响应面法和实验设计软件Minitab及DesignExpert简介
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中心点,亦即设计中心,表示在图上,坐标 皆为0。
三因素下的立方点、轴向点和中心点
区组(block)
也叫块。设计包含正交模块,正交模块 可以允许独立评估模型中的各项及模块 影响,并使误差最小化。
但由于把区组也作为一个因素来安排, 增加了分析的复杂程度。
序贯试验(顺序试验)
先后分几段完成试验,前次试验设计的点上 做过的试验结果,在后续的试验设计中继续 有用。
响应面法的分类
中心复合试验设计 (central composite design,CCD);
Box-Behnken试验设计;
中心复合试验设计
中心复合试验设计也称为星点设计。其设 计表是在两水平析因设计的基础上加上极值点 和中心点构成的,通常实验表是以代码的形式 编排的, 实验时再转化为实际操作值,(一般 水平取值为 0, ±1, ±α , 其中 0 为中 值, α 为极值, α =F*(1/ 4 )
按上述公式选定的α 值来安排中心复合试
验设计(CCD)是最典型的情形,它可以实 现试验的序贯性,这种CCD设计特称中心 复合序贯设计(central composite circumscribed design,CCC),它是CCD中 最常用的一种。
如果要求进行CCD设计,但又希望试验水平安排不 超过立方体边界,可以将轴向点设置为+1及-1,则 计算机会自动将原CCD缩小到整个立方体内,这种 设计也称为中心复合有界设计(central composite inscribed design,CCI)。
响应面法和实验设计软件 Minitab、Design-Expert简介
1.响应面法 2.实验设计软件 Minitab 3.实验设计软件 Design-Expert
1 响应面法
响应面优化法简介
响应曲面设计方法(Response Surface Methodology, RSM)是利用合理的试验设计方法并通过实验得到一定数据, 采用多元二次回归方程来拟合因素与响应值之间的函数关 系,通过对回归方程的分析来寻求最优工艺参数,解决多 变量问题的一种统计方法。 它囊括了试验设计、 建模、检验模型的合适性、 寻求最 佳组合条件等众多试验和计技术;通过对过程的回归拟合 和响应曲面、等高线的绘制、可方便地求出相应于各因素 水平的响应值。在各因素水平的响应值的基础上,可以找 出预测的响应最优值以及相应的实验条件。
Box-Behnken Design
Box-Behnken Design,简称BBD,也是响应 面优化法常用的实验设计方法,其设计表安排 以三因素为例(三因素用A、B、C表示),见下 页表,其中 0 是中心点,+, -分别是相应的高 值和低值。
响应面法的实验设计一般步骤
1. 确定因素及水平,注意水平数为2,因素数一般不超 过4个,因素均为计量数据;
响应面优化法的不足• 响应面Βιβλιοθήκη 化的前提是:设计的实验点应包括最佳的实
验条件,如果实验点的选取不当,使用响应面优化法 是不能得到很好的优化结果的。因而,在使用响应面 优化法之前,应当确立合理的实验的各因素与水平。
响应面法的适用范围
确信或怀疑因素对指标存在非线性影响; 因素个数2-7个,一般不超过4个; 所有因素均为计量值数据; 试验区域已接近最优区域; 基于2水平的全因子正交试验。
中心点的个数选择
在满足旋转性的前提下,如果适当选择Nc,则可 以使整个试验区域内的预测值都有一致均匀精度 (uniform precision)。见下表:
• 但有时认为,这样做的试验次数多,代价
太大, Nc其实取2以上也可以;如果中心 点的选取主要是为了估计试验误差, Nc取 4以上也够了。
2. 创建“中心复合”或“Box-Behnken”设计; 3. 确定试验运行顺序(Display Design); 4. 进行试验并收集数据; 5. 分析试验数据; 6. 优化因素的设置水平。
