最新10-9随机变量的数字特征与正态分布理

最新10-9随机变量的数字特征与正态分布理
最新10-9随机变量的数字特征与正态分布理

10-9随机变量的数字特征与正态分布理

10-9随机变量的数字特征与正态分布(理)

基础巩固强化

1.(2011·烟台模拟)设随机变量ξ服从正态分布N (0,1),若P (ξ>1)=p ,则P (-1<ξ<0)=( )

A.1

2+p B.12-p C .1-2p D .1-p

[答案] B

[解析] ∵ξ~N (0,1), ∴P (ξ<-1)=P (ξ>1)=p ,

∴P (-1<ξ<0)=12[1-2p (ξ>1)]=1

2-p .

2.(2012·浙江嘉兴模拟)甲、乙两人分别独立参加某高校自主招生考试,若甲、乙能通过面试的概率都是2

3,则面试结束后通过的人数X 的数学期望是( )

A.43

B.119 C .1 D.89

[答案] A

[解析] 依题意,X 的取值为0、1、2. 且P (X =0)=(1-23)×(1-23)=1

9, P (X =1)=23×(1-23)+(1-23)×23=4

9, P (X =2)=23×23=4

9.

故X 的数学期望E (X )=0×19+1×49+2×49=129=4

3,选A. 3.(2011·盐城模拟)某人射击一次击中的概率为3

5,经过3次射击,此人至少有两次击中目标的概率为( )

A.81125

B.54125

C.36125

D.27125

[答案] A

[解析] 该人3次射击,恰有两次击中目标的概率是 P 1=C 23·

(35)2·2

5,

三次全部击中目标的概率是

P 2=C 33·

(35)3

, 所以此人至少有两次击中目标的概率是 P =P 1+P 2=C 23·

(35)2·25+C 3

(35)3=81125. 4.(2011·福州调研)已知某一随机变量ξ的概率分布列如下,且E (ξ)=6.3,则a 的值为( )

A.5 C .7 D .8

[答案] C

[解析] 由0.5+0.1+b =1知,b =0.4,

由E (ξ)=4×0.5+a ×0.1+9×0.4=6.3知,a =7,故选C.

5.(2012·杭州质检)体育课的排球发球项目考试的规则是:每位学生最多可发球3次,一旦发球成功,则停止发球,否则一直发到3次为止.设学生一次发球成功的概率为p (p ≠0),发球次数为X ,若X 的数学期望E (X )>1.75,则p 的取值范围是( )

A .(0,712)

B .(7

12,1) C .(0,1

2) D .(1

2,1)

[答案] C

[解析] 由已知条件可得P (X =1)=p , P (X =2)=(1-p )p ,

P (X =3)=(1-p )2p +(1-p )3=(1-p )2,

则E (X )=P (X =1)+2P (X =2)+3P (X =3)=p +2(1-p )p +3(1-p )2=p 2-3p +3>1.75,

解得p >52或p <1

2,

又由p ∈(0,1),可得p ∈(0,1

2),故应选C.

6.已知随机变量ξ,η满足ξ=2η-1,且ξ~B (10,p ),若E (ξ)=8,则D (η)=( )

A .0.5

B .0.8

C .0.2

D .0.4

[答案] D

[解析] ∵E (ξ)=10p =8,∴p =0.8,∴D (ξ)=10p (1-p )=10×0.8×0.2=1.6,又D (ξ)=D (2η-1)=4D (η),∴D (η)=0.4.

7.(2011·滨州模拟)有一批产品,其中有12件正品和4件次品,从中任取3件,若ξ表示取到次品的件数,则E (ξ)=________.

[答案] 34

[解析] 分布列如下:

∴E (ξ)=0×C 12C 316+1×C 4C 12C 316+2×C 4C 12C 316+3×C 4

C 316

=34.

8.如果ξ~B (100,1

2),当P (ξ=k )取得最大值时,k =________. [答案] 50

[解析] P (ξ=k )=C k 100? ????12k ·? ??

??12

100-k

=C k 100? ??

??12100

,由组合数的性质知,当k =50时取到最大值.

