薄层板的制备经验总结

薄层板的制备经验总结
薄层板的制备经验总结

薄层板的制备经验总结

铺薄层板的经验总结

薄层板的制备总结经验总结

1.CMC-Na配置也比较重要,不能太稀了,不然硅胶的黏附性不好,铺好的硅胶容易脱落.太稠了也不行,不容易和硅胶混匀

2.CMC-Na与硅胶混合时注意比例,一般为30克硅胶加入100克0.3-0.5%的CMC-Na水

溶液.如果铺多了的话可以凭经验就能感觉到适合的程度.混合时最好朝一个方向研,这样

也不容易有气泡

3.铺板的均匀.这也是关系到板好坏的重要方面.为了使薄层板硅胶均匀,铺好后将玻

璃板放在桌边小心上下颠动,保证薄层板所有地方都一样均匀.

4.铺板的厚度,个人所好有所不同.有的铺得较厚,这种情况CMC-Na不能太稀,不然硅

胶哗哗的掉.厚的板展开的时候慢些,但是点样量可以多一些不容易扩散.薄的板展开比较快,容易扩散点样量宜少

5.薄层板的活化.活化一定要铺好板干了以后放到烘箱活化.干了是指看不到有水痕在

上面.一般可以选择晚上铺板,早上的时候正好薄层板已干,可放进烘箱活化.为什么要完全

干了才能活化? 如果未完全干会导致活化的时候薄层板硅胶开裂.

一、手工铺板是非常考验你的耐力的事情,最好是找实验室的GGJJMMDD们一起,一

来速度快,二来大家一起交流心得。

我认为,第一个关键的地方,你的CMC-Na溶液必须配制的好,放置的也要很好,完

全分层之后只能取上清液。上清液要澄清透明,时间太长的CMC-Na可能会发黄,如果有

霉菌出现的话,绝对不能使用。

第二就是硅胶和CMC- Na溶液的比例可以适当的调节,根据你所需要薄层板的软硬来

微调。可以一个人研磨,一个人缓慢的倒CMC-Na溶液。研磨时最能考验你的定力,我觉

得你该找女生来磨,但是那种太文弱的不行。研磨时要顺着一个方向,速度不宜快,要顺

着研钵的边缘,观察仔细,一定要把气泡赶尽杀绝。研磨好的因改是均匀的,没有气泡,

没有固体的粉末类异物,溶液有一定的粘性。最后,铺板,我觉得是各人各喜欢,可以

顺着板中间倒,也可以顺着某个边缘倒,倒时也要注意不能引入小气泡。可以用玻璃棒引

着溶液平铺在玻璃板上(顺便说一句,玻璃板应该很干净,没有划痕,没有缺口,4个角

要“健全”),如有需要,可以双手10个指头拖住玻璃板,有节奏的颠,使得硅胶分摊

匀称。尤其是4个

角,容易高出玻璃板其他部位,所以要格外注意。颠好的板,表面看上去要光滑平整,没有气孔。

铺好的板,要找个干净的地方放置晾干,这个过程也是耐心的等着它,请勿打扰!

自然晾干后,活化一下(105摄氏度40分钟左右),置于密封的干燥器保存。最后想说

一下,如果你铺板目的是座分析用的话,肯定得很仔细用心。如果仅是天然药化那种粗略

检查过柱子得到的馏分纯度,那就没有必要这么复杂了,也就是说速度可以快点,板的要

求也没有必要这么高!

自己多看看人家怎么铺的,练练手,肯定就成高手了!

二、楼上的讲得很好,我再补充两点切身体会:

(1)CMC-Na溶液煮了以后不能再用冷水兑,否则,几天以后就会变绿,起霉。

(2)如果有抽滤装置你可以直接把CMC-Na溶液滤过,就可以不必等它沉淀再取上清

液了(嘿嘿,我是急性子),还有两个好处一是节省CMC-Na溶液,二是倒滤过的CMC-Na

溶液的时候不必担心会把下层的不溶物倒出来了!)

三、本人的工作经验:

薄层层析制板

1. 配制4%~5%的羧甲基纤维素(CMC):称取CMC,溶于冷水中,边加热边搅拌,直

至成为清澈、透明的溶液。

2. 40%硅胶:按CMC溶液的量、按40%的比例称取薄板层析硅胶,倒入大研钵中,与CMC溶液混合,充分研磨成均匀糊状。

3. 加入几滴乙醇或丁醇,可起到消泡的作用。

4. 将载玻片置于平台上,用药匙舀取糊状硅胶,均匀地铺在载玻片表面。

5. 自然干燥后,放入烘干箱烘12小时以上。再在105~110℃活化,活化时间为

0.5~1小时,冷却后即可使用。

我也来谈一下自己的一点经验吧。CMC-Na:硅胶为2.5:1较好,楼上师兄说的3:1

应该也可以,但是硅胶配的过稀时后果很严重,板子在晾干时会出现许多裂缝,象万寿菊

样的开花状,完全不能用。此乃本人的惨痛经历,当时不知道是硅胶过稀的原因,还以为

冬天太冷板子给冻裂了,又作了一批放在暖气房,还是照裂不务。浪费了整整一瓶GF254

啊(做的是制备板用量较大)。

有个问题至今不明白,请教各位大虾,晾干的板子放在烘箱里怎么全炸裂了,有什么

方法可以避免板子炸裂。

楼上的兄弟,我也有过同样的遭遇。当时板子铺得太厚,后来加长研磨的时间就好了。

首先我想说的是手工铺制的板子,只适宜于定性分析,不宜于分离定量。手工铺板的

要点我认为有如下几点:

1.手工铺制的板子常用的有:硅胶G板和硅胶CMC板。前者是煅石膏(石膏经140℃

烘烤3—4小时)与硅胶按1—1.3:10混合均匀。每份硅胶G加水2—3份调成糊状,即

可使用。后者的操作各位大虾已有论述。

2.载板要求平滑清洁。在使用前一定要处理干净,用洗涤液或肥皂水洗涤,再用水冲

洗干净,烘干;

3.CMC-Na要用蒸馏水为溶剂,加热溶解后,放冷,最好滤过使用;消泡剂可直接与CMC-Na溶液混合使用;

4. 我在做时,先在研钵中加CMC溶液,再加硅胶,按同一方向研磨,这样更容易调

匀不易包埋硅胶颗粒;稠度以用研棒粘取,成连珠状不成线状下滴为好;配制时遵循现配

现用、少量多次的原则,因其易干影响铺制效果。

薄层色谱法实践技巧

目的:

1. 药典:薄层色谱法系将供试品溶液点于薄层板上,在展开容器内用展开剂展开,

使供试品所含成分分离,所得色谱图与事宜的对照物按同法所得的色谱图对比,并可用薄

层扫描仪进行扫描,用于鉴别、检查或含量测定。

2. 如果你是做鉴别的话,薄层的系统适用性主要是做检测限和分离度;

3. 如果你是做含量测定,比如说用薄层扫描法,薄层的系统适用性应该做线性范围、同板精密度、异板精密度、回收率;

4. 手工铺制的板子,只适宜于定性分析,不宜于分离定量;

5. 化学药一般是作有关物质,需要一定的载药量,所以要适当增加厚度;

6. 中药一般较难分离,需要薄板,以增加分离度;

7. 手工铺制的板子常用的有:硅胶G板和硅胶CMC-Na板。前者是煅石膏(石膏经140℃烘烤3—4小时)与硅胶按1—1.3:10混合均匀。每份硅胶G加水2

—3份调成糊状,即可使用。后者的操作各位大虾已有论述。

8. 如果你铺板目的是做分析用的话,肯定得很仔细用心;如果仅是天然药化那种粗

略检查过柱子得到的馏分纯度,那就没有必要这么复杂了,也就是说速度可以快点,板的

要求也没有必要这么高;

9. 单纯的手铺板,技巧要求很高的,如果有铺板器(也是完全手动的那种),铺出

的板子基本上可以保证均一的。

10. 要喷硫酸乙醇并定量的最好铺水板;铺水板是最考技术的,主要是碾磨技术,大

家可以探讨一下;

11. 硫酸乙醇显色作定量分析的品种,但凡加了CMC-Na的板都易烘糊,尤其是温度

高于100度时,后改用不加CMC辅的水板来作,就不会有烘糊现象,故也可推论CMC易于

与硫酸起糊化反应。感觉辅水板关键是硅胶G与水的比例要达1:3.5左右,而且研磨后

要尽快涂布,不能易于凝固而难于涂布。

展开:

12. 药典:展开容器应使用适合薄层板大小的玻璃制薄层色谱展开缸,并有严密的

盖子,底部应平整光滑,或有双槽。上行展开一般可用适合薄层板大小的专用平底或双槽

展开缸,展开时须能密闭。水平展开用专用的水平展开缸。

13. 药典:将点好样品的薄层板放入展开缸的展开剂中,浸入展开剂的深度为距原点

5mm为宜(切勿将样点侵入展开剂中),密封顶盖,待展开至规定距离,除另有规定外,

一般为8~15 cm,溶剂前沿达到规定的展距,取出薄层板,晾干,按正文项下的规定检测。

14. 展开剂的选择(分离单体):

(1)粗分,也就是当你的样品极性范围比较大的时候,可以直接采用极性较小的流

动相。然后将前沿、原点以及前沿及原点间的硅胶分别刮下,提取。这样,样品就被分为

几个部分,而各个部分的极性相差也比较小了。然后再将这几部分分别进行下面的细分TLC。

(2)细分。经过粗分之后,我们一般对各个部分的极性都能够做到心中有数了。比如,被冲到前沿的样品,要采用更小极性强度的流动相,而死吸附部分,则需要较大强度

的流动相。

我们在初步确定了流动相的极性强度之后,可以自己设计几个溶剂系统。在选择

流动相的组成的时候,可以参考snyder的溶剂分类,从质子受体,质子给体和偶极

作用的溶剂中各选择一种,然后再选择一个强度调节剂。当然,也可以参考文献中采用的

流动相。选好了要用的流动相,就可以根据我们初步确定的极性强度得到流动相的配比了(如果是二元流动相的话)。如果是三元及以上的流动相,可以采用Glajch和Youngstrom的七种溶剂系统的方案进行选择流动相的配比。然后从中选择分离效果比较好的组合。

最开始可以采用微量圆环法(将样品点在中间,然后将流动相用毛细管从原点向圆周

扩散)和小板实验法来摸索,然后再应用于大的制备TLC。

我也曾直接采用圆环法,也称为环形展开,来进行制备的。本来是应该有专门的U形

展开室来展开,但是因为我们这里没有这个设备,所以我一般采用简易的方法:即将样品

点在中央,然后用尖头的滴管源源不断的向圆心滴加流动相的。样品会分出不同的同心圆

而得到分离。这样的好处有三:(1)只要操作小心,各个同心圆真的就非常圆,即不会

出现线性层析中的边缘效应等。(2)分离效果更好,拖尾现象小于线性层析。(3)由于

圆心式展开的Rfc是线性展开的Rf的平方根,要大于线性展开的Rf,所以分的更开。弊

端在于将各个组分从板上刮下的时候需更小心才不会使之混杂。

15. 当展开剂极性差别很大时,特别是极性大的成分所占比例很小时,往往会出现溶

剂脱混现象。在这种情况下,展开槽饱和与不饱和差别没有显著性差异,薄层板上往往

会出现类似分层的现象,所以只有换展开系统来调整。

16. 甲醇用量较小,而甲醇又易挥发,容易产生边缘效应,要特别注意展开剂的平衡

和层析缸的密封。

17. 如果经过一次展开后,展开槽内仍剩下足够的展开剂,可以展开第二块板子吗?

