3.4合并同类项(1)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

为了搞好班会活动,班长和生活委员 去购买一些水笔和软抄本作为奖品,他们 首先购买了15本软抄本和20支水笔,经过 预算,发现这么多奖品不够用,然后他们 又去购买了621 本软抄本和 5支水笔。问: 本软抄 本,25支水笔 1、他们两次共买了多少本软抄本和多少 支水笔? 2、如果软抄本的单价为每本 元,水笔 的单价为每支 y 元,则这次活动他们支出 的总金额是多少元?
例1、找出多项式3x y 4xy 3 5x y 2xy 5 中的同类项,并合并同类项。 2 2 2 2 解: 3x y 4 xy 3 5x y 2 xy 5
2 2 2 2
3x y 5x y 4 xy 2 xy 3 5
2 2 2 2
(3x y 5x y ) ( 4 xy 2 xy ) ( 3 5)
x
15x 20 y 6 x 5 y (21x 25 y )
思考
1、什么叫做同类项? 答:所含字母相同,并且相 同字母的指数也分别相等的 项叫做同类项 .
注意:①两个相同:字母 相同;相同字母的指数相 等.②两个无关:与系数 无关;与字母顺序无关. ③所有的常数项都是同 类项.
思 考 复习提问:
注意:
(1)合并的前提是有同类项. (2)合并指的是系数相加,”相加”指的是代数和. (3)合并同类项的根据是加法交换律、结合
律以及乘法分配律。
合并同类项法则:把同类项的系数相加,所得的结果作 为系数,字母和字母的指数保持不变.
例2、下列各题合并同类项的结果对 不对?若不对,请改正。
(1)、2 x 3x 5 x =5x2
2 2
a b ab a b ab b
2 2 2 2
3
3、求下列多项式的值。 2 2 2 (1) 7 x 3x 2 x 2 x 5 6 x, 其中x 2. (2) 5a 2b 3b 4a 1. 其中a 1, b 2.
(3) 2 x2 3xy y 2 2 xy 2 x 2 5xy 2 y 1.
求多项式的值,常常先合并同 你通过求值发现了什么 ?怎样更简捷的求值呢?
类项,再求值,这样比较方便。
2、先标出下列各多项式的同类项, 22 3 2 2 2 3 xa. b a b) (ab ab ) b ax ( 再合并同类项。 3 23 2 (1)3x 2 ax b 5 3x 2 x 5
3、填空。
(1)、如果 3x y与 x y 是同类项,那么 k 2 。
k 2
(2)、如果 2a b 与 3a b 是同类项,那 么x 4 ,y 3 。
x 3 4 y
(3)、如果3a x1b2与 7a3b2 y 是同类项,那 么x 2 , y 1 。
2 3k 2 6 3 x y 与 4 x y 是同类项 k (4)、如果
2

把多项式中的同类项合并成一项,叫做合并同类项。
例1、找出多项式3x y 4 xy 3 5x y 2 xy 5 中的同类项,并合并同类项。
2 2 2 2
问题1:同类项有哪些?同类项怎么合并?
2 ①-3+5=________; 2y 2y 2 2 ( 3+5 ) x 8x ② 3x y+5x y=__________=______ 乘法分配律 其理由是____________; 2 2 ( -4+2 ) xy 2 2 -2xy ③ -4xy +2xy =____________=_______ 乘法分配律 其理由是____________.
例1、找出多项式3x2 y 4 xy 2 3 5x2 y 2 xy 2 5 中的同类项,并合并同类项。
问题2:在一个多项式中,不在一起的同类项能 用不同的标 否将同类项结合在一起?为什么?志把同类项 2 2 2 2 3x y 4 xy 3 5x y 2! xy 5 问题 试化简多项式 标出来 答:3: 可以 , 理由是运用加法交换律与结合律 2 2 2 2 3 x y 4 xy 3 5 x y 2 xy 5 解 : 加法交换律 将同类项结合在一起,原多项式不变 . 统一成
2 2 4


(2)、3x 2 y 5 xy
2 (3)、 7x 2
3x与2y不是同类 项,不能合并。
3x 4 =4x2 (4)、9a 2 b 9ba2 0
例3、合并下列多项式中的同类项。 方法是:( 1 1)系数:各项系 2 2 2 b 3 a b a b (1) 2a 数相加作为新的系数 。(2)字 2 3 2 2 2 2 3 a b ab a b ab b (2) a 母以及字母的指数不变。 2 2 2 2 (3) 6a 5b 2ab 5b 6a 1 2 1 2 解:(1)原式= ( 2 3 ) a b a b 2 2 找出 3 2 2 2 2 3 (2) a a b ab a b ab b 3 2 2 2 2 3 a (a b a b) (ab ab ) b 结合
买的时候,点点怎么说? 4 个汉堡____ 3 个苹果____ 8 个草莓_____ 3 瓶饮料 ____