9.(2011·龙岩月考)袋中有3个黑球,1个红球.从中任取2个,取到一个黑球得0分,取到一个红球得2分,则所得分数ξ的数学期望E (ξ)=________.

[答案] 1

[解析] P (ξ=0)=C 23C 24=12,P (ξ=2)=C 1

3·C 11

C 24

=12,

∴E (ξ)=0×12+2×1

2=1.

10.(2012·聊城市模拟)某学校数学兴趣小组有10名学生,其中有4名女学生;英语兴趣小组有5名学生,其中有3名女学生,现采用分层抽样方法,从数学兴趣小组、英语兴趣小组中共抽取3名

学生参加科技节活动.

(1)求从数学兴趣小组、英语兴趣小组各抽取的人数; (2)求从数学兴趣小组抽取的学生中恰有1名女学生的概率; (3)记ξ表示抽取的3名学生中男学生数,求ξ的分布列及数学期望.

[解析] (1)因为数学兴趣小组人数:英语兴趣小组人数=10:5=2:1,从数学兴趣小组和英语兴趣小组中抽取3人,则抽取数学小组的人数为2人,英语小组的人数为1人.

(2)从数学兴趣小组中抽取2人恰有一名女生的概率

P =C 16·C 14

C 210

=815.

(3)随机变量ξ的可能取值为0、1、2、3. P (ξ=0)=C 24C 210

·3

5=225; P (ξ=1)=C 16·C 14C 210·3

5+C 2

4C 2

10·25=2875; P (ξ=2)=C 26C 210·35+C 1

6·C 14C 2

10

·2

5=3175; P (ξ=3)=C 26C 210·2

5=215, 所以ξ的分布列为

E (ξ)=0×25+1×75+2×75+3×15=5.

能力拓展提升

11.(2011·温州十校联考)已知随机变量X~N(3,22),若X=2η+3,则D(η)等于()

A.0B.1C.2D.4

[答案] B

[解析]由X=2η+3,得D(X)=4D(η),而D(X)=22=4,∴D(η)=1.

12.(2011·广州模拟)一射手对靶射击,直到第一次命中为止,每次命中的概率为0.6,现有4颗子弹,射击停止后尚余子弹的数目X的期望值为()

A.2.44 B.3.376

C.2.376 D.2.4

[答案] C

[解析]X的取值为3、2、1、0,

P(X=3)=0.6;

P(X=2)=0.4×0.6=0.24;

P(X=1)=0.42×0.6=0.096;

P(X=0)=0.43×0.6+0.44=0.064.

∴E(X)=3×0.6+2×0.24+1×0.096+0×0.064=2.376.

13.(2012·河北石家庄市模拟)有一批货物需要用汽车从城市甲运至城市乙,已知从城市甲到城市乙只有两条公路,且通过这两条公路所用的时间互不影响.

据调查统计,通过这两条公路从城市甲到城市乙的200辆汽车

离散型随机变量与正态分布

离散型随机变量的均值与方差、正态分布 一、选择题、填空题 1.已知随机变量ξ服从正态分布N (1,σ2),P (ξ≤4)=0.84,则P (ξ≤-2)=( ) A .0.16 B .0.32 C .0.68 D .0.84 2.一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为 c ,a 、b 、c ∈(0,1),且无其他得分情况,已知他投篮一次得分的数学期望为1, 则ab 的最大值为 ( ) A.148 B.124 C.1 12 D.16 3.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( ) A .100 B .200 C .300 D .400 4.设X 是一个离散型随机变量,其分布列为: 则q 等于( ) A .1 B .1±22 C .1-2 2 D .1+ 2 2 5.随机变量X 的概率分布规律为P (X =k )=c k (k +1),k =1,2,3,4,其中c 是常数,则P (12