个人认为最好不要。一般来说为得到较好的分离效果,应先饱和一下,第二次使用如

果还要饱和就会造成另一侧残留的展开剂附着在板子上,造成影响。而且有机溶剂一般较

易挥发。

18. 自己手铺的薄层板怎么都没有买来的高效板好用,用过之后也可以用极性大

些的展开剂将展开的点,二次展开跑过,这样就可以重复利用了。

显色:

19. 药典:显色装置喷雾显色要求用压缩气体使显色剂呈均匀细雾状喷出;浸渍显

色可用专用的玻璃器皿或用适宜的玻璃缸代替;蒸气熏蒸显色可用双槽玻璃缸或适宜大小

的干燥器代替。

20. 说关于薄层板加热变黑的问题,其实很容易解决:当喷完显色剂后不用在放烘箱

里烘了,可以用电吹风在板子背面吹吹就能显色了。我们实验室里一般都采用此法,简便、快洁.如果一非想使用烘箱烘的话,一定要用带玻璃窗的,当看到显色了就取出,不然不

好控制显色时间,时间过长,CMC容易碳化变黑。

21. 根据我的经验,薄层版变黑与CMC-Na的浓度过大有关,如果你留意的话,你会

发现,当显色剂中有浓硫酸时,加热时间稍长就会变黑(其他显色剂是没事的),我老师

说这是因为浓硫酸把CMC-Na炭化了,其实[color=blue=这种情况你只要适当降低CMC-Na 的浓度就可以了,当然如果不加CMC- Na的话容易把板弄破。

22. 显色剂R6:称取100mgDC红色19号(染料索引号No 45170)溶于150ml二乙醚、70ml 95%乙醇和15ml水。此溶液可保存一周。薄层板喷布显色剂R6后,立即在366nm

下观察和记录。

问题与应用:

23. 板子会裂口,一则可能是因为硅胶的比例太大,二则可能是,板子要在常温下晾

干后,再在烘箱中活化。如果铺完不久就在较高温度下,裂口的几率就比较高的。

24. 板铺好后,自然凉干最好,一定是要从玻板后看也是干的,注意一定要放平,最

好控制空气流动;然后再放到烘箱中活化,这样就不会有裂开的现象了;如果直接铺好

后或者只是硅胶表面是干的,放进烘箱都会有裂开的。

25. “晾干的板子放在烘箱里怎么全炸裂了,有什么方法可以避免板子炸裂。” 你

的板没有完全干透,表面看是干了,但是最中间的没有干,所以你直接放入105度的烘箱烘,当然会炸裂了,所以应该先用低温大约40度左右烘30分钟左右,再用105度活化,

就可以解决这个问题了。

26. 板子炸裂也可能是CMC-Na中有絮状沉淀所致。

27. 但凡加了CMC的板都易烘糊,尤其是温度高于100度时,若改用不加CMC辅的水

板来作,就不会有烘糊现象,但不加CMC辅的板又太软,点样时容易点出洞,有个好办法

是将CMC的浓度调至0.1%,这样就不易烘黑的。

28. 系统适用性:如果你是做鉴别的话,薄层的系统适用性主要是做检测限和分离度。

如果你是做含量测定,比如说用薄层扫瞄法,应该做线性范围,同板精密度,异板精

密度,回收率。

CMC-Na溶液的配制:

29. 药典规定CMC-Na浓度为0.2%~0.5%,实际操作中0.4%~0.5%最为实用;CMC-Na溶液的溶剂应用蒸馏水,以尽量减少污染。

30. 配制CMC-Na溶液,根据实际经验一般将溶液浓度配成0.3%,需要铺厚板可配成0.5%左右,薄板可配成0.2%即可。CMC-Na溶解最好是自然溶解(浓度不是太高),也可

在水浴中加热促溶(用时还是过滤一下好,避免铺出的板子有麻坑)。

31. 配制CMC-Na溶液时,可以先量取好蒸馏水,再将称量好的CMC-Na均匀撒在水中,用玻璃棒搅拌,如果操作的好的话可以不用加热都能溶解的很好;当溶解完全后,应该抽

滤一下,这样铺的板子很均匀,不过滤会因为一些肉眼看不到的不溶物混入,这样铺的板

子会出现许多小颗粒;

32. 第一个关键的地方,你的CMC-Na溶液必须配制的好,放置的也要很好,完全分

层之后只能取上清液。上清液要澄清透明,时间太长的CMC-Na可能会发黄,如果有霉菌

出现的话,绝对不能使用;

33. 如果有抽滤装置你可以直接把CMC-Na溶液滤过,就可以不必等它沉淀再取上清

液了(嘿嘿,我是急性子),还有两个好处一是节省CMC-Na溶液,二是倒滤过的CMC-Na

溶液的时候不必担心会把下层的不溶物倒出来了。

34. 在 CMC-Na的溶解过程中,可以使用可进行加热操作的磁力搅拌器,大概搅拌5

小时,应该可得到满意的效果。而且这样就可以使CMC-Na溶解,并且溶液更澄清; CMC-

Na后处理,很多人说是过滤,或者抽滤,我觉得可能速度很慢,而且又容易浪费。我的做法是离心,5000rpm离心20min。倒出上清液,(非常清,也同时消除了过滤过程中可能

发生的污染)。更难能可贵的是,我可以收

集下面没有充分溶解的CMC-Na。继续加到水中,还可以配制。

35. 配制4%~5%的羧甲基纤维素(CMC):称取CMC,溶于冷水中,边加热边搅拌,

直至成为清澈、透明的溶液。

36. 有个办法过滤CMC-Na溶液,在布氏漏斗上平铺薄薄一层脱脂棉,千万保证每个

小孔都没漏掉哦!用蒸馏水润湿脱脂棉,启动真空泵,抽紧后就可以放心大胆的倒CMC-Na 溶液了,保证滤过的溶液澄清透明,而且长时间放置不沉淀。

37. CMC溶液的浓度0.3-0.7% 比较合适,浓度高了将来显色时如果有加热过程稍不

小心板子容易发黑,浓度低了铺出来的板子不结实,轻轻一碰就掉渣,不好保存,而且点

样时会很紧张,容易出洞;

38. 先将CMC-Na溶解完全,可将溶解成所需浓度加热后超声处理,再抽滤,可很快得到

上清液

39. CMC-Na煮沸大概30分钟或更久的,其实这个过程很慢。千分之3。过滤一下,

抽滤最好。要放冷。

40. 制备CMC-Na时,我的方法是将CMC-Na加入沸腾的水中,慢加快搅,防止成团,

完全溶解之后,自然沉降或者是抽滤(建议不用滤纸,太慢了,脱脂棉是个不错的选择)。

41. 对于CMC-Na溶液的配置,我认为最好提前几日配好,放置再用。配置时可用超

声分散,对少量没有立即溶解的,放置后会逐渐消失。

42. CMC-Na要用蒸馏水为溶剂,加热溶解后,放冷,最好滤过使用;消泡剂可直接与CMC-Na溶液混合使用;

43. 如是铺CMC-Na的薄层板,先将CMC-Na溶解完全,可将溶解成所需浓度加热后超

声处理,再抽滤,可很快得到上清液。

44. 关于CMC-Na的配制我觉得还要说一点就是:

这个东西也算是一种高分子材料,而高分子材料的溶解必然都会有一个溶胀,溶解的过程,所以配制的时候,应该将称好的CMC-Na少量的撒在水的表面,让其自然沉降,注意要散开平铺,这样能够充分浸润,使其溶胀,之后可以置于水浴锅内加热溶解;当然如果你不是很急着用的话也完全可以,直接用水泡着放那,估计十天半月的也可以用了。

45. CMC-Na的溶解需要煮????药检所的老师用一个大缸子装水,按比例加

入CMC-Na,让他自然溶涨、溶解,临用前用漏斗,加脱脂棉,滤过即可;

46. 根据我的经验,薄层版变黑与CMC-Na的浓度过大有关,如果你留意的话,你会发现,当显色剂中有浓硫酸时,加热时间稍长就会变黑(其他显色剂是没事的),我老师说这是因为浓硫酸把CMC-Na炭化了,其实[color=blue=这种情况你只要适当降低CMC-Na 的浓度就可以了,当然如果不加CMC- Na的话容易把板弄破;

47. CMC-Na溶液煮了以后不能再用冷水兑,否则,几天以后就会变绿,起霉。

48. CMC-Na完全溶解后,用布氏漏斗过滤。

玻板:

49. 选择合适的薄层板(如:20×10 cm),清洁干净(先用洗手液或洗衣粉清洗,再用自来水冲洗干净,接着用蘸有乙醇的棉花擦拭干净,最后把板吹干或烘干),放置于清洁处,备用。

50. 玻璃板应该很干净,没有划痕,没有缺口,4个角要“健全”。

51. 载板要求平滑清洁。在使用前一定要处理干净,用洗涤液或肥皂水洗涤,再用水冲洗干净,烘干。

52. 清洗玻璃板相当重要,切记要清洗得相当干净,不然会在铺板中产生小气孔。

53. 薄层板最好用洗洁精浸泡1~2小时,这样比较容易清洗,清洗后薄层板依柱竖起,半小时即可晾干。

54. 板子一定要洗干净,用适中浓度的盐酸浸泡是一个不错的选择。

55. 板要绝对干净。

总结:完整、平滑、清洁!

研磨:

56. 硅胶和粘合剂的比例不用固定,稀点铺薄板,稠点铺厚板,以目的决定比例。

57. 硅胶的研磨,当然是一个方向了,可以适量的加入一定量的无水乙醇或丙酮来消泡,也可以适当搅拌后放在干净容器内超声,效果都是不错的。手工铺硅胶的用量一般

10×20 cm的约3~4克,硅胶和CMC-Na的用量一般是1:2.8~3,具体根据要铺板子的

厚度和CMC-Na的浓度决定。

58. 40%硅胶:按CMC溶液的量、按40%的比例称取薄板层析硅胶,倒入大研钵中,与CMC溶液混合,充分研磨成均匀糊状。

59. 先在研钵中加CMC溶液,再加硅胶,按同一方向研磨,这样更容易调匀不易包埋

硅胶颗粒;稠度以用研棒粘取,成连珠状不成线状下滴为好;配制时遵循现配现用、少量

多次的原则,因其易干影响铺制效果。

60. 硅胶和CMC-Na溶液的比例可以适当的调节,根据你所需要薄层板的软硬来微调。可以一个人研磨,一个人缓慢的倒CMC-Na溶液。研磨时最能考验你的定力,我觉得你该

找女生来磨,但是那种太文弱的不行。研磨时要顺着一个方向,速度不宜快,要顺着研钵

的边缘,观察仔细,一定要把气泡赶尽杀绝。研磨好的因改是均匀的,没有气泡,没有固

体的粉末类异物,溶液有一定的粘性。

61. 硅胶的浓度要适中。太稀铺板时易淌出,同时延长板的干燥时间;太稠,流动性

不好,铺板是靠其流动性的,同时也很可能在没铺好前凝固。

62. 建议硅胶应配制成偏稀的状态,这样铺制更容易,不必辛苦地颠好久,而且可多

可少,可薄可厚。

63. 我的经验是CMC-Na与硅胶配成 3:1比较合适,CMC-Na用千分之三到千分之五,硅胶浓度稍大一些或小一些也行,但不能太低,否则板子边缘会凹凸不平。

64. CMC-Na:硅胶为2.5:1较好,楼上师兄说的3:1应该也可以,但是硅胶配的过

稀时后果很严重,板子在晾干时会出现许多裂缝,象万寿菊样的开花状,完全不能用。

65. 充分磨好硅胶,后,再边磨边加CMC-Na溶液;铺的时候,如果慢且多,那么有

时会干了,你还要边磨边放点CMC-Na溶液。

66. 研磨时防止气泡可以加少量的乙醇或者丙酮;加入几滴乙醇或丁醇,可起到消泡

的作用。

67. 加长研磨的时间,勿太厚,避免板子炸裂。

68. 超声的排气效果很好。

69. 0.4% CMC-Na溶液(1:3)置研钵中,朝一个方向慢慢研细约10~15分钟,10g 吸附剂加入3滴95%乙醇以驱赶气泡;

70. 硅胶的研磨时间:如果严格规定的话,需在一分钟内完成,从加入CMC溶液到吸附剂中至涂布结束,应在四分钟内完成

71. 硅胶与CMC-Na溶液的比例根据硅胶型号的不同而不同:硅胶G或硅胶

GF254比例一般为1:2 ~ 1:3,硅胶H或硅胶HF254比例一般为1:3 ~ 1:

4。

72. 研磨的时候确实需要沿一个方向研,不要敷衍

73. 硅胶研磨要充分,防止气泡。

74. 实在怕有气泡,可以超声一下。

铺板:

75. 药典:薄层板制备除另有规定外,将1份固定相和3份水(或加有黏合剂

的水溶液)在研钵中向一方向研磨混合,去除表面的气泡后,倒入涂布器中,在

玻板上平稳地移动涂布器进行涂布(厚度为0.2~0.3 mm),取下涂好薄层的玻板,

置水平台上于室温下晾干,后在110℃ 烘30分钟,即置有干燥剂的干燥箱中备

用。使用前检查其均匀度(可通过透射光和反射光检视)。表面应均匀,平整,

无麻点、无气泡、无破损及污染。

76. 薄层板的厚度:如果定性分析,一般厚度以0.25 mm为好;如果要分离制备

少量的纯物质时,厚度应稍大一些,常用的为0.5 mm-0.75 mm,甚至有1 mm

-2 mm的。

77. 铺板,我觉得是各人各喜欢,可以顺着板中间倒,也可以顺着某个边缘倒,

倒时也要注意不能引入小气泡。可以用玻璃棒引着溶液平铺在玻璃板上,如有需

要,可以双手10个指头拖住玻璃板,有节奏的颠,使得硅胶分摊匀称。尤其是

4个角,容易高出玻璃板其他部位,所以要格外注意。颠好的板,表面看上去要

光滑平整,没有气孔。

78. 将薄层用硅胶粉称定加入3倍量的CMC-Na溶液,研磨均匀(匀速一个方向)