2 中心复合试验设计
基本概念
立方点 轴向点 中心点 区组 序贯试验 旋转性
立方点(cube point)
旋转性(rotatable)设计
旋转设计具有在设计中心等距点上预测方差 恒定的性质,这改善了预测精度。
α 的选取
在α 的选取上可以有多种出发点,旋转性是
个很有意义的考虑。在k个因素的情况下,应 取
α = 2 k/4
当k=2, α =1.414;当k=3, α =1.682; 当k=4, α =2.000;当k=5, α =2.378
响应面优化法的优点
• 响应面优化法,考虑了试验随机误差;同时,响应面
法将复杂的未知的函数关系在小区域内用简单的一次 或二次多项式模型来拟合,计算比较简便,是解决实 际问题的有效手段。
• 所获得的预测模型是连续的,与正交实验相比,其优
势是:在实验条件寻优过程中,可以连续的对实验的 各个水平进行分析,而正交实验只能对一个个孤立的 实验点进行分析。
立方点,也称立方体点、角点,即2水平对 应的“-1”和“+1”点。各点坐标皆为+1或-1。 在k个因素的情况下,共有2k个立方点
轴向点(axial point)
轴向点,又称始点、星号点,分布在轴向上。
除一个坐标为+α 或-α 外,其余坐标皆为0。
在k个因素的情况下,共有2k个轴向点。
中心点(center point)
这样做,每个因素的取值水平只有3个(-1,0,1),而 一般的CCD设计,因素的水平是5个(-α ,-1,0,1,α ), 这在更换水平较困难的情况下是有意义的。
这种设计失去了旋转性。但
保留了序贯性,即前一次在 立方点上已经做过的试验结 果,在后续的CCF设计中可 以继续使用,可以在二阶回
归中采用。
这种设计失去了序贯性,前一次在立方点上已经做 过的试验结果,在后续的CCI设计中不能继续使用。
对于α 值选取的另一个出发点也是有意义的,就是 取α =1,这意味着将轴向点设在立方体的表面上, 同时不改变原来立方体点的设置,这样的设计称为 中心复合表面设计 (central composite facecentered design,CCF)。
三因素下的立方点、轴向点和中心点
区组(block)
也叫块。设计包含正交模块,正交模块 可以允许独立评估模型中的各项及模块 影响,并使误差最小化。
但由于把区组也作为一个因素来安排, 增加了分析的复杂程度。
序贯试验(顺序试验)
先后分几段完成试验,前次试验设计的点上 做过的试验结果,在后续的试验设计中继续 有用。
响应面法的分类
中心复合试验设计 (central composite design,CCD);
Box-Behnken试验设计;
中心复合试验设计
中心复合试验设计也称为星点设计。其设 计表是在两水平析因设计的基础上加上极值点 和中心点构成的,通常实验表是以代码的形式 编排的, 实验时再转化为实际操作值,(一般 水平取值为 0, ±1, ±α , 其中 0 为中 值, α 为极值, α =F*(1/ 4 )
按上述公式选定的α 值来安排中心复合试
验设计(CCD)是最典型的情形,它可以实 现试验的序贯性,这种CCD设计特称中心 复合序贯设计(central composite circumscribed design,CCC),它是CCD中 最常用的一种。
如果要求进行CCD设计,但又希望试验水平安排不 超过立方体边界,可以将轴向点设置为+1及-1,则 计算机会自动将原CCD缩小到整个立方体内,这种 设计也称为中心复合有界设计(central composite inscribed design,CCI)。
响应面法和实验设计软件 Minitab、Design-Expert简介
1.响应面法 2.实验设计软件 Minitab 3.实验设计软件 Design-Expert
1 响应面法
响应面优化法简介