第2章 随机变量及其分布习题解答

第二章 随机变量及其分布 1、解: 设公司赔付金额为X ,则X 的可能值为; 投保一年内因意外死亡:20万,概率为0.0002 投保一年内因其他原因死亡:5万,概率为0.0010 投保一年内没有死亡:0,概率为1-0.0002-0.0010=0.9988 所以X 2、一袋中有5X 表示取出的三只球中的最大号码,写出随机变量X 的分布律 解:X 可以取值3,4,5,分布律为 10 61)4,3,2,1,5()5(1031)3,2,1,4()4(10 11)2,1,3()3(35 2 435 2 335 2 2=?= === ?==== ?= ==C C P X P C C P X P C C P X P 中任取两球再在号一球为中任取两球再在号一球为号两球为号一球为 也可列为下表 X : 3, 4,5 P :10 6, 103,101 3、设在15只同类型零件中有2只是次品,在其中取三次,每次任取一只,作不放回抽样,以X 表示取出次品的只数,(1)求X 的分布律,(2)画出分布律的图形。 解:任取三只,其中新含次品个数X 可能为0,1,2个。 35 22 )0(315313= ==C C X P 3512)1(3 15213 12=?==C C C X P 35 1)2(3 15 113 22= ?= =C C C X P 再列为下表 X : 0, 1, 2 P : 35 1, 3512,3522 4、进行重复独立实验,设每次成功的概率为p ,失败的概率为q =1-p (0

随机变量及其分布列概念公式总结

随机变量及其分布总结 1、定义:随着试验结果变化而变化的变量称为随机变量 .随机变量常用字母 X , Y ,ξ,η,… 表示. 2、定义:所有取值可以一一列出的随机变量,称为离散型随机变量 3、分布列:设离散型随机变量ξ可能取得值为 x 1,x 2,…,x 3,…, ξ取每一个值x i (i =1,2,…)的概率为()i i P x p ξ==,则称表 为随机变量ξ的概率分布,简称ξ的分布列 4. 分布列的两个性质: (1)P i ≥0,i =1,2,…; (2)P 1+P 2+…=1. 5.求离散型随机变量ξ的概率分布的步骤: (1)确定随机变量的所有可能的值x i (2)求出各取值的概率p(ξ=x i )=p i (3)画出表格 6.两点分布列: 7超几何分布列: 一般地,在含有M 件次品的 N 件产品中,任取 n 件,其中恰有X 件次品 数,则事件 {X=k }发生的概率为(),0,1,2,,k n k M N M n N C C P X k k m C --=== ,其中mi n {,} m M n =,且,,,,n N M N n M N N *≤≤∈.称分布列 为超几何分布列.如果随机变量 X 的分布列为超几何分布列,则称随机变量 X

服从超几何分布 8.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是 k n k k n n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1). 于是得到随机变量ξ的概率分布如下: ξ 1 … k … n P n n q p C 00 111-n n q p C … k n k k n q p C - … q p C n n n 称这样的随机变量ξ服从二项分布,记作ξ~B (n ,p ),其中n ,p 为参数。 9.离散型随机变量的均值或数学期望: 一般地,若离散型随机变量ξ的概率分布为 则称 =ξE +11p x +22p x …++n n p x … 为ξ的均值或数学期望,简称期望. 10.离散型随机变量的均值或数学期望的性质: (1)若ξ服从两点分布,则=ξE p . (2)若ξ~B (n ,p ),则=ξE np . (3)()c c E =,c 为常数 (4)ξ~N (μ,2σ),则=ξE μ (5)b aE b a E +=+ξξ)( 11.方差: 对于离散型随机变量ξ,如果它所有可能取的值是1x ,2x ,…,n x ,…, 且取这些值的概率分别是1p ,2p ,…,n p ,…,那么, ξD =121)(p E x ?-ξ+222)(p E x ?-ξ+…+n n p E x ?-2)(ξ+…