成糊状(我用1分钟左右),不要静置迅速将涂料倒于备好的玻璃板(事先清洗

干净,不可有污渍、水滴。)自上而下自然流注铺于玻璃板,倒量为距离边缘3厘米左右即可(铺厚板用量适当多些,薄板量少些),然后用研钵棒涂布玻璃板上。颠板(上下左右或倾斜根据板的涂布情况而定)。铺好的板要选择一个水平、通风的平台放置,不可落上灰尘。

79. 依据薄层板使用需要,将适量研好的吸附剂倒到薄层板上,先用小锤将吸附

剂荡匀,倾斜层析板,使吸附剂流至层析板一侧,待吸附剂蓄积一定量后,再反向倾斜层析板,使吸附剂回流;然后是另外两个方向,重复上述操作,后轻颠几下薄层板即可。

80. 将吸附剂制备好后,直接将适量倾倒于玻板的中央处,接着用研棒轻轻将吸

附剂溶液向四周摊匀,然后开始颠玻板;颠的时候可要注意啦:一定要轻轻的颠,从玻板的一头颠到另一头,然后反过来进行。重复几次即可。

81. 将研好的糊糊倒在干净的板上,我一般是从中间一次性倒下去,然后用左手

托板,轻轻倾斜,使糊糊向板边缘流动,右手拿研棒将没铺到的地方涂均匀,但要注意研棒在接触糊糊一直到最后涂抹均匀才能离开板,一旦提起就不能再去涂抹,否则会留下痕迹。涂抹结束后,就颠板啦,我的经验是颠的幅度不易大,但频率可以快些。

82. 颠板。此过程要与前面步骤连续进行,且不宜久颠,以保证颠好后硅胶还有

一定的流动性,放置到平台时仍可以靠自身流动修正颠板及移动所产生的不均。

83. 将载玻片置于平台上,用药匙舀取糊状硅胶,均匀地铺在载玻片表面。

84. 铺板时,用的硅胶量要掌握好。

85. 将硅胶倒入在盛有CMC-Na溶液的研钵中,CMC-Na溶液的浓度不宜过高,

研磨均匀,大约5-10分钟,用研棒粘取,成珠滴为好,铺板,两面颠簸至平放置平台上。

86. 载玻片的涂布:将干燥后的载玻片两片夹在一起,沉浸入糊状物中,使在载

玻片上形成固体层.为了浸蕉一对载玻片,用你的指间夹住载玻片的一端,并尽

可能地向下进入所提供的糊状物中.当载波片一浸入糊状物中后,立即以快而平稳的速度将其拉出,并让过量的糊状物滴回.小心的分开载玻片,放到水平台上,干燥.(注意:糊状物一定要均匀;要迅速拉出载玻片,大多数人拉得太慢)

87. 研磨硅胶时,我一般取30 g硅胶H,加入5%的CMC-Na 100 ml,研磨,当

将研棒提起时,硅胶象成溜似的滴下为正好。

88. 铺完板后,最好将两边的边缘修理一下,并且各个边缘都要擦干净,这样可

以避免跑歪。

89. 边缘坏一点可以用刀子刮去整齐的一条。

晾干:

90. 对铺好的板要选择平整的地方,自然干燥,不易人为强制干燥。干燥后再活

化,否则板会开裂。

91. 铺好的板,要找个干净的地方放置晾干,这个过程也是耐心的等着它,请勿

打扰。

92. 板铺好后,自然凉干最好,一定是要从玻板后看也是干的,注意一定要放平,

最好控制空气流动。

93. 板子铺好之后一定要放在平面上阴干(一定是阴干,不然你会后悔的),如

果看荧光最好是找一个比较干净的房间,不然荧光下板子上会有很多点点。

94. 要等阴干且透后才能放入烘箱干燥活化时。还有一点,铺板和凉板时周围的

环境要好,桌面要干净,最怕是有粉尘,如有粉尘落在未干的板上可就惨了,定量不行,可以定性,但不好看。

95. 自然干燥后,放入烘干箱烘12小时以上。

96. 薄层板铺好后一定要放置在平的台面上,否则难保证板面硅胶的厚度均匀。

97. 铺制好的薄层板先让其稍干后,即看不出有明显的水印,放入烘箱内用50

度以下的温度并开鼓风干燥30分钟,再升温干燥至干,注意升温过快在使用的过程中有可能发生起层的现象,不利于分离,以上方法经本人两年多的实践,效

果较好且耗时又不太长。

98. 置平整处过夜自然晾干;如使用较急亦可60℃烘干。

活化:

99. 活化的目的是除去水分。

100. 自然晾干后,活化一下(105摄氏度40分钟左右),置于密封的干燥器保存。 101. 再在105~110℃活化,活化时间为0.5~1小时,冷却后即可使用。

102. 厚板在活化时容易裂,考虑到化学药相对容易分离,所以降低活化温度,自然晾干后,40或60摄氏度的烘箱中2~3小时即可,干燥器中保存。

103. 用于分离中药的薄板需要活化,活化后要立即使用,可以称热点样饱和,不然空气中的水分会导致你作无用功,使得吸附色谱转为分配色谱。

104. 薄层烘干的时候最好不要在带鼓风的烘箱中烘,容易起皱,或者破裂。

点样:

105. 药典:点样器一般采用微升毛细管或手动、半自动、全自动点样器材。

106. 药典:除另有规定外,在洁净干燥的环境中,用点样器点样于薄层板上,一般为圆点状或窄细的条带状,点样基线距的底边15~20 mm,高效板一般基线

距底边 8~10 mm,圆点状直径一般不大于3 mm,高效板一般不大于2 mm;条

带状宽度一般为5~10 mm。高效板条带宽度一般为4~8 mm,可用专用半自动

或自动点样器械喷雾法点样。点间距离可视斑点扩散情况以不影响检出为宜。一

般不少于8 mm,高效板供试品间隔不少于5 mm。点样时必须注意勿损伤薄层

板表面。

107. 点样,可以用进样器,也可以用定量毛细管(有点贵啊,5ul的2块多一根),点样时尽量使点小且圆整,尽量不要破坏板子。

108. 毛细管点样,点样量不能控制。你可以到药店买1~2ml的注射器作为点样器,可以满足TLC鉴别的要求,而且很便宜哦!

109. 点样,我上学的时候,老师用比较便宜的进样器(大约10几块钱吧,10μ

l即可),将针尖打磨圆滑,老师好像是用锉一点一点锉的,这样点样的时候样品溶液不容易沿针尖上行(甲醇溶液都这样),并且针尖不会刺破已经铺好的薄层板。现在,我和师兄都是实行的这个办法,还是比较实用的,点样量可以精确到

0.5?l。当然,点样的时候手不能抖动,动作要轻

110. 要磨平微量进样器的针尖,简单的方法就是,在展缸的盖子上轻磨(当然是靠近中间部分),就很快能解决问题,且很平滑。

111. 关于点样:我们一直都用液相平头进样针,10 ul就够了,如果点样量低于 1ul的话,就用气相进样针。都可以很好的控制点样量,且斑点也可以满足要求。

速度也快。可以避免毛细管先快后慢的毛病。

112. 用定容毛细点样管:5 ul ,2 ul,1 ul。

113. 对于点样我也有些心得。原来有专门的点样管,是10 ul规格的,是点10 ul 的好说,反正点完就是了,但要点5ul或更少,那就全凭眼力了,做得是一点把握没有啊,但还得点,呵呵。自从发现可以用微量进样器后,不仅可以控制的得心应手,不会因为一按不稳把药液给全点上去导致斑点过大,还可以重复利用节省开支,重要的是还环保。呵呵!提倡广大的兄弟姐妹也用微量进样器替代塑料的点样管,经济又好用。

平衡与饱和:

114. 药典:展开前如需要溶剂蒸气预预平衡,可在展开缸中加入适量的展开剂,密闭,一般保持15~30分钟,溶剂蒸气预平衡后,应迅速放入载有供试品的薄层板,立即密闭,展开。如需使展开缸达到溶剂蒸气饱和的状态,则须在展开缸的内侧壁上贴二条与缸一样高、宽的滤纸条,一端浸入展开剂中,密封顶盖,使系统平衡或按正文规定操作。

115. 饱和也非常重要,边缘效应很严重的不妨用下端浸在展开剂中的滤纸贴在展开缸的内壁,这样饱和效果会好一些。

116. 在层析缸口涂适量凡士林,增加密封性。

117. 层析缸在展开前最好平衡一个小时左右,让里面的展开剂平衡。也可以在两边放滤纸条,增加展开剂的散发面积,减少边缘效应。

118. 以展开剂边缘效应的大小,确定展开剂平衡时间的长短,一般平衡时间在

30分钟即可。

小型薄层色谱在药物合成中的使用方法经验总结

薄层色谱法(TLC,thin-layer chromatography)是一种在铺成薄层的固体上进行的平面色谱方法, 由俄国学者N·A·Izmailov等在1938年首次报导。但直到1956年德国学者E1Stahl较完整地发展了这个方法,TLC才得到广泛重视和研究,成为色谱法的一个重要分支,处于活跃和发展状态。EStahl因此项工作获得IUPAC的

Talanta(分析化学)大奖。薄层色谱(TLC)和高效液相色谱(HPLC)具有相同的分离原理,是依据不同物质在流动相与固定相之间的吸附和解吸速率不同来进行物质的分离。薄层色谱与纸色谱、柱色谱等属于传统分析;高效液相色谱、质谱、气谱等属于仪器分析。随着时代的发展,仪器分析渐渐取代传统分析,现已成为主流。

仪器分析在精密性、准确性、连续性、重现性等方面,有着传统分析达不到的优点。例如定量分析多组分有机混合物,或者在有标准品的情况下确定未知物时,

HPLC法与TLC法比较,具有准确度高、重现性强的优点。但是和传统分析比较,仪器分析主要的弱点就是不灵活,必须按照固定的程序操作,更改条件比传统方法繁琐得多。其次是成本高的问题,先期投入大、人员培训周期长、运行维护的人力、物力费用高。相反,这些正是传统分析的优点。因此,在普通的有机合成、精细化工实验室,传统分析仍不可完全被代替,其优势在于灵活多变、应用方便、成本低廉。TLC法有着悠久的历史,随着经济发展,对外交流增多,很多实验室已采用商品化的薄层板,如涤纶片基硅胶板。商品化硅胶板和自制硅胶板相比,具有性能稳定、重现性高的特点,可进行半定量分析[1]。

总之,与经典的柱上色谱,常用的气相色谱、纸上色谱,以及较近发展起来的

高效液相色谱比较,TLC有以下特点:1) 设备简单,操作方便;2)快捷,展开时间短;3)

可采用多种固定相及显色手段,方法多样而高效;4)可广泛选择流动相;5)检出灵敏度高,一般可达 10-10g以下;6)样品量适用范围大;7)技术多样化, 特别是二维展开、浓度梯度展开等,展开机理亦有吸附、分配、离子交换、电泳、等电聚焦等多种,可联合采用数种手段,为其它色谱技术所不及。以上是TLC的长处,但应当指出,TLC在自动化程度及分离效果上比气相色谱和高效液相色谱稍差,分析特别复杂的样品有时有困难,也不适于挥发性样品的分析。近年来,发展了高压TLC、高效离心TLC、圆柱TLC、等离子检出等新技术,TLC在自动化和高效方面已达

到与高效液相色谱同等的水平。小型薄层色谱(m- TLC)技术作为合成实验中的常规监测手段以及TLC和其它色谱技术的前导技术发挥着重要作用。m-TLC技术

细节的掌握和未知体系技术参数的确定是m- TLC应用于新的反应体系的关键

[2]。

1 薄层色谱的制作

1.1 使用的化学药品和仪器有:

(1)化学药品: 使用的主要化学药品列于表1。

表1

品名

规格

来源

硅胶-G(60H)

TLC专用

青岛海洋化工

羧甲基纤维素钠(CMC)

分析纯

上海化学试剂二厂

甲醇

分析纯

上海振兴化工二厂

乙醇

分析纯

上海振兴化工二厂

(2)仪器:m-TLC仪器一套,自备包括m-TLC基板,展开槽,显色槽。

1.2 m-TLC薄层板的制备

(1)将(2.5×7.5)cm2载玻片依次用水和乙醇洗净,晾干。要求玻片无划痕, 水膜均

匀,完全洁净。置玻片于80℃烘箱干燥,转入干燥器冷却至室温,备用。

(2)用110g硅胶-G配2.5mLCMC-Na水溶液(0.50%,w/w)调制硅胶糊(slurry)。

(3)将硅胶糊均匀涂于(2.5×7.5)cm2载玻片上,每块载玻片约用0.2~0.4g硅胶(干

重)。保持薄板水平,令其自然干燥1~2d。其间保持薄板洁净。

(4)将薄板放入110℃烘箱活化30min。

(5)将薄板转入干燥器,令其自然冷却至室温,备用。

2 薄层板制备的常见问题及解决方法

2.1关于配制CMC-Na:

