
求下列函数y的二阶时数
d2y dx 2
.
(1) y f (e x ).
y e x f (e x ),
y e x f (e x ) e2x f (e x ),
(2) f ( x) 0, y ln f ( x).
y f ( x) . f (x)
2.当 1时,函数在x 0处可导,
当 1时,函数在x 0处不可导.
三.解. f (1) f (1 0) 1, f (1 0) a b,
b 1 a;
又
f(1)
lim
x10
x2 1 x1
2,
f
(1)
lim
x 1 0
(ax b) x1
1
(ax 1 a) 1
lim
a,
2. tan t ;
3. 2 ln(1 x) dx; 1 x
4. 8tan(1 2 x2 )sec2(1 2 x2 ) xdx;
(t )(1 t ) (t )
《微积分》各章习题及详细答案
第一章 函数极限与连续一、填空题1、已知x x f cos 1)2(sin +=,则=)(cos x f 。
2、=-+→∞)1()34(lim22x x x x 。
3、0→x 时,x x sin tan -就是x 的 阶无穷小。
4、01sin lim 0=→xx kx 成立的k 为 。
5、=-∞→x e xx arctan lim 。
6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b 。
7、=+→xx x 6)13ln(lim 0 。
8、设)(x f 的定义域就是]1,0[,则)(ln x f 的定义域就是__________。
9、函数)2ln(1++=x y 的反函数为_________。
10、设a 就是非零常数,则________)(lim =-+∞→xx ax a x 。
11、已知当0→x 时,1)1(312-+ax 与1cos -x 就是等价无穷小,则常数________=a 。
12、函数xxx f +=13arcsin )(的定义域就是__________。
13、lim ____________x →+∞=。
14、设8)2(lim =-+∞→xx ax a x ,则=a ________。
15、)2)(1(lim n n n n n -++++∞→=____________。
二、选择题1、设)(),(x g x f 就是],[l l -上的偶函数,)(x h 就是],[l l -上的奇函数,则 中所给的函数必为奇函数。
(A))()(x g x f +;(B))()(x h x f +;(C))]()()[(x h x g x f +;(D))()()(x h x g x f 。
2、xxx +-=11)(α,31)(x x -=β,则当1→x 时有 。
(A)α就是比β高阶的无穷小; (B)α就是比β低阶的无穷小; (C)α与β就是同阶无穷小; (D)βα~。
微积分教学课件第2章导数与微分
微积分
三、 导数的几何意义
y y f(x)
曲线 y f (x)在点 (x0 , y0)的切线斜率为
tan f(x0)
CM
T
若 f(x0)0,曲线过 (x0 , y0)上升;
o x0
nan1
说明:
微积分
对一般幂函数 y x ( 为常数)
(x)x1
(以后将证明)
例如,(
1
x ) (x 2 )
1
x
1 2
2
1 2x
1 x
(x1)
x11
1 x2
(
1
3
) (x 4 )
3
x
7 4
xx
4
微积分
例3. 求函数 f(x)sixn的导数.
解: 令hx,则
f (x) lim f(xh)f(x) lim sin x(h)sixn
u(xh)vu (x()x u)v(ux((x)vxv)2)( (vxxu ())x(x)vh)(x)
故结论成立.
推论h: v(xCvh)v(x)vC2v ( C为常数 )
微积分
例2. 求证 (tax)n se2c x,(c x )s c cx s cc x o . t 证: (tanx)csoinsxx(six)ncocxos s2sxixn(cx o)s
h h
1, 1,
h0 h0
lim f(0h)f(0)不存在 ,即x在x0不可. 导
h 0
h
例6. 设
f
(x0)
存在,
求极限
lim f(x0h)f(x0h).
安徽农业大学汪宏喜高等数学微积分第二章--导数及微分第2节
sec x tan x.
同理可得 (csc x) csc x cot x.
例3 求 y sin 2x ln x 的导数 .
解 y 2sin x cos x ln x
y 2cos x cos x ln x 2sin x ( sin x) ln x
2 sin x cos x 1 x
2 cos 2x ln x 1 sin 2x. x
二、反函数的导数
定理2
如果函数
x
(
y)在某区间
I
内单调、可导
y
且( y) 0 , 那末它的反函数 y f (x)在对应区间
I
内也可导
x
,
且有
f (x) 1 .
( y)
即 反函数的导数等于直接函数导数的倒数.
证 任取x I x , 给x以增量x (x 0, x x I x )
y在
I
y
(
2
,
)内单调、可导 2
,
且 (sin y) cos y 0, 在 I x (1,1)内有
(arcsin x))
1 (sin y)
1 cos
y
1 1 sin2 y
1 .
1 x2
同理可得 (arccos x) 1 .
1 x2
(arctan
x
)
1
1 x
2
;
(
arccot
x)
1
1 x2
(2) [u( x) v( x)] u( x)v( x) u( x)v( x);
(3)
[u( x)] v( x)
u(
x)v(
x) u( v2(x)
x)v(
x)
经济微积分学-导数与微分
第一节 导数的概念
三、导数的几何意义
由切线斜率问题的讨论及导数定义可知:函数y=f(x)在点x0处的导 数f′(x0)的几何意义是曲线y=f(x)在点M(x0,y0)处的切线斜率,即
f′(x0)=tanα. 其中,α是切线的倾斜角.根据导数的几何意义及直线的点斜式方程可 得,曲线y=f(x)在给定点M(x0,y0)处的切线方程是 y-y0=f′(x0)(x-x0). 过切点M(x0,y0)且与切线垂直的直线叫作曲线y=f(x)在点M( x0,y0)的法线.若f′(x0)≠0,则法线方程为 y-y0=-1f′(x0)(x-x0).
(1) 将方程F(x,y)=0的两端对x求导,在求导过程中把y看成x的函 数,y的函数看成是x的复合函数;
(2) 求导后,解出y′即可(式子中允许有y出现).
第二节 函数的求导法则
四、反函数的求导法则
法则5:设函数x=φ(y)在区间D内单调,在y处可导,且φ′(y)≠0,则 其反函数y=f(x)在x=φ(y)处也可导,且
Dy/dx=1/dx/dy或f′(x)=1/φ′(y).
第二节 函数的求导法则
五、参数方程所确定的函数的导数
在实际应用中,函数y与自变量x的关系常常通过某一参数变量t表示出 来,即
x=φ(t) y=ψ(t),t为参数 称为函数的参数方程. 由于y是参数t的函数,由x=φ(t)知t是x的函数,所以,y通过t确定为 x的复合函数.于是,由复合函数的求导法则及反函数的导数公式有 dydx=dydt·dtdx=dydtdxdt=ψ′(t)φ′(t)
第一节 导数的概念
二、导数的概念
定义1:设函数y=f(x)在点x0某邻域内有定义,当自变量x在x0处有增量 Δx时,相应地函数y有增量
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。