正态分布随机数生成算法

概率论与数理统计课程设计 题目:正态分布随机数生成算法 要编程得到服从均匀分布的伪随机数是容易的。C语言、Java语言等都提供了相应的函

数。但是要想生成服从正态分布的随机数就没那么容易了。 得到服从正态分布的随机数的基本思想是先得到服从均匀分布的随机数,再将服从均匀分布的随机数转变为服从正态分布。接下来就先分析三个从均匀分布到正态分布转变的方法。然后编程实现其中的两个方法并对程序实现运作的效果进行统计分析。 1、 方法分析 (1) 利用分布函数的反函数 若要得到分布函数为F(x)的随机变量Y 。 可令1()Y F u -=, 其中u 是服从均匀分布的随机变量,有 1 ()(())() P Y y P U F y F y -≤=≤= 因而,对于任意的分布函数,只要求出它的反函数,就可以由服从均匀分布的随机变量实例来生成服从该分布函数的随机变量实例。 现在来看正态分布的分布函数,对于2 ~(,)X N μσ,其分布函数为: 2 2()21 ()t x F x e μσ ---∞ = ? 显然,要想求其反函数是相当困难的,同时要想编程实现也很复杂。可见,用此种方法来生成服从正态分布的随机变量实例并不可取。 (2) 利用中心极限定理 第二种方法利用林德伯格—莱维(Lindeberg —Levi)中心极限定理:如果随机变量序列 12,,,,n X X X 独立同分布,并且具有有限的数学期望和方差 ()()2 ,0(1,2,),i i E X D X i μσ ==>= 则对一切x R ∈有 2 2 1lim t n x i n i P X n x dt μ- -∞ →∞ =? ?? -≤= ????? ∑? 因此,对于服从均匀分布的随机变量i X ,只要n 充分大, 11 n i i X n μ=? -? ?∑就服从()0,1N 。我们将实现这一方法。 (3) 使用Box Muller 方法 先证明2 2 2x e dx π-∞-∞ =? : 令2 2 x I e dx -∞-∞ = ? ,则

简单随机变量之和与正态分布

简单随机变量之和与正态分布 本文将笼统,随意的讲解,为什么多随机变量之和可以认为服从正态分布。 首先我们建立一个简单的随机变量之和的模型。假设我们手里有一枚硬币,我们认定硬币的正面为1,反面为0,那么抛一次硬币的情况就是0或1且他们的概率都是50%。如果我不写概率也是写概率的比例,那么这个比例可以写为1:1。现在我们抛两次硬币,那么这个结果有四种,00,01,10,11。相信你知道我在说什么。那么正同我们提到的,我们要的是随机变量之和,所以我们有0,1,2。且他们的比例可以很容易的得到,是1:2:1。那么如果抛三次硬币呢?可能的结果就是0,1,2,3,而他们的比例是1:3:3:1。也许你已经发现这个规律了,也许你没有,但我会告诉你的。假如你抛2N次硬币,并且求和,那么其结果就是0,1,2……2N,共2N+1种可能。这2N+1种可能的比例服从组合数C2N i。你可以代入刚才抛三次的情况,C30:C31:C32:C33就是我们得到的1:3:3:1。至于为什么这个比例符合组合数,抛两次硬币那里举了个例子,就不重复了。这里简单的定义以下,每个随机变量称作X i他们的和称作Y,也就是: 2N Y=∑X i 1 (为什么突然变成了抛2N次而不是抛N次,因为我想保证我抛的是偶数次,这样Y的均值就是N了,你会发现抛两次的时候,Y的均值就是1,但是如果你抛三次,Y的均值就会是1.5,我想避免这个小数。) 所以接下来我们就要说明,组合数的分布规律为什么就成了正态分布。那么首先,你相信这个结论吗?让我们从抛多次到抛少次,来看一下正态分布和这个组合数分布到底有多像。 从Y的取值范围你也能猜出,这里分别是N取5,10,15,20的情况,实际上除了N 取5,也就是抛10次的时候,你还能看得清楚红线和蓝线,当N取10也就是抛20次以后,两线其实非常吻合了。你还可以看一下他们之间的误差,其峰值也是逐渐减小的。