CMC-Na是一种高分子材料,而高分子材料的溶解必然都会有一个溶胀、溶解的

过程,所以配制的时候,应该将称好的CMC-Na逐量的撒在水的表面,让其自然沉降,注

意要散开平铺,这样能够充分浸润,使其溶胀,之后可以置于水浴锅内加热溶解,当然如果你

不是很急着用的话也完全可以直接用水泡着放一边,泡个几天也是可以用的。以下是配置CMC-Na过程中需要注意的方面:

先将称好的CMC-Na 加入所需水量的8/10,让其充分溶涨后,再加热煮沸,然后将剩余

水慢慢加入。这样在煮沸过程中不易形成颗粒,煮沸时间短.0.5%CMC-Na与水如果不好溶涨,可在溶涨前加几滴乙醇,比较好溶,但是尽量不加,因为加入乙醇后使CMC-Na的粘合性

降低。CMC-Na溶液煮了以后不能再用冷水兑,否则,几天以后就会变绿,起霉。而且放置时间太长的CMC-Na溶液可能会发黄,如果有霉菌出现,绝对不能再使用。

(2)CMC-Na溶液的浓度0.3%-0.7%比较合适,实际操作中0.4%~0.5%最为实用,浓

度高了,将来显色时,如果有加热过程稍不小心板子容易发黑;浓度低了铺出来的板子不结实,轻轻一碰就掉渣,不好保存,而且点样时如果紧张,容易出洞。

(3)在CMC-Na的溶解过程中,可以使用有加热操作功能的磁力搅拌器,大概搅拌5小时,应该可得到满意的效果。而且这样就可以使CMC-Na溶解,并且溶液更澄清。如果有

抽滤装置你可以直接把CMC-Na溶液滤过,就可以不必等它沉淀再取上清液了,这样做还

有两个好处:一是节省CMC-Na溶液,二是倒滤过的CMC-Na溶液的时候不必担心会把下层

的不溶物倒出来。过滤CMC-Na溶液的办法,在布氏漏斗上平铺薄薄一层脱脂棉(保证每

个小孔都没漏掉),用蒸馏水润湿脱脂棉,启动真空泵,抽紧后就可以倒CMC-Na溶液了,要保证滤过的溶液澄清透明,而且长时间放置不沉淀。关于CMC-Na的后处理,过滤,或

者抽滤都可以,有的实验者觉得可能速度很慢,而且又容易浪费。所以采用的做法是离心,5000rpm离心20min。倒出上清液,上清液非常清,也同时消除了过滤过程中可能发生的

污染。下面没有充分溶解的CMC-Na。继续加到水中,还可以继续配制使用。另外还有一种处理方法:先将CMC-Na溶解完全,可将其溶解成所需浓度,加热后超声处理,再抽滤,可很

快得到上清液。

2.2 关于薄层板的要求:

(1)载板要求平滑清洁,没有划痕,在使用前可用洗涤液或肥皂水洗涤,再用水冲洗

干净。

判断载板是否洗干净的标准:拿在手上立起来,如果发现水不是呈股流下,而是呈瀑

布状态流下,说明玻璃已经洗干净。(真正洗干净的玻璃,很快就可以晾干。)

(2)清洗用过后的薄层板,可用洗衣粉、洗洁净,反复洗数遍,如果仍然挂水珠,可

用洗液泡。如果还解决不了那就只好放弃这块玻璃板了。

2.3 关于研磨及铺板要求:

取薄层层析硅胶重量与CMC-Na的体积比为1:4的比例(该比例能使硅胶板铺出的效

果较好不至于掉渣也不至于板太硬)充分混合碾磨,至拿起碾锤能看到混合液与碾锤有一

定的粘连。即好。

(1)硅胶的研磨,必须是一个方向,可以适量的加入一定量的无水乙醇(10g吸附剂加入3滴95%乙醇)或丙酮来消泡,也可以适当搅拌后放在干净容器内超声。

(2)依据薄层板使用需要,将适量研好的吸附剂倒在薄层板上,先用小锤将吸附剂荡匀,倾斜层析板,使吸附剂流至层析板一侧,待吸附剂蓄积一定量后,再反向倾斜层析板,使吸附剂回流;然后是另外两个方向,重复上述操作,后轻颠几下薄层板即可。

(3)铺板时,给载板倒吸附剂时要注意不要引入小气泡。如有需要,可以双手10个指

头托住玻璃板,有节奏的颠簸,使得糊状硅胶分布匀称。尤其是载板的四个角,容易高出

玻璃板其他部位,所以要格外注意。颠好的板,表面看上去要光滑平整,没有气孔。薄层

板铺好后一定要放置在平的台面上,否则难保证板面硅胶的厚度均匀。

(4)铺制好的薄层板先让其稍干后,即看不出有明显的水印,放入烘箱内用50度以下的

温度并开鼓风干燥30分钟,再升温干燥至干,注意升温过快在使用的过程中有可能发生起

层的现象不利于分离。

2.4 关于展开剂:

(1)分离的样品酸性比较大,一般在展开剂中加酸。

(2)加甲酸是因为该样品是酸性的,加酸的量和该物质的酸性成正比关系,加水可能

是因为样品是苷类的用酸水做一下缓冲,目的就是让斑点圆滑,不脱尾,展距良好。

(3)饱和也非常重要,边缘效应很严重的,可将下端浸在展开剂中的滤纸贴在展开缸

的内壁,这样可增强饱和效果。

(4)在层析缸口涂适量凡士林,增加密封性;

(5)根据展开剂边缘效应的大小,确定展开剂平衡时间的长短,一般平衡时间在30分

钟即可。

(6)有机溶剂的极性,甲醇>氯仿,因此在氯仿:甲醇:氨水(10:1:0.6)这个展开

剂中,如极性略大,可适当降低甲醇比例;如极性太小,可适当增大甲醇比例。另外还

有一个问题,这个展开剂中,甲醇用量较小,而甲醇又易挥发,容易产生边缘效应,要特

别注意展开剂的平衡和层析缸的密封。

2.5 关于展开:

TLC中样品拖尾现象及跑成几乎为一条线,斑点没有清晰的分离的原因及解决方法。

造成这两个问题的原因基本相同:

(1)对于一些具有酸碱性的化学成分,在溶液中部分电离,事实上展开时存在分子、

离子两种状态,以中性的有机试剂展开必然会出现两种层析行为,造成脱尾甚至是一条线;

(2)展开剂选择不当;

(3)点样量过大,样品超载。

(4)点样后,用吹风机吹,使样点固化,进而有部分样品强烈地吸附在吸附剂的颗粒上,导致拖尾。

解决办法:

(1)在展开剂中加几滴甲酸或冰醋酸;

(2)展开时以氨水饱和;

(3)在铺板时用稀酸溶液(如0.1~0.2mol/L的草酸溶液)代替水制成酸性薄层,在

铺板时用稀碱溶液(如0.1~0.2mol/LNaOH溶液)代替水制成碱性薄层。还可以制成缓冲

溶液代替水以制成一定PH值的薄层;

(4)减少点样量;

(5)参考文献,调整展开剂种类、比例;

(6)尽量不要用吹风机吹热风或吹时不要靠的太近。

2.6 关于显色:

2.61 通用的显色方法

分离的化合物若有颜色,很容易识别出来各个样点。但多数情况下化合物没有颜色,

要识别样点,必须使样点显色。通用的显色方法有显色剂显色(碘蒸气显色)、紫外线显

色和荧光薄层板显色:

(1)碘蒸气显色:将展开的薄层板挥发干展开剂后,放在盛有碘晶体的封闭容器中,

升华产生的碘蒸气能与有机物分子形成有色的缔合物,完成显色。

(2)紫外线显色:用掺有荧光剂的固定相材料(如硅胶F,氧化铝F等)制板,展开后在用紫外线照射展开的干燥薄层板,板上的有机物会吸收紫外线,在板上出现相应的色点,可以被观察到。

荧光薄层板检测:荧光薄层是在硅胶中掺入少量荧光物质制成的板,在254nm紫外灯,整个薄层板显黄绿色荧光,被测物质由余吸收了部分照射在此斑点位置的紫外线,而呈现

各种颜色。

在显色剂显色中,用高锰酸钾-硫酸液显色时,配制方法为把500mg高锰酸钾溶在

15ml浓硫酸中。注意要少量地慢慢混合,因为锰的七氧化物有爆炸性。结果为在粉底本色上产生白色斑点。

2.62 实验中常见问题

(1)在工作中研究过用硫酸乙醇显色作定量分析的品种,但凡加了CMC的板都易烘糊,尤其是温度高于100度时,后改用不加CMC铺的水板来作,就不会有烘糊现象,故也可推

论CMC易于与硫酸起糊化反应。

(2)虽然改用不加 CMC铺的水板来作不会有烘糊现象,但不加CMC铺的板又太软,点

样时容易点出洞,办法是:一、将CMC的浓度调至0.1%,这样就不易烘黑的;二、当喷完显色剂后不要在放烘箱里烘,可以用电吹风在板子背面吹吹就能显色了.此法简便、快洁.如果非想使用烘箱烘的话,一定要用带玻璃窗的,当看到显色了就取出,不然不好控

实验一薄层层析板的制备

实验一薄层层析板的制备 一、实验目的 制备薄层层析板,使叶绿素在层析板上分离显色。 二、实验原理 薄层层析,常用 TLC(Chromatography)表示,又称薄层色谱,属于液-固吸附色谱。是近年来发展起来的一种微量、快速而简单的色谱法,它兼备了柱色谱和纸色谱的优点。一方面适用于小量样品(几到几十微克,甚至0.01 μ g )的分离;另一方面若在制作薄层板时,把吸附层加厚,将样品点成一条线,则可分离多达 500mg 的样品。因此又可用来精制样品。故此法特别适用于挥发性较小或在较高温度易发生变化而不能用气相色谱分析的物资。 薄层吸附色谱的吸附剂最常用的是氧化铝、硅胶、硅藻土、聚酰胺和纤维素。其颗粒大小,一般要求直径为10~40μm。硅胶是无定形多孔性物质,略具酸性,适用于酸性物质的分离和分析。薄层色谱用的硅胶分为:“硅胶H ”—不含粘合剂;“硅胶G ”—含煅石膏粘合剂;“硅胶HF 254 ”—含荧光物质,可用于波长为 254nm 紫外光下观察荧光;“硅胶GF 254 ”—既含煅石膏又含荧光 剂等类型。粘合剂除上述的煅石膏(半水合硫酸钙: 2CaSO 4 · H 2 O )外,还 可用淀粉、羧甲基纤维素钠。 三、实验材料、器具 1、试剂硅胶、4‰的CMC溶液(羧甲基纤维素钠) 2、实验用具:药匙、研钵、载玻片、量筒、玻棒 四、实验步骤 1、载玻片要求平滑清洁,没有划痕,在使用前可用洗涤液或肥皂水洗涤,再用水冲洗干净。(干净的标准:水不是呈股流下,而是呈瀑布状态流下。) 2、与硅胶混合:CMC-Na溶液与硅胶的比例为3:1(3ml:1g)。取CMC-Na溶液倒入研钵中,然后加入硅胶,在研钵中研磨,按一个方向研磨,自下而上,然后自上而下,以赶尽气泡为佳。 3、铺板:将载玻片置于平台上,用药匙舀取糊状硅胶,均匀地铺在载玻片表面。铺板时,可以顺着板中间倒,也可以顺着某个边缘倒,也可以用玻璃棒引着溶液平铺在玻璃板上,倒时也要注意不要引入小气泡。尤其是载板的四个角,容易高出玻璃板其他部位,所以要格外注意。后轻颠几下薄层板即可。颠好的板,表面看上去要光滑平整,没有气孔。薄层板铺好后一定要放置在平的台面上,否则难保证板面硅胶的厚度均匀。(3g硅胶大约可铺7.5×2.5cm载玻片5-6块) 4、晾干:置水平台上于室温下晾干。 5、活化:将晾干的板子在105℃烘箱中干燥30min,然后取出,放入干燥器中,备用。活化硅胶有利于提高硅胶的吸附性能,同时排除硅胶内部已吸收的水分及其他气体。通过活化硅胶,主要改变了硅胶内部的微孔结构,使其孔径的大小及