响应曲面设计方法(Response Surface Methodology, RSM)是利用合理的试验设计方法并通过实验得到一定数据, 采用多元二次回归方程来拟合因素与响应值之间的函数关 系,通过对回归方程的分析来寻求最优工艺参数,解决多 变量问题的一种统计方法。 它囊括了试验设计、 建模、检验模型的合适性、 寻求最 佳组合条件等众多试验和计技术;通过对过程的回归拟合 和响应曲面、等高线的绘制、可方便地求出相应于各因素 水平的响应值。在各因素水平的响应值的基础上,可以找 出预测的响应最优值以及相应的实验条件。
Box-Behnken Design
Box-Behnken Design,简称BBD,也是响应 面优化法常用的实验设计方法,其设计表安排 以三因素为例(三因素用A、B、C表示),见下 页表,其中 0 是中心点,+, -分别是相应的高 值和低值。
响应面法的实验设计一般步骤
1. 确定因素及水平,注意水平数为2,因素数一般不超 过4个,因素均为计量数据;
响应面优化法的不足• 响应面Βιβλιοθήκη 化的前提是:设计的实验点应包括最佳的实
验条件,如果实验点的选取不当,使用响应面优化法 是不能得到很好的优化结果的。因而,在使用响应面 优化法之前,应当确立合理的实验的各因素与水平。
响应面法的适用范围
确信或怀疑因素对指标存在非线性影响; 因素个数2-7个,一般不超过4个; 所有因素均为计量值数据; 试验区域已接近最优区域; 基于2水平的全因子正交试验。
中心点的个数选择
在满足旋转性的前提下,如果适当选择Nc,则可 以使整个试验区域内的预测值都有一致均匀精度 (uniform precision)。见下表:
• 但有时认为,这样做的试验次数多,代价
太大, Nc其实取2以上也可以;如果中心 点的选取主要是为了估计试验误差, Nc取 4以上也够了。
2. 创建“中心复合”或“Box-Behnken”设计; 3. 确定试验运行顺序(Display Design); 4. 进行试验并收集数据; 5. 分析试验数据; 6. 优化因素的设置水平。
2 中心复合试验设计
基本概念
立方点 轴向点 中心点 区组 序贯试验 旋转性
立方点(cube point)
旋转性(rotatable)设计
旋转设计具有在设计中心等距点上预测方差 恒定的性质,这改善了预测精度。
α 的选取
在α 的选取上可以有多种出发点,旋转性是
个很有意义的考虑。在k个因素的情况下,应 取
α = 2 k/4
当k=2, α =1.414;当k=3, α =1.682; 当k=4, α =2.000;当k=5, α =2.378
响应面优化法的优点
• 响应面优化法,考虑了试验随机误差;同时,响应面
法将复杂的未知的函数关系在小区域内用简单的一次 或二次多项式模型来拟合,计算比较简便,是解决实 际问题的有效手段。
• 所获得的预测模型是连续的,与正交实验相比,其优
势是:在实验条件寻优过程中,可以连续的对实验的 各个水平进行分析,而正交实验只能对一个个孤立的 实验点进行分析。
立方点,也称立方体点、角点,即2水平对 应的“-1”和“+1”点。各点坐标皆为+1或-1。 在k个因素的情况下,共有2k个立方点
轴向点(axial point)
轴向点,又称始点、星号点,分布在轴向上。
除一个坐标为+α 或-α 外,其余坐标皆为0。
在k个因素的情况下,共有2k个轴向点。
中心点(center point)
这样做,每个因素的取值水平只有3个(-1,0,1),而 一般的CCD设计,因素的水平是5个(-α ,-1,0,1,α ), 这在更换水平较困难的情况下是有意义的。
这种设计失去了旋转性。但
保留了序贯性,即前一次在 立方点上已经做过的试验结 果,在后续的CCF设计中可 以继续使用,可以在二阶回
归中采用。
这种设计失去了序贯性,前一次在立方点上已经做 过的试验结果,在后续的CCI设计中不能继续使用。
对于α 值选取的另一个出发点也是有意义的,就是 取α =1,这意味着将轴向点设在立方体的表面上, 同时不改变原来立方体点的设置,这样的设计称为 中心复合表面设计 (central composite facecentered design,CCF)。