正态分布随机数

数学模型: 设连续型随机变量X 的高斯分布的概率密度为 ( )22 ()2,x f x μσ-= -∞<x <+∞ (3-1) 其中μ,σ(σ>0)为常数,则称X 服从参数为μ,σ的正态分布或高斯(Gauss)分布,记为X ~N (μ,2σ)。均值和方差的计算见公式3-2和公式3-3所示,可得到正态分布随机变量X 的均值E(X)=μ和方差D(X)=2σ。 ()()E X xf x dx +∞ -∞ =? (3-2) 2()()D X x f x dx +∞ -∞ =? (3-3) ()()E X xf x dx +∞ -∞ =? 22 ()2x dx μσ-- +∞ -∞ =? 令 x t μ σ -=,则 2 2()()t E X t dt σμσ+∞ --∞ =+?? 2 2 22t t dt dt σ μ+∞ +∞---∞ -∞ =+?? ? 0μμ=+= 根据方差的定义可知: 2 (){[()]} D X E X E X =- 所以,2 (){[()]}D X E X E X =- 2()22()x x dt μσμ-- +∞ -∞ = -? 2222 t t dt σσ+∞ --∞ =?? 2 22 2t t dt σ+∞ --∞ =?

2 σ= 即知正态分布的两个参数分别是该分布的数学期望和方差。 中心极限定理: 设随机变量12,,,n X X X ???相互独立,服从同一分布,且具有相同的均值和方差:()k E X μ=,2()0(1,2,,)k D X k n σ=≠=???,则随机变量 () n n n k k k n X E X X n Y μ --= = ∑∑∑ (3-4) 的分布函数()n F x 对于任意x 都满足 2 2 lim ()lim }n t k x n n n X n F x P x dt μ →∞ →∞ -=≤=∑? (3-5) 即当n 趋向于无穷大时,随机变量n Y 近似的服从标准正态分布N(0,l)。在实际应用中当。大于等于30时,可以把1n i i Y X ==∑当作服从均值为n μ,方差为n 2σ的 正态分布,那么变量'Y = 近似服从标准正态分布N ~(0,l)。 Box-Muller 变换法: 变换法是通过一个变换将一个分布的随机数变换成一个不同分布的随机数。高斯分布的密度函数见公式3-1所示,通过Box-Muller 变换,它可以产生精确的正态分布的随机变量。其变换式如下 : 1)y v π (3-6) 2)y v π (3-7) 式中u ,v 是在区间[0,1]上服从均匀分布,且相互独立的随机变量,所以得到的随机变量1y ,2y 也应该是相互独立的,且服从N ~(0,1)的标准正态分布。 Box-Muller 变换的推导过程如下: 由公式3-6和公式3-7可得: 221212 2 1 ,()2y y y u e v arctg y π+- == (3-8)

正态分布概率公式(部分)

Generated by Foxit PDF Creator ? Foxit Software https://www.360docs.net/doc/bb15846186.html, For evaluation only.
图 62正态分布概率密度函数的曲线 正态曲线可用方程式表示。 n 当 →∞时,可由二项分布概率函数方程推导出正态 分布曲线的方程:
fx= (61 ) () .6
式中: x—所研究的变数; fx —某一定值 x出现的函数值,一般称为概率 () 密度函数 (由于间断性分布已转变成连续性分布,因而我们只能计算变量落在某 一区间的概率, 不能计算变量取某一值, 即某一点时的概率, 所以用 “概率密度” 一词以与概率相区分),相当于曲线 x值的纵轴高度; p—常数,等于 31 .4 19……; e— 常数,等于 2788……; μ 为总体参数,是所研究总体 5 .12 的平均数, 不同的正态总体具有不同的 μ , 但对某一定总体的 μ 是一个常数; δ 也为总体参数, 表示所研究总体的标准差, 不同的正态总体具有不同的 δ , 但对某一定总体的 δ 是一个常数。 上述公式表示随机变数 x的分布叫作正态分布, 记作 N μ ,δ2 ), “具 ( 读作 2 平均数为 μ,方差为 δ 的正态分布”。正态分布概率密度函数的曲线叫正态 曲线,形状见图 62。 (二)正态分布的特性
1、正态分布曲线是以 x μ 为对称轴,向左右两侧作对称分布。因 =

数值无论正负, 只要其绝对值相等, 代入公式 61 ) ( .6 所得的 fx 是相等的, () 即在平均数 μ 的左方或右方,只要距离相等,其 fx 就相等,因此其分布是 () 对称的。在正态分布下,算术平均数、中位数、众数三者合一位于 μ 点上。