薄层色谱法实验报告

实验报告 一、实验目的 掌握薄层色谱的基本原理及其在有机物分离中的应用。 二、实验原理 有机混合物中各组分对吸附剂的吸附能力不同,当展开剂流经吸附剂时,有机物各组分会发生无数次吸附和解吸过程,吸附力弱的组分随流动相迅速向前,而吸附力弱的组分则滞后,由于各组分不同的移动速度而使得她们得以分离。物质被分离后在图谱上的位置,常用比移值R f表示。 R f 原点至层析斑点中心的距离原点至溶剂前沿的距离 三、实验仪器与药品 5.0cm×15.0cm硅胶层析板两块,卧式层析槽一个,点样用毛细管。 四、物理常数 五、仪器装置图

“浸有层析板的层析槽”图 1-层析缸,2-薄层板,3-展开剂饱和蒸汽,4-层析液 六、实验步骤 (1)薄层板的制备: 称取2~5g层析用硅胶,加适量水调成糊状,等石膏开始固化时,再加少许水,调成匀浆,平均摊在两块5.0×15cm的层析玻璃板上,再轻敲使其涂布均匀。(老师代做!)固化后,经105℃烘烤活化0.5h,贮于干燥器内备用。 (2)点样。 在层析板下端2.0cm处,(用铅笔轻化一起始线,并在点样出用铅笔作一记号为原点。)取毛细管,分别蘸取偶氮苯、偶氮苯与苏丹红混合液,点于原点上(注意点样用的毛细管不能混用,毛细管不能将薄层板表面弄破,样品斑点直径在1~2mm为宜!斑点间距为1cm) (3)定位及定性分析 用铅笔将各斑点框出,并找出斑点中心,用小尺量出各斑点到原点的距离和溶剂前沿到起始线的距离,然后计算各样品的比移值并定性确定混合物中各物质名称。

实验注意事项 1、铺板时一定要铺匀,特别是边、角部分,晾干时要放在平整的地方。 2、点样时点要细,直径不要大于2mm,间隔0.5cm以上,浓度不可过大,以免出现拖尾、混杂现象。 3、展开用的烧杯要洗净烘干,放入板之前,要先加展开剂,盖上表面皿,让烧杯内形成一定的蒸气压。点样的一端要浸入展开剂0.5cm 以上,但展开剂不可没过样品原点。当展开剂上升到距上端0.5-1cm 时要及时将板取出,用铅笔标示出展开剂前沿的位置。 讨论: 七、思考题

实验一 薄层板的制备

实验一 薄层板的制备、活度测定及应用 1. 目的要求 1.1 掌握薄层板的制备及薄层层析的操作方法 1.2 掌握吸附剂活度测定的原理及方法 1.3应用薄层层析法检测以中草药化学成分 2.实验原理 2.1薄层层析是一种微量、快速的层析方法。它不仅可以用于纯物质的鉴定,也可用于混合物的分离、提纯及含量的测定。还可以通过薄层层析来摸索和确定柱层析时的洗脱条件。根据分离的原理不同,薄层层析可以分为两类:用吸附剂铺成的薄层所进行的层析为吸附薄层层析;用纤维素粉、硅胶、硅藻土为支持剂铺成的薄层,属于分配薄层层析。薄层层析中以吸附簿层为多用,吸附薄层中常用的吸附剂为氧化销和硅胶。 2.2 吸附簿层主要是利用吸附剂对样品中各成分吸附能力不同,及展开剂对它们的解吸附能力的小同,使各成分达到分离。吸附作用主要由于物体表面作用力、氢键、络合、静电引力、范德华力等产生。吸附强度决定于吸附剂的吸附能力,还受被吸附成分的性质影响,更与展开剂的性质有关。 2.3分配簿层层析的原理是,用极性溶剂吸附在同体支持剂上所形成的混合物,铺成簿层(或装柱),然后活化、点样(或上样),再用极性较弱的展开剂(或洗脱剂)进行展开。在展开过程中,各成分在固定相和流动相之间作连续不断的分配。由于各成分在两相间的分配系数不同,因而可以达到相互分离的目的。 2. 4由于化合物的极性不同,吸附能力不相同,在展开剂上移动,进行不同程度的解析,根据原点至主斑点中心及展开剂前沿的距离,计算比移值(R f ): f R =溶质的最高浓度中心至原点中心的距离溶剂前沿至原点中心的距离 化合物的吸附能力与它们的极性成正比,具有较大极性的化合物吸附较强,因此R f 值较小。在给定的条件下(吸附剂、展开剂、板层厚度等),化合物移动的距离和展开剂移动的距离之比是一定的,即R f 值是化合物的物理常数,其大小只与化合物本身的结构有关,因此可以根据R f 值鉴别化合物 2.5薄层层析可适用小量样品(几到几十微克甚至0.01g μ)的分离:也可用于多达500mg 样品的分离,是近代有机化学中用于定性、定量的一种重要手段。特别适用于那些挥发性小的化合物,以及在高温下易发生化学变化而不能用气相色谱分析的物质。

铺薄层板的经验总结

铺薄层板的经验总结 1.CMC-Na配置也比较重要,不能太稀了,不然硅胶的黏附性不好,铺好的硅胶容易脱落.太稠了也不行,不容易和硅胶混匀 2.CMC-Na与硅胶混合时注意比例,一般为30克硅胶加入100克0.3-0.5%的CMC-Na水溶液.如果铺多了的话可以凭经验就能感觉到适合的程度.混合时最好朝一个方向研,这样也不容易有气泡 3.铺板的均匀.这也是关系到板好坏的重要方面.为了使薄层板硅胶均匀,铺好后将玻璃板放在桌边小心上下颠动,保证薄层板所以地方都一样均匀. 4.铺板的厚度,个人所好有所不同.有的铺得较厚,这种情况CMC-Na不能太稀,不然硅胶哗哗的掉.厚的板展开的时候慢些,但是点样量可以多一些不容易扩散.薄的板展开比较快,容易扩散点样量宜少 5.薄层板的活化.活化一定要铺好板干了以后放到烘箱活化.干了是指看不到有水痕在上面.一般可以选择晚上铺板,早上的时候正好薄层板已干,可放进烘箱活化.为什么要完全干了才能活化,如果未完全干会导致活化的时候薄层板硅胶开裂. 一、手工铺板是非常考验你的耐力的事情,最好是找实验室的GGJJMMDD们一起,一来速度快,二来大家仪器交流心得。 1.CMC-Na溶液必须配制的好,放置的也要很好,完全分层之后只能取上清液。上清液要澄清透明,时间太长的CMC-Na可能会发黄,如果有霉菌出现的话,绝对不能使用。2.就是硅胶和CMC-Na溶液的比例可以适当的调节,根据你所需要薄层板的软硬来微调。可以一个人研磨,一个人缓慢的倒CMC-Na溶液。研磨时最能考验你的定力,我觉得你该找女生来磨,但是那种太文弱的不行。研磨时要顺着一个方向,速度不宜快,要顺着研钵的边缘,观察仔细,一定要把气泡赶尽杀绝。研磨好的因改是均匀的,没有气泡,没有固体的粉末类异物,溶液有一定的粘性。 3.铺板,我觉得是各人各喜欢,可以顺着板中间倒,也可以顺着某个边缘倒,倒时也要注意不能引入小气泡。可以用玻璃棒引着溶液平铺在玻璃板上(顺便说一句,玻璃板应该很干净,没有划痕,没有缺口,4个角要“健全”),如有需要,可以双手10个指头拖住玻璃板,有节奏的颠,使得硅胶分摊匀称。尤其是4个角,容易高出玻璃板其他部位,所以要格外注意。颠好的板,表面看上去要光滑平整,没有气孔。 铺好的板,要找个干净的地方放置晾干,这个过程也是耐心的等着它,请勿打扰! 自然晾干后,活化一下(105摄氏度40分钟左右),置于密封的干燥器保存。 最后想说一下,如果你铺板目的是做分析用的话,肯定得很仔细用心。如果仅是天然药化那种粗略检查过柱子得到的馏分纯度,那就没有必要这么复杂了,也就是说速度可以快点,板的要求也没有必要这么高! 自己多看看人家怎么铺的,练练手,肯定就成高手了! 二、楼上的讲得很好,我再补充两点切身体会: (1)CMC-Na溶液煮了以后不能再用冷水兑,否则,几天以后就会变绿,起霉。 (2)如果有抽滤装置你可以直接把CMC-Na溶液滤过,就可以不必等它沉淀再取上清液了

薄层色谱操作注意事项

薄层色谱操作注意事项 影响薄层色谱分析的因素有很多,比如样品处理方法、薄层板制备技巧、点样方法、展开剂的遴选、温湿度的掌控等等很多方面,在这里对其操作要点作一下简单介绍: 1铺制薄层板:铺板用的匀浆不宜过稠或过稀:过稠,板容易出现拖动或停顿造成的层纹;过稀,水蒸发后,板表面较粗糙。匀浆配比一般是硅胶G:水=1:2~3,硅胶G:羧甲基纤维素钠水溶液=1:2。研磨匀浆的时间,根据经验来定,与空气湿度有关,一般通过拿起研棒时匀浆下滴的情况来判断,越稠越难下滴。匀浆的稀稠除影响板的平滑外,也影响板涂层的厚度,进一步影响上样量。涂层薄,点样易过载;涂层厚,显色不那么明显。通常,板的质量对薄层鉴别的影响不是很大,影响最大的是展开剂的配制和展开系统的饱和。 2点样:尽量用小的点样管。如果有足够的耐性,最好只用1微升的点样管。这样,点的斑点较小,展开的色谱图分离度好,颜色分明。样品溶液的含水量越小越好,样品溶液含水量大,点样斑点扩散大。样品溶液的溶剂一般是无水乙醇、甲醇、氯仿、乙酸乙酯。点好样的薄层板用电吹风的热风吹干或放入干燥器里晾干。 薄层色谱用于定量时,点样是最主要的误差来源。 供试液的溶剂均有不同程度的洗脱力,所以在点样的同时,样品在原点就可是成环形展开,原点直径的扩散促进了这种展开,Kaiser称之为“上样环形色谱效应”。如果样品在溶剂中的溶解度很大,原点将变成空心环。这种效应对随后的先行展开造成很不利的影响。 供试液的溶剂在原点的残留,也会改变展开的选择性,特别是供试液的溶剂与展开剂的极性相差较大时更明显。再者,亲水性溶剂残留在原点吸收大气中的水分(特别在高湿度环境)对色谱的影响也不可低估。因此点样时的同步干燥或继后干燥以除去原点残存的溶剂是需要的。但应尽可能避免高温加热,如用吹风筒加热,样品变为固态后,部分或全部强烈的吸附在吸附剂的颗粒上,而促进了硅胶的有催化作用的活性表面故态化学反应,导致样品的变性(尤其热不稳定物质),至少移动相在展开时对这部分样品的溶解速度比移动速度慢得多而形成拖尾(斑点拖尾的原因之一)。

薄层板的制备、活度检测及应用

验一薄层板的制备、活度检测及应用 一、实验目的与要求 1.掌握薄层板的制备及薄层层析的操作方法。 2.掌握吸附剂活度测定的原理及方法。 3.应用薄层层析法检识中草药化学成分。 4. 了解薄层色谱的原理及应用范围。 二、实验原理 薄层层析是将吸附剂或者支持剂(有时加入固化剂)均匀地铺在一块玻璃上,形成薄层。把欲分离的样品点在薄层板的一端,然后将点样端浸入适宜的展开剂中, 在密闭的层析缸中展开,使混合物得以分离的方法。由于层析在薄层上进行故而得名。 薄层层析是一种微量、快速的层析方法。它不仅可以用于纯物质的鉴定,也可用于混合物的分离、提纯及含量的测定,还可以通过薄层层析来摸索和确定柱层析时的洗脱条件。 薄层层析根据作为固定相的支持物不同,分为薄层吸附层析(吸附剂)、薄层分配层析(纤维素、硅胶、硅藻土)、薄层离子交换层析(离子交换剂)、薄层凝胶层析(分子筛凝胶)等。薄层层析中以吸附薄层为多用,吸附薄层中常用的吸附剂为氧化铝和硅胶(氧化铝的活化温度为150℃-160℃,硅胶的活化温度为105℃-110℃)。吸附薄层主要是利用吸附剂对样品中各成分吸附能力不同,及展开剂对它们的解吸附能力的不同,使各成分达到分离。分配薄层层析在展开过程中,各成分在固定相和流动相之间作连续不断的分配,由于各成分在两相间的分配系数不同,因而可以达到相互分离的目的。