根据学校的总体规划图计算这个学校的占地面积:
100 也可以表示为 (100+200 )a +(240+60)b 200
教学区
操 场
a
学生活动中心
240
图书馆
b
60
可以用代数式 表示为 100a+200a+ 240b+60b
义务教育课程标准实验教科书
数 学
七年级(上册)
江苏科学技术出版社
《 3.4 合并同类项(1)》
江苏连云港市新海实验中学 王其明
观察下面的图片,并将这些图片分类:
你是依据什么来进行分类的呢? 在我们的生活中,同一类的事物有很多很多,为了需要我们 常常要将它们分类.

周末,点点一家要外出游玩,爸爸、 妈妈和点点各自选了他们要吃的东西:
2 2 2 2
(3 5) x y ( 4 2) xy ( 3 5)
2 2
8 x y 2 xy 2. 问题 4: 根据上面合并同类项的例子 , 你能归纳 法则:把同类项的系数相加,所得的结果 合并同类项的法则吗?
2 2
作为系数,字母和字母的指数保相加,所得的结果作 为系数,字母和字母的指数保持不变.
2x 4x 5 22 当 x ,y , 1 时2 , 时, 当 a 1 ,b x 2 时
2 y 1 y 2 a 2 b 1
7 2 1 2 2 原式 1 14 0 2 ( )1 原式 (1) 2 2 ( ) 4 ( 2) 5 5
这节课你学到了什么
1、什么叫做合并同类项?合 并同类项的法则是什么? 2、要牢记法则,并能运用 法则熟练、正确的合并同类 2 2 4 项,以防止2 x 3x 5x 的错误.
作业: 课本P97习题3.4 第2题。
22 其中 x , y 1. 7 2 2 2 2 5) xy 2 y 1 (( 3 ) 解 : 原式 ( 2 2 ) x y ( 3 1 )x ( 2 61 )x 5 2))解 解::原式 原式 ((7 5 3 4 )a2 (2 3 )b
2、判断下列说法是否正确。
(1)、 3 x与3m x 是同类项。 2ab与 5ab是同类项。 (2)、 1 2 2 3x y与 yx 是同类项。 (3)、 3 2 2 5ab 与 2ab c是同类项。 (4)、 3 2 (5)、 2 与3 是同类项。
思 考 复习提问:
a (1 1)a b (1 1)ab b 3 3 合并 a:合并同类项的步骤是怎样 b 思考 ?
3 2 2 3
(3) 6a 5b 2ab 5b 6a
2 2 2
2
该项没有 同类项怎 么办?
解:原式= 6a
注意: (1)用画线的方法标出各多项式中的同类 项,以减少运算的错误。 (2)移项时要带着原来的符号一起移动。 (3)两个同类项的系数互为相反数时,合 并同类项,结果为零。
6a 5b 5b 2ab 2 2 2 2 (6a 6a ) (5b 5b ) 2ab 照抄 2ab 下来
2 2 2 2
例4、求多项式3x 4 x 2 x x x 3x 1 的值,其中 x 3.
2 2 2
2 2 2 解:当 x 3 时 3x 4x 2x x x 3x 1 解: 分析:本题实际上是求代数式的值。请别急于解题, 原式 3 (3)2 4 (3) 2 (3)2 3x 2 2 x 2 x 2 4 x x 3x 1 在学习了§3.2. 《代数式的值》和本节《合并同类 2 2 ( 3) ( 3) 3 ( 3) 1 (3 2 1) x (4 1 3) x 1 项》后你会怎么做这道题?有几种方法? 3 9 12 2 9 3 9 9 1 2 x2 1 27 12 18 3 9 9 1 当 x 3 时, 2 17 原式 2 (3) 1 17.
(3x y 5x y) (4 xy 2xy ) (3 5) 乘法分配律
2 2 2 2
3x y 5x y 4 xy 2 xy 3 5
2 2 2 2 2 2
加法的 形式
(3 5) x y (4 2) xy (3 5) 2 2 8x y 2 xy 2. 合并
(2) a
3
解:(1) 3x 2 x 5 3x 2 x 5 1、如果两个同类项的系统互为 2 2 3x 2 x 2 x 3x 5 5 相反数,那么合并同类项后, 2 22 2 0 结果是 0 .比如 . 5) x 5) ab( 2 5x ab (3x 2 3x ) (5 3 2 2 22 2 3 解:(2) (3 2)a xb ( ab 2 3) xb (5ab 5) b a a
相关文档
最新文档