随机变量及其分布小结与复习

复习课: 随机变量及其分布列 教学目标 重点:理解随机变量及其分布的概念,期望与方差等的概念;超几何分布,二项分布,正态分布等的特点;会求条件概率,相互独立事件的概率,独立重复试验的概率等. 难点:理清事件之间的关系,并用其解决一些具体的实际问题. 能力点:分类整合的能力,运算求解能力,分析问题解决问题的能力. 教育点:提高学生的认知水平,为学生塑造良好的数学认识结构. 自主探究点:例题及变式的解题思路的探寻. 易错点:容易出现事件之间的关系混乱,没能理解问题的实际意义. 学法与教具 1.学法:讲授法、讨论法. 2.教具:投影仪. 一、【知识结构】 二、【知识梳理】 1.随机变量 ⑴随机变量定义:在随机试验中,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.像这种随着试验结果变化而变化的变量称为随机变量.简单说,随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量.常用希腊字母x、y、ξ、η等表示. ⑵如果随机变量可能取的值可以按次序一一列出(可以是无限个)这样的随机变量叫做离散型随机变量.

⑶如果随机变量可能取的值是某个区间的一切值,这样的随机变量叫做连续型随机变量. 2.概率分布定义(分布列) 设离散型随机变量ξ可能取的值为123,,,,i x x x x L L ,ξ取每一个值(1,2,)i x i =L 的概率 ()i i P x p ξ==,则称表 ξ 1x 2x L i x L P 1P 2P L i P L 称为随机变量ξ的概率分布列,简称ξ的分布列. 注:1.离散型随机变量的分布列具有下述两个性质: (1)0,123≥,,,i p i =L ;123(2)1p p p +++=L 3.常见的分布列 ⑴二项分布:在一次试验中某事件发生的概率是p ,那么在n 次独立重复试验中这个事件恰发生k 次的概 率为()(1)k k n k n p X k C p p -==-,显然x 是一个随机变量.随机变量x 的概率分布如下: x 1 L k L n P 00n n C p q 111 n n C p q - L k k n k n C p q - L n n n C p q 我们称这样的随机变量x 服从二项分布,记作~(,)X B n p ⑵两点分布列:如果随机变量ξ的分布列为: ξ 0 1 P 1P - P 这样的分布列称为两点分布列,称随机变量服从两点分布,而称(1)p P ξ==为成功概率.两点分布是特殊的二项分布(1)p ξ~B , ⑶超几何分布:一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有x 件次品数,则事件{} x k =发生的概率为(),0,1,2,3,,k N k M N M n N C C P X k k m C --===L .其中{}min ,m M n =,且*,,,,n N M N n M N N ≤≤∈,则称分布列