薄层层析选择展开剂视被分离物的极性及支持剂的性质而定。如果薄层层析所用的支持剂是吸附剂,在同一吸附剂上,不同化合物的吸附性质有如下规律:1.饱和碳氢化合物不易被吸附;2.不饱和碳氢化合物易被吸附,分子中双键愈多,则吸附得愈紧密;3.当碳氢化合物被一个功能基取代后,吸附性增大。吸附性较大的化合物,一般需用极性较大的溶剂才能推动它。选择展开剂的另一个依据是溶剂的极性大小。极性大的化合物需用极性大的展开剂,极性小的化合物需用极性小的展开剂。一般情况下,先选用单一展开剂如苯、氯仿、乙醇等,如发现样品个组分的R f值较大,可改用或加入适量极性小的展开剂如石油醚等。反之,若样品的个R f值较小,则可加入适量极性较大的展开剂展开,或在原来的溶剂中加入一定量极性较大的溶剂进行展层。在实际工作中,常用二种或三种溶剂的混合物作展开剂,这样更有利于调配展开剂的极性,改善分离效果。通常希望R f值在0.2-0.8范围内,最理想的R f值是0.4-0.5之间。 溶剂极性大小的次序是:石油醚 < 二硫化碳 < 四氯化碳 < 三氯乙烯 < 苯 < 二氯甲烷 < 氯仿 < 乙醚 < 乙酸乙酯 < 乙酸甲酯 < 丙酮 < 正丙醇 < 甲醇 < 水。 三、时间安排

薄层层析实验报告

薄层层析实验报告 篇一:薄层色谱法实验报告 有机化学第二课堂实验报告 一,基本信息 姓名: 年级:XX级专业层次:队别: 日期:XX年5月23日实验室:有机化学实验室二二、实验报告正文 实验题目:薄层板的制作及薄层色谱的应用实验目的 掌握薄层色谱的基本原理及其在有机物分离中的应用。 实验原理 1.有机混合物中各组分对吸附剂的吸附能力不同,当展开剂流经吸附剂时,有机物各组分会发生无数次吸附和解吸过程,吸附力弱的组分随流动相迅速向前,而吸附力弱的组分则滞后,由于各组分不同的移动速度而使得她们得以分离。物质被分离后在图谱上的位置,常用比移值Rf表示。 Rf? 原点至层析斑点中心的距离原点至溶剂前沿的距离

实验仪器与药品 实验仪器:硅胶层析板两块,卧式层析槽一个,点样用毛细管,紫外荧光灯, 铅笔暖风机、载玻片、钢勺、镊子等 药品:碱性湖蓝与荧光黄混合样品、咖啡因与阿司匹林混合样品、阿司匹林 纯样品二氯乙烷层析液、95%的乙醇溶液,硅胶粉、5%的羧甲基纤维素钠(CMC)的水溶液等 仪器装置图 “浸有层析板的层析槽”图 1-层析缸(广口瓶),2-薄层板,4-层析液 实验步骤 (1)薄层板的制备:(本文来自:https://www.360docs.net/doc/b96717477.html, 小草范文网:薄层层析实验报告) 取3g 硅胶G粉于研钵中,加相当于8ml左右的用5%的羧甲基纤维素钠(CMC)的水溶液,用力研磨1-2分钟,至成糊状后立即倒在准备好的薄层板中心线上,快速左右倾斜,使糊状物均匀地分布在整个板面上,厚度约为0.25mm,然后平放于平的桌面上干燥15分钟,再放入100℃的烘箱内活化

2小时,取出放入干燥器内保存备用。 (2)点样。在层析板下端1.0cm处,(用铅笔轻化一起始线,并在点样出用铅笔作一记号为原点。)取拉好的毛细点样管,分别蘸取咖啡因与阿司匹林混合样品、阿司匹林纯样品,点于原点上(注意点样用的毛细管不能混用,毛细管不能将薄层板表面弄破,样品斑点直径在1到2mm为宜!斑点间距稍大一点。点样次数5到7次)另取一块薄层板,点碱性湖蓝与荧光黄混合样品。(3)定位及定性分析将点好样的薄层板分别放入装有二氯乙烷层析液和5%的乙醇溶液的两个广口瓶中,盖上盖子,待层析液上行至距薄层板上沿1cm左右时,有镊子取出,铅笔将各斑点框出,并找出斑点中心,用小尺量出各斑点到原点的距离和溶剂前沿到起始线的距离(点有阿司匹林的薄层板需用暖风机吹干),算各样品的比移值并定性确定混合物中各物质名称。 实验结果记录及分析 实验结果图 1、铺板时一定要铺匀,特别是边、角部分,晾干时要放在平整的地方。 2、点样时点要细,直径不要大于2mm,间隔0.5cm以上,浓度不可过大,以免出现拖尾、混杂现象。

薄层色谱板的制备和使用

实验一薄层色谱板的制备和使用 目的要求: 通过实验进一步理解薄层色谱技术理论,熟悉掌握薄层色谱板的制备和使用方法。 一、薄层层析的基本原理 把吸附剂(固定相)均匀地铺在一块玻璃板上,将待分离的样品溶液点加在一薄层板的一端,在密闭的容器中用适当的溶剂(流动相)展开,由于吸附剂对不同物质的吸附力大小不同及溶剂对不同物质溶解分配系数不同,当溶剂流过时,各物质在吸附剂和溶剂之间发生连续不断地吸附,解吸附,再吸附,再解吸附。不易被吸附或易被溶剂溶解的物质相对移动得快一些。经过一段时间的展开,不同的物质被彼此分开,最后形成相互分离的斑点。将展开完毕的薄层板从密闭容器中取出后,应用特定的试药或方法将斑点显色,从而达到定性和定量的目的。 二、薄层板的制备 1.玻璃板 用一块玻璃板涂上很薄的吸附剂,如硅胶或氧化铝等,玻璃板要求薄厚一致,大小相同,表面光滑平整,一般玻璃只要合乎这些要求就可。如果找不到平整均一的,将旧光学照像底片截成同样大小也可以。用前先将玻璃用肥皂和水洗干净,必要时浸泡在清洗液中,然后水洗烤干,用纱布擦光。 玻璃板大小有各种规格,一般有20×20、20×10、20×5厘米,也有更小的,可根据需要自行设计。宽度要求至少能点开两三个样品,每两点之间相隔至少1.5厘米,玻板长度一般要满足展开10厘米的距离。点样的起点应距底边至少1.5厘米的距离。 2.吸附剂 应用最广泛的为硅胶和氧化铝,市场上有专供薄层色谱用的吸附剂,规格分不含粘合剂的硅胶H,氧化铝H和含有粘合剂熟石膏的硅胶G,氧化铝G,如市售硅胶G含13%熟石膏,氧化铝分中性、酸性、碱性三种。吸附剂的粒度范围最好在180-200目之间,太小了流速慢,太大则影响分离效果。如不合要求,应过筛。 3.薄层板的涂布 最简单的涂布方法是用两条比玻璃板厚0.25毫米的玻璃条或有机玻璃条(或在同样厚度的玻璃条下粘一层胶布),将玻璃板夹住,把调好的吸附剂浆液平铺在薄层板上,然后用一有机玻璃条或直尺,迅速均匀地向前推进,就象推血片一样,只要推进的速度均匀一致,

薄层板的制备及应用

薄层板的制备及应用 先将称好的CMC-Na(羧甲基纤维素钠)加入所需水量的8/10,让其充分溶涨后,再加热煮沸,然后将剩余水慢慢加入.这样在煮沸过程中不易形成颗粒,煮沸时间短.溶液的浓度0.3-0.7%比较合适,实际操作中0.4%~0.5%最为实用,浓度高了将来显色时如果有加热过程稍不小心板子容易发黑,浓度低了铺出来的板子不结实,轻轻一碰就掉渣,不好保存,而且点样时会很紧张,容易出洞.0.5%CMC-Na与水溶涨至充分,搅拌溶涨,如果不好溶涨,可在溶涨前加几滴乙醇,比较好溶,但是尽量不加,因为加入乙醇后使CMC-Na的粘合性降低。需注意: 1)CMC-Na溶液煮了以后不能再用冷水兑,否则,几天以后就会变绿,起霉。注意放置时间太长的CMC-Na溶液可能会发黄,而且可能有霉菌出现,绝对不能再使用。 2)如果有抽滤装置可以直接把CMC-Na溶液滤过,就可以不必等它沉淀再取上清液了(还有两个好处一是节省CMC-Na溶液,二是抽滤过的CMC-Na溶液的时候不必担心会把下层的不溶物倒出来了!)。有个办法过滤CMC-Na溶液,就是在布氏漏斗上平铺薄薄的一层脱脂棉,用蒸馏水润湿脱脂棉,启动真空泵,抽紧后就可以放心大胆的倒CMC-Na溶液了,保证滤过的溶液澄清透明,而且长时间放置不沉淀。 3)CMC-Na是一种高分子材料,而高分子材料的溶解必然都会有一个溶涨、溶解的过程,所以配制的时候,应该将称好的CMC-Na少量的撒在水的表面,让其自然沉降,注意要散开平铺,这样能够充分浸润,

使其溶胀,之后可以置于水浴锅内加热溶解,当然如果不是很急着用的话也完全可以,直接用水泡着放那,估计十天半月的也可以用了. 在CMC-Na的溶解过程中,也可以使用可进行加热操作的磁力搅拌器,大概搅拌5小时,应该可得到满意的效果。而且这样就可以使CMC-Na溶解,并且溶液更澄清。CMC-Na的处理也可进行离心,5000rpm 离心20min。倒出上清液,(非常清,也同时消除了过滤过程中可能发生的污染。)更难能可贵的是,可以收集下面没有充分溶解的CMC-Na。继续加到水中,还可以继续配制。 关于薄层板的要求: 1.载板要求平滑清洁,没有划痕,在使用前可用洗涤液或肥皂水洗涤,再用水冲洗干净。 2. 怎么样的玻璃算是干净:用洗洁精浸泡也好,用酸浸泡也好,当你觉得洗干净的时候,拿在手上立起来,如果发现水不是呈股流下,而是呈瀑布状态流下,那么说明你的玻璃板已经洗干净了。其实真正洗干净的玻璃,很快就可以晾干的。 3.怎样清洗用过后的薄层板:试着用了洗衣粉、洗洁精,反复洗了数遍,仍然挂水珠。铺制薄层板要求玻璃板干净、整洁、不挂水珠的。建议用洗液泡,如果还解决不了那就只好放弃这块玻璃板了,有说可以用盐酸的。 关于研磨及铺板要求: 1. 硅胶的研磨,当然是一个方向了,可以适量的加入一定量的无水乙醇或丙酮来消泡,也可以适当搅拌后在干净容器内超声,效果

薄层板的制备方法

薄层板的制备及应用中的问题 (1)配制优质CMC 溶液。取50g 缩甲基纤维素钠,在搅拌下加入到5000mL 水中,强力摇匀,放置备用。使用时,用300 目丝网过滤,所得滤液即为铺制薄层板的优质CMC 溶液。(由于CMC 在水中溶解速度很慢,放置两周或更长的时间,才可以溶解比较完全。可以采用一次性配制较多的溶液,留待以后多次使用。尽管放置较长时间,CMC 胶粒也无法完全溶解解,所以采用300 目丝网过滤除去胶团,而得到非常均匀澄清溶液。由于GF254 硅胶为260~280 目,所以300 目丝网过滤后滤液中存在的较小的CMC 胶粒,对于所铺薄层板的平整度不会造成任何影响。检测CMC 溶液是否均匀澄清,可以取一块干净的玻璃板,在其表面倾倒少许CMC 溶液,倾斜玻璃板使CMC 溶液流动展开。从侧面观察溶液表面,如果液面平整光洁,则说明此CMC溶液中不含较大胶粒。) (2)取适量 GF254 型硅胶(薄层色谱专用硅胶),与适量优质 CMC 混合均匀,不断搅拌,静置,再搅拌,反复进行此操作,使所有硅胶完全润湿,最后用超声波处理几分钟,充分排出溶液中的气泡,即可用于铺板。 (3)将制作薄层板的玻璃片清洗干净并烘干,排布于水平桌面上,桌面上事先涂布少量的水以固定玻璃片,再将适量已配好的硅胶与CMC 的混合液小心倾倒于玻璃片上,用玻璃棒使之尽量涂敷均匀,然后用玻璃棒按所需硅胶层的厚度将硅胶刮平, 自然晾干。 (4)水分蒸发完毕后,即得表面非常平整光洁的薄层板,小心地将薄层板从桌面上取下,轻轻抹平边缘,然后在110℃下烘烤30min,置于干燥器中待用。用本方法所铺制的薄层色谱板分离效果极佳,对于多组份系统的监测非常有效,与商品化的薄层板具有同样的分离效果。尤其是铺制的制备薄层色谱板(PreparativeThin layer Chromatograph)对于制备少量样品非常有效。 第一条里面是5克CMC ! 一般是用0.5%的CMC水溶液!硅胶与CMC水溶液的比例是1比3! 关于配制CMC-Na: 先将称好的CMC-Na加入所需水量的8/10,让其充分溶涨后,再加热煮沸,然后将剩余水慢慢加入.这样在煮沸过程中不易形