正态分布随机数的产生

四院四队 正态分布随机数的产生 实验报告 2014年5月26日

正态分布随机数的产生 一、 实验简述 通过matlab 实现正态分布N(0,1)随机数的产生。 二、 历史背景 正态分布是最重要的一种概率分布。正态分布概念是由德国的数学家和天文学家Moivre 于1733年首次提出的,但由于德国数学家Gauss 率先将其应用于天文学家研究,故正态分布又叫高斯分布,高斯这项工作对后世的影响极大,他使正态分布同时有了“高斯分布”的名称,后世之所以多将最小二乘法的发明权归之于他,也是出于这一工作。高斯是一个伟大的数学家,重要的贡献不胜枚举。但现今德国10马克的印有高斯头像的钞票,其上还印有正态分布的密度曲线。这传达了一种想法:在高斯的一切科学贡献中,其对人类文明影响最大者,就是这一项。在高斯刚作出这个发现之初,也许人们还只能从其理论的简化上来评价其优越性,其全部影响还不能充分看出来。这要到20世纪正态小样本理论充分发展起来以后。拉普拉斯很快得知高斯的工作,并马上将其与他发现的中心极限定理联系起来,为此,他在即将发表的一篇文章(发表于1810年)上加上了一点补充,指出如若误差可看成许多量的叠加,根据他的中心极限定理,误差理应有高斯分布。这是历史上第一次提到所谓“元误差学说”——误差是由大量的、由种种原因产生的元误差叠加而成。后来到1837年,海根(G.Hagen )在一篇论文中正式提出了这个学说。 其实,他提出的形式有相当大的局限性:海根把误差设想成个数很多的、独立同分布的“元误差” 之和,每只取两值,其概率都是1/2,由此出发,按狄莫佛的中心极限定理,立即就得出误差(近似地)服从正态分布。拉普拉斯所指出的这一点有重大的意义,在于他给误差的正态理论一个更自然合理、更令人信服的解释。因为,高斯的说法有一点循环论证的气味:由于算术平均是优良的,推出误差必须服从正态分布;反过来,由后一结论又推出算术平均及最小二乘估计的优良性,故必须认定这二者之一(算术平均的优良性,误差的正态性) 为出发点。但算术平均到底并没有自行成立的理由,以它作为理论中一个预设的出发点,终觉有其不足之处。拉普拉斯的理论把这断裂的一环连接起来,使之成为一个和谐的整体,实有着极重大的意义。 三、 实验步骤 设U 1,U 2相互独立同服从U(0,1),令 1 2 112(2lnU )cos(2U )X π=-

随机变量及其分布简介

“随机变量及其分布”简介 北京师范大学数学科学院李勇 随机变量是研究随机现象的重要工具之一,他建立了连接随机现象和实数空间的一座桥梁,使得我们可以借助于有关实数的数学工具来研究随机现象的本质,从而可以建立起应用到不同领域的概率模型,如二项分布模型、超几何分布模型、正态分布模型等。 在本章中将通过具体实例,帮助学生理解取有限值的离散型随机变量及其分布列、均值、方差的概念,理解超几何分布和二项分布的模型并能解决简单的实际问题,使学生认识分布列对于刻画随机现象的重要性,认识正态分布曲线的特点及曲线所表示的意义。 一、内容与要求 1.随机变量及其分布的概念。 通过具体实例使学生理解随机变量及其分布列的概念,认识随机变量及其分布对于刻画随机现象的重要性。要求学生会用随机变量表达简单的随机事件,并会用分布列来计算这类事件的概率。 2.超几何分布模型及其应用。 通过实例,理解超几何分布及其导出过程,并能进行简单的应用。 3.二项分布模型及其应用。 通过具体实例使学生了解条件概率和两个事件相互独立的概念,理解n次独立重复试验和二项分布模型,并能解决一些简单的实际问题。 4.离散随机变量的均值与方差。 通过实例使学生理解离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题。 5.正态分布模型。 借助直观使学生认识正态分布曲线的特点及含义。 二、内容安排及说明 1.全章共安排了4个小节,教学约需12课时,具体内容和课时分配如下(仅供参考):

2. 1 离散型随机变量及其分布列约3课时2. 2 二项分布及其应用约4课时 2. 3 离散型随机变量的均值与方差约3课时 2. 4 正态分布 约1课时 小 结 约1课时 2.本章知识框图 3.对内容安排的说明。 研究一个随机现象,可以借助于随机变量,而分布描述了随机变量取值的概率分布规律。二项分布和超几何分布是两个应用广泛的概率模型.为了使学生能够更好地理解它们,并能用来解决一些实际问题,教科书在内容安排上作了如下考虑: (1) 为学生把注意力集中在随机变量的基本概念和方法的理解上,通过取有限个不 同值的随机变量为载体介绍这些概念,以便他们能更好的应用这些概念解决实际问