薄层色谱TLC(点板)的基本原理

薄层色谱(点板)的基本原理 ★★ 薄层色谱,或称薄层层析(thin—1ayer chromatography),是以涂布于支持板上的支持物作为固定相,以合适的溶剂为流动相,对混合样品进行分离、鉴定和定量的一种层析分离技术。这是一种快速分离诸如脂肪酸、类固醇、氨基酸、核苷酸、生物碱及其他多种物质的特别有效的层析方法,从50年代发展起来至今,仍被广泛采用。 (一)基本原理 薄层层析是把支持物均匀涂布于支持板(常用玻璃板,也可用涤纶布等)上形成薄层,然后用相应的溶剂进行展开。薄层层析可根据作为固定相的支持物不同,分为薄层吸附层析(吸附剂)、薄层分配层析(纤维素)、薄层离子交换层析(离子交换剂)、薄层凝胶层析(分子筛凝胶)等。一般实验中应用较多的是以吸附剂为固定相的薄层吸附层析。 吸附是表面的一个重要性质。任何两个相都可以形成表面,吸附就是其中一个相的物质或溶解于其中的溶质在此表面上的密集现象。在固体与气体之间、固体与液体之间、吸附液体与气体之间的表面上,都可能发生吸附现象。

物质分子之所以能在固体表面停留,这是因为固体表面的分子(离子或原子)和固体内部分子所受的吸引力不相等。在固体内部,分子之间相互作用的力是对称的,其力场互相抵消。而处于固体表面的分子所受的力是不对称的,向内的一面受到固体内部分子的作用力大,而表面层所受的作用力小,因而气体或溶质分子在运动中遇到固体表面时受到这种剩余力的影响,就会被吸引而停留下来。吸附过程是可逆的,被吸附物在一定条件下可以解吸出来。在单位时间内被吸附于吸附剂的某一表面积上的分子和同一单位时间内离开此表面的分子之间可以建立动态平衡,称为吸附平衡。吸附层析过程就是不断地产生平衡与不平衡、吸附与解吸的动态平衡过程。 例如用硅胶和氧化铝作支持剂,其主要原理是吸附力与分配系数的不同,使混合物得以分离。当溶剂沿着吸附剂移动时,带着样品中的各组分一起移动,同时发生连续吸附与解吸作用以及反复分配作用。由于各组分在溶剂中的溶解度不同,以及吸附剂对它们的吸附能力的差异,最终将混合物分离成一系列斑点。如作为标准的化合物在层析薄板上一起展开,则可以根据这些已知化合物的Rf值(后面介绍Rf值)对各斑点的组分进行鉴定,同时也可以进一步采用某些方法

薄层色谱TLC(点板)的基本原理

薄层色谱(点板)的基本原理 ★★ 薄层色谱,或称薄层层析(thin—1ayer chromatography),是以涂布于支持板上的支持物作为固定相,以合适的溶剂为流动相,对混合样品进行分离、鉴定和定量的一种层析分离技术。这是一种快速分离诸如脂肪酸、类固醇、氨基酸、核苷酸、生物碱及其他多种物质的特别有效的层析方法,从50年代发展起来至今,仍被广泛采用。 (一)基本原理 薄层层析是把支持物均匀涂布于支持板(常用玻璃板,也可用涤纶布等)上形成薄层,然后用相应的溶剂进行展开。薄层层析可根据作为固定相的支持物不同,分为薄层吸附层析(吸附剂)、薄层分配层析(纤维素)、薄层离子交换层析(离子交换剂)、薄层凝胶层析(分子筛凝胶)等。一般实验中应用较多的是以吸附剂为固定相的薄层吸附层析。 吸附是表面的一个重要性质。任何两个相都可以形成表面,吸附就是其中一个相的物质或溶解于其中的溶质在此表面上的密集现象。在固体与气体之间、固体与液体之间、吸附液体与气体之间的表面上,都可能发生吸附现象。

物质分子之所以能在固体表面停留,这是因为固体表面的分子(离子或原子)和固体内部分子所受的吸引力不相等。在固体内部,分子之间相互作用的力是对称的,其力场互相抵消。而处于固体表面的分子所受的力是不对称的,向内的一面受到固体内部分子的作用力大,而表面层所受的作用力小,因而气体或溶质分子在运动中遇到固体表面时受到这种剩余力的影响,就会被吸引而停留下来。吸附过程是可逆的,被吸附物在一定条件下可以解吸出来。在单位时间内被吸附于吸附剂的某一表面积上的分子和同一单位时间内离开此表面的分子之间可以建立动态平衡,称为吸附平衡。吸附层析过程就是不断地产生平衡与不平衡、吸附与解吸的动态平衡过程。 例如用硅胶和氧化铝作支持剂,其主要原理是吸附力与分配系数的不同,使混合物得以分离。当溶剂沿着吸附剂移动时,带着样品中的各组分一起移动,同时发生连续吸附与解吸作用以及反复分配作用。由于各组分在溶剂中的溶解度不同,以及吸附剂对它们的吸附能力的差异,最终将混合物分离成一系列斑点。如作为标准的化合物在层析薄板上一起展开,则可以根据这些已知化合物的Rf值(后面介绍Rf值)对各斑点的组分进行鉴定,同时也可以进一步采用某些方法

实验一-薄层层析板的制备

实验一-薄层层析板的制备

实验一 薄层层析板的制备 一、 实验目的 制备薄层层析板,使叶绿素在层析板上分离显色。 二、 实验原理 薄层层析,常用 TLC (Chromatography )表示,又称薄层色谱,属于液-固吸附色谱。是近年来发展起来的一种微量、快速而简单的色谱法,它兼备了柱色谱和纸色谱的优点。一方面适用于小量样品(几到几十微克,甚至 0.01 μ g )的分离;另一方面若在制作薄层板时,把吸附层加厚,将样品点成一条线,则可分离多达 500mg 的样品。因此又可用来精制样品。故此法特别适用于挥发性较小或在较高温度易发生变化而不能用气相色谱分析的物资。 薄层吸附色谱的吸附剂最常用的是氧化铝、硅胶、硅藻土、聚酰胺和纤维素。其颗粒大小,一般要求直径为10~40μm。硅胶是无定形多孔性物质,略具酸性,适用于酸性物质的分离和分析。薄层色谱用的硅胶分为: “硅胶 H ”—不含粘合剂;“硅胶 G ”—含煅石膏粘合剂;“硅胶 HF 254 ”—含荧光物质,可用于波长为 254nm 紫外光下观察荧光;“硅胶 GF 254 ”—既含煅石膏又含荧光剂等类型。 粘合剂除上述的煅石膏(半水合硫酸钙: 2CaSO 4 · H 2O )外, 还可用淀粉、羧甲基纤维素钠。 三、 实验材料、器具 1、试剂 硅胶、4‰的CMC 溶液(羧甲基纤维素钠) 2、实验用具:药匙、研钵、载玻片、量筒、玻棒 四、实验步骤 1、载玻片要求平滑清洁,没有划痕,在使用前可用洗涤液或肥皂水洗涤,再用水冲洗干净。(干净的标准:水不是呈股流下,而是呈瀑布状态流下。) 2、与硅胶混合:CMC -Na 溶液与硅胶的比例为3:1(3ml :1g)。取CMC -N a 溶液倒入研钵中,然后加入硅胶,在研钵中研磨,按一个方向研磨,自下而上,然后自上而下,以赶尽气泡为佳。 3、铺板:将载玻片置于平台上,用药匙舀取糊状硅胶,均匀地铺在载玻片表面。铺板时,可以顺着板中间倒,也可以顺着某个边缘倒,也可以用玻璃棒引着溶液平铺在玻璃板上,倒时也要注意不要引入小气泡。尤其是载板的四个角,容易高出玻璃板其他部位,所以要格外注意。后轻颠几下薄层板即可。颠好的板,表面看上去要光滑平整,没有气孔。薄层板铺好后一定要放置在平的台面上,否则难保证板面硅胶的厚度均匀。(3g 硅胶大约可铺7.5×2.5cm 载玻片5-6块) 4、晾干:置水平台上于室温下晾干。 5、活化:将晾干的板子在105℃烘箱中干燥30min ,然后取出,放入干燥器中,备用。活化硅胶有利于提高硅胶的吸附性能,同时排除硅胶内部已吸收的水分及其他气体。通过活化硅胶,主要改变了硅胶内部的微孔结构,使其孔径的大小及微孔结构的排列得到进一步的改善。但是这样硅胶的吸附变大,可能会使样品分离困难。

薄层板制作

化学与环境学院 有机化学实验报告实验名称薄层层析板的制作及活化 【实验目的】 1、掌握薄层层析板的制作。 2、掌握薄层层析板的活化

【实验原理】(包括反应机理) 1、薄层色谱法是快速分离和定性分析少量物质的一种很重要的实验技术,也用于跟踪反应进程。最典型的是在玻璃板上均匀铺上一层吸附剂,制成薄层板,用毛细管将样品溶液点在起点处,把此薄层板置于盛有溶剂的容器中,待溶液到达前沿后取出,晾干,显色,测定色斑的位置。由于层析是在薄层板上进行,故称为薄层层析。 2、吸附薄层主要是利用吸附剂对样品中各成分吸附能力不同,及展开剂对它们的解吸附能力的不同,使各成分达到分离。吸附作用主要由于物体表面作用力、氢键、络合、静电引力、范德华力等产生。吸附强度决定于吸附剂的吸附能力,还受被吸附成分的性质影响,更与展开剂的性质有关。 3、分配薄层层析的原理是,用极性溶剂吸苷在固体支持剂上所形成的混合物,铺成薄层(或装柱),然后活化、点样(或上样),再用极性较弱的展开剂(或洗脱剂)进行展开。在展开过程中,各成分在固定相和流动相之间作连续不断的分配。由于各成分在两相间的分配系数不同,因而可以达到相互分离的目的。 【主要试剂及物理性质】 名称分子量熔点/℃沸点/℃外观 硅胶G / / /白色粉末 羧甲基纤维素钠154274 /白色或乳白色纤维状粉末 或颗粒

氯仿119.5 -63.761.2无色透明液体 蒸馏水18 / 100 无色透明液体 【仪器装置】 1、主要仪器: 高型烧杯、载玻片、玻璃棒。 2、实验装置: 【实验步骤及现象】 实验步骤实验现象反应时 间

1、取用实验室已经准备好 100mm*30mm*2.5mm的3块薄层载片,用手指接触载玻片的边缘,因为指印玷污载玻片的表面,将使吸附剂难于铺在载玻片上。 2、制备浆料:向薄层层析硅胶中加入羧甲基纤维素钠,后用玻璃棒不断搅拌至制成的浆料均匀,不带团块,用玻璃棒拉起后呈现粘稠状,继续搅拌使得其中的气泡尽量多地除去。 3、铺板:将洗净的载玻片摆在台面边缘,并且漏出台面约四分之一,然后用勺子将浆料倒到载玻片上并涂布均匀,每片载玻片用1g硅胶G。薄层的厚度为0.25~1mm,厚度尽量均匀,铺层。手指拿着的部分不用涂布。后轻轻地将载玻片在实验台上颠几下,使得浆料分布均匀。 4、薄层板的活化:将3张硅胶板置于烘箱中,调节温度在105-110℃,烘烤30min 1、浆料浓稠适宜 2、搅拌时有少许气泡产生 3、铺板后硅胶板面不是很平 【实验结果】

制作薄层板(TLC板)经验总结

1.CMC-Na配臵也比较重要,不能太稀了,不然硅胶的黏附性不好,铺好的硅胶容易脱落.太稠了也不行,不容易和硅胶混匀 2.CMC-Na与硅胶混合时注意比例,一般为30克硅胶加入100克0.3-0.5%的CMC-Na水溶液.如果铺多了的话可以凭经验就能感觉到适合的程度.混合时最好朝一个方向研,这样也不容易有气泡 3.铺板的均匀.这也是关系到板好坏的重要方面.为了使薄层板硅胶均匀,铺好后将玻璃板放在桌边小心上下颠动,保证薄层板所以地方都一样均匀. 4.铺板的厚度,个人所好有所不同.有的铺得较厚,这种情况CMC-Na不能太稀,不然硅胶哗哗的掉.厚的板展开的时候慢些,但是点样量可以多一些不容易扩散.薄的板展开比较快,容易扩散点样量宜少 5.薄层板的活化.活化一定要铺好板干了以后放到烘箱活化.干了是指看不到有水痕在上面.一般可以选择晚上铺板,早上的时候正好薄层板已干,可放进烘箱活化.为什么要完全干了才能活化?如果未完全干会导致活化的时候薄层板硅胶开裂. 薄层色谱法实践技巧 目的: 1.药典:薄层色谱法系将供试品溶液点于薄层板上,在展开容器内用展开剂展开,使供试品所含成分分离,所得色谱图与事宜的对照物按同法所得的色谱图对比,并可用薄层扫描仪进行扫描,用于鉴别、检查或含量测定。 2.如果你是做鉴别的话,薄层的系统适用性主要是做检测限和分离度; 3.如果你是做含量测定,比如说用薄层扫描法,薄层的系统适用性应该做线性范围、同板精密度、异板精密度、回收率; 4.手工铺制的板子,只适宜于定性分析,不宜于分离定量; 5.化学药一般是作有关物质,需要一定的载药量,所以要适当增加厚度; 6.中药一般较难分离,需要薄板,以增加分离度; 7.手工铺制的板子常用的有:硅胶G板和硅胶CMC-Na板。前者是煅石膏(石膏经140℃烘烤3—4小时)与硅胶按1—1.3:10混合均匀。每份硅胶G加水2—3份调成糊状,即可使用。后者的操作各位大虾已有论述。 8.如果你铺板目的是做分析用的话,肯定得很仔细用心;如果仅是天然药化那种粗略检查过柱子得到的馏分纯度,那就没有必要这么复杂了,也就是说速度可以快点,板的要求也没有必要这么高; 9.单纯的手铺板,技巧要求很高的,如果有铺板器(也是完全手动的那种),铺出的板子基本上可以保证均一的。 10.要喷硫酸乙醇并定量的最好铺水板;铺水板是最考技术的,主要是碾磨技术,大家可以探讨一下; 11.硫酸乙醇显色作定量分析的品种,但凡加了CMC-Na的板都易烘糊,尤其是温度高于100度时,后改用不加CMC辅的水板来作,就不会有烘糊现象,故也可推论CMC易于与硫酸起糊化反应。感觉辅水板关键是硅胶G与水的比例要达1:3.5左右,而且研磨后要尽快涂布,不能易于凝固而难于涂布。 展开: 12.药典:展开容器应使用适合薄层板大小的玻璃制薄层色谱展开缸,并有严密的盖子,底部应平整光滑,或有双槽。上行展开一般可用适合薄层板大小的专用平底或双槽展开缸,展开时须能密闭。水平展开用专用的水平展开缸。 13.药典:将点好样品的薄层板放入展开缸的展开剂中,浸入展开剂的深度为距原点5mm为宜(切勿将样点侵入展开剂中),密封顶盖,待展开至规定距离,除另有规定外,一般为8

薄层板的制备经验总结

薄层板的制备经验总结 铺薄层板的经验总结 薄层板的制备总结经验总结 1.CMC-Na配置也比较重要,不能太稀了,不然硅胶的黏附性不好,铺好的硅胶容易脱落.太稠了也不行,不容易和硅胶混匀 2.CMC-Na与硅胶混合时注意比例,一般为30克硅胶加入100克0.3-0.5%的CMC-Na水 溶液.如果铺多了的话可以凭经验就能感觉到适合的程度.混合时最好朝一个方向研,这样 也不容易有气泡 3.铺板的均匀.这也是关系到板好坏的重要方面.为了使薄层板硅胶均匀,铺好后将玻 璃板放在桌边小心上下颠动,保证薄层板所有地方都一样均匀. 4.铺板的厚度,个人所好有所不同.有的铺得较厚,这种情况CMC-Na不能太稀,不然硅 胶哗哗的掉.厚的板展开的时候慢些,但是点样量可以多一些不容易扩散.薄的板展开比较快,容易扩散点样量宜少 5.薄层板的活化.活化一定要铺好板干了以后放到烘箱活化.干了是指看不到有水痕在 上面.一般可以选择晚上铺板,早上的时候正好薄层板已干,可放进烘箱活化.为什么要完全 干了才能活化? 如果未完全干会导致活化的时候薄层板硅胶开裂. 一、手工铺板是非常考验你的耐力的事情,最好是找实验室的GGJJMMDD们一起,一 来速度快,二来大家一起交流心得。 我认为,第一个关键的地方,你的CMC-Na溶液必须配制的好,放置的也要很好,完 全分层之后只能取上清液。上清液要澄清透明,时间太长的CMC-Na可能会发黄,如果有 霉菌出现的话,绝对不能使用。 第二就是硅胶和CMC- Na溶液的比例可以适当的调节,根据你所需要薄层板的软硬来 微调。可以一个人研磨,一个人缓慢的倒CMC-Na溶液。研磨时最能考验你的定力,我觉 得你该找女生来磨,但是那种太文弱的不行。研磨时要顺着一个方向,速度不宜快,要顺 着研钵的边缘,观察仔细,一定要把气泡赶尽杀绝。研磨好的因改是均匀的,没有气泡, 没有固体的粉末类异物,溶液有一定的粘性。最后,铺板,我觉得是各人各喜欢,可以 顺着板中间倒,也可以顺着某个边缘倒,倒时也要注意不能引入小气泡。可以用玻璃棒引 着溶液平铺在玻璃板上(顺便说一句,玻璃板应该很干净,没有划痕,没有缺口,4个角 要“健全”),如有需要,可以双手10个指头拖住玻璃板,有节奏的颠,使得硅胶分摊 匀称。尤其是4个 角,容易高出玻璃板其他部位,所以要格外注意。颠好的板,表面看上去要光滑平整,没有气孔。

制备薄层层析板方法

(1)配制优质CMC 溶液。取50g 缩甲基纤维素钠,在搅拌下加入到5000mL 水中,强力摇匀,放置备用。使用时,用300 目丝网过滤,所得滤液即为铺制薄层板的优质CMC 溶液。(由于CMC 在水中溶解速度很慢,放置两周或更长的时间,才可以溶解比较完全。可以采用一次性配制较多的溶液,留待以后多次使用。尽管放置较长时间,CMC 胶粒也无法完全溶解解,所以采用300 目丝网过滤除去胶团,而得到非常均匀澄清溶液。由于GF254 硅胶为260~280 目,所以300 目丝网过滤后滤液中存在的较小的CMC 胶粒,对于所铺薄层板的平整度不会造成任何影响。检测CMC 溶液是否均匀澄清,可以取一块干净的玻璃板,在其表面倾倒少许CMC 溶液,倾斜玻璃板使CMC 溶液流动展开。从侧面观察溶液表面,如果液面平整光洁,则说明此CMC溶液中不含较大胶粒。) (2)取适量GF254 型硅胶(薄层色谱专用硅胶),与适量优质CMC 混合均匀,不断搅拌,静置,再搅拌,反复进行此操作,使所有硅胶完全润湿,最后用超声波处理几分钟,充分排出溶液中的气泡,即可用于铺板。 (3)将制作薄层板的玻璃片清洗干净并烘干,排布于水平桌面上,桌面上事先涂布少量的水以固定玻璃片,再将适量已配好的硅胶与CMC 的混合液小心倾倒于玻璃片上,用玻璃棒使之尽量涂敷均匀,然后用玻璃棒按所需硅胶层的厚度将硅胶刮平, 自然晾干。 (4)水分蒸发完毕后,即得表面非常平整光洁的薄层板,小心地将薄层板从桌面上取下,轻轻抹平边缘,然后在110℃下烘烤30min,置于干燥器中待用。用本方法所铺制的薄层色谱板分离效果极佳,对于多组份系统的监测非常有效,与商品化的薄层板具有同样的分离效果。尤其是铺制的制备薄层色谱板(PreparativeThin layer Chromatograph)对于制备少量样品非常有效

薄层板的制备及应用中的问题

薄层板的制备及应用中的问题 关于配制CMC-Na: 先将称好的CMC-Na加入所需水量的8/10,让其充分溶涨后,再加热煮沸,然后将剩余水慢慢加入.这样在煮沸过程中不易形成颗粒,煮沸时间短.溶液的浓度0.3-0.7%比较合适,实际操作中0.4%~0.5%最为实用,浓度高了将来显色时如果有加热过程稍不小心板子容易发黑,浓度低了铺出来的板子不结实,轻轻一碰就掉渣,不好保存,而且点样时会很紧张,容易出洞.0.5%CMC-Na与水溶涨至充分,搅拌溶涨,如果不好溶涨,可在溶涨前加几滴乙醇,比较好溶,但是尽量不加,因为加入乙醇后使CMC-Na的粘合性降低。需注意:1)CMC-Na溶液煮了以后不能再用冷水兑,否则,几天以后就会变绿,起霉。注意放置时间太长的CMC-Na 溶液可能会发黄,而且可能有霉菌出现,绝对不能再使用。 2)如果有抽滤装置可以直接把CMC-Na溶液滤过,就可以不必等它沉淀再取上清液了(还有两个好处一是节省CMC-Na溶液,二是抽滤过的CMC-Na溶液的时候不必担心会把下层的不溶物倒出来了!)。有个办法过滤CMC-Na溶液,就是在布氏漏斗上平铺薄薄的一层脱脂棉,用蒸馏水润湿脱脂棉,启动真空泵,抽紧后就可以放心大胆的倒CMC-Na溶液了,保证滤过的溶液澄清透明,而且长时间放置不沉淀。 3)CMC-Na是一种高分子材料,而高分子材料的溶解必然都会有一个溶涨、溶解的过程,所以配制的时候,应该将称好的CMC-Na少量的撒在水的表面,让其自然沉降,注意要散开平铺,这样能够充分浸润,使其溶胀,之 后可以置于水浴锅内加热溶解,当然如果不是很急着用的话也完全可以,直接用水泡着放那,估计十天半月的也可以用了. 在CMC-Na的溶解过程中,也可以使用可进行加热操作的磁力搅拌器,大概搅拌5小时,应该可得到满意的效果。而且这样就可以使CMC-Na溶解,并且溶液更澄清。CMC-Na的处理也可进行离心,5000rpm离心20min。倒出上清液,(非常清,也同时消除了过滤过程中可能发生的污染。)更难能可贵的是,可以收集下面没有充分溶解的CMC-Na。继续加到水中,还可以继续配制。 关于薄层板的要求: 1.载板要求平滑清洁,没有划痕,在使用前可用洗涤液或肥皂水洗涤,再用水冲洗干净。 2. 怎么样的玻璃算是干净:用洗洁精浸泡也好,用酸浸泡也好,当你觉得洗干净的时候,拿在手上立起来,如果发现水不是呈股流下,而是呈瀑布状态流下,那么说明你的玻璃板已经洗干净了。其实真正洗干净的玻璃,很快就可以晾干的。 3.怎样清洗用过后的薄层板:试着用了洗衣粉、洗洁精,反复洗了数遍,仍然挂水珠。铺制薄层板要求玻璃板干净、整洁、不挂水珠的。建议用洗液泡,如果还解决不了那就只好放弃这块玻璃板了,有说可以用盐酸的。 关于研磨及铺板要求: 1. 硅胶的研磨,当然是一个方向了,可以适量的加入一定量的无水乙醇或丙酮来消泡,也可以适当搅拌后在干净容器内超声,效果都是不错的。手工铺硅胶的用量一般10*20的约3~4克,硅胶和CMC-Na的用量一般是1: 2.8~3,具体根据要铺板子的厚度和CMC-Na的浓度决定。 2.依据薄层板使用需要,将适量研好的吸附剂倒到薄层板上,先用小锤将吸附剂荡匀,倾斜薄层板,使吸附剂流至薄层板一侧,待吸附剂蓄积一定量后,再反向倾斜薄层板,使吸附剂回流然后是另外两个方向,重复操作,后轻颠几下薄层板即可。 3. 将载玻片置于平台上,用药匙舀取糊状硅胶,均匀地铺在载玻片表面。铺板时,可以顺着板中间倒,也可以顺着某个边缘倒,也可以用玻璃棒引着溶液平铺在玻璃板上,倒时也要注意不要引入小气泡。如有需要,可以双手10个指头托住玻璃板,有节奏的颠簸,使得糊状硅胶分布匀称。尤其是载板的四个角,容易高出玻璃板其他部位,所以要格外注意。颠好的板,表面看上去要光滑平整,没有气孔。薄层板铺好后一定要放置在平的台面上,否则难保证板面硅胶的厚度均匀。 4. 铺制好的薄层板先让其稍干后,即看不出有明显的水印,放入烘箱内用50度以下的温度鼓风干燥30分钟,再升温干燥至干,注意升温过快在使用的过程中有可能发生起层的现象不利于分离。 关于裂板:

相关主题
相关文档
最新文档