一维正态分布随机数序列的产生方法

一维正态分布随机数序列的产生方法 一、文献综述 1.随机数的定义及产生方法 1).随机数的定义及性质 在连续型随机变量的分布中,最简单而且最基本的分布是单位均匀分布。由该分布抽取的简单子样称,随机数序列,其中每一个体称为随机数。 单位均匀分布也称为[0,1]上的均匀分布。 由于随机数在蒙特卡罗方法中占有极其重要的位置,我们用专门的符号ξ表示。由随机数序列的定义可知,ξ1,ξ2,…是相互独立且具有相同单位均匀分布的随机数序列。也就是说,独立性、均匀性是随机数必备的两个特点。 随机数具有非常重要的性质:对于任意自然数s,由s个随机数组成的 s维空间上的点(ξn+1,ξn+2,…ξn+s)在s维空间的单位立方体Gs上 均匀分布,即对任意的ai,如下等式成立: 其中P(·)表示事件·发生的概率。反之,如果随机变量序列ξ1, ξ2…对于任意自然数s,由s个元素所组成的s维空间上的点(ξn+1,…ξn+s)在Gs上均匀分布,则它们是随机数序列。 由于随机数在蒙特卡罗方法中所处的特殊地位,它们虽然也属于由具有已知分布的总体中产生简单子样的问题,但就产生方法而言,却有着本质上的差别。 2).随机数表 为了产生随机数,可以使用随机数表。随机数表是由0,1,…,9十个数字组成,每个数字以0.1的等概率出现,数字之间相互独立。这些数字序列叫作随机数字序列。如果要得到n位有效数字的随机数,只需将表中每n 个相邻的随机数字合并在一起,且在最高位的前边加上小数点即可。例如,某随机数表的第一行数字为7634258910…,要想得到三位有效数字的随机数依次为0.763,0.425,0.891。因为随机数表需在计算机中占有很大内存, 而且也难以满足蒙特卡罗方法对随机数需要量非常大的要求,因此,该方法不适于在计算机上使用。 3).物理方法

正态分布概率公式(部分)

图 6-2 正态分布概率密度函数的曲线 正态曲线可用方程式表示。当n→∞时,可由二项分布概率函数方程推导出正态分布曲线的方程: f(x)= (6.16 ) 式中: x —所研究的变数; f(x) —某一定值 x 出现的函数值,一般称为概率密度函数(由于间断性分布已转变成连续性分布,因而我们只能计算变量落在某一区间的概率,不能计算变量取某一值,即某一点时的概率,所以用“概率密度”一词以与概率相区分),相当于曲线 x 值的纵轴高度; p —常数,等于 3.14 159 ……; e —常数,等于 2.71828 ……;μ为总体参数,是所研究总体的平均数,不同的正态总体具有不同的μ,但对某一定总体的μ是一个常数;δ也为总体参数,表示所研究总体的标准差,不同的正态总体具有不同的δ,但对某一定总体的δ是一个常数。 上述公式表示随机变数 x 的分布叫作正态分布,记作 N( μ , δ2 ) ,读作“具平均数为μ,方差为δ 2 的正态分布”。正态分布概率密度函数的曲线叫正态曲线,形状见图 6-2 。 (二)正态分布的特性 1 、正态分布曲线是以 x= μ为对称轴,向左右两侧作对称分布。因的数值无论正负,只要其绝对值相等,代入公式( 6.16 )所得的 f(x) 是相等的,即在平均数μ的左方或右方,只要距离相等,其 f(x) 就相等,因此其分布是对称的。在正态分布下,算术平均数、中位数、众数三者合一位于μ点上。

2 、正态分布曲线有一个高峰。随机变数 x 的取值范围为( - ∞,+ ∞ ),在( - ∞ ,μ)正态曲线随 x 的增大而上升,;当 x= μ时, f(x) 最大;在(μ,+ ∞ )曲线随 x 的增大而下降。 3 、正态曲线在︱x-μ︱=1 δ处有拐点。曲线向左右两侧伸展,当x →± ∞ 时,f(x) →0 ,但 f(x) 值恒不等于零,曲线是以 x 轴为渐进线,所以曲线全距从 -∞到+ ∞。 4 、正态曲线是由μ和δ两个参数来确定的,其中μ确定曲线在 x 轴上的位置 [ 图 6-3] ,δ确定它的变异程度 [ 图 6-4] 。μ和δ不同时,就会有不同的曲线位置和变异程度。所以,正态分布曲线不只是一条曲线,而是一系列曲线。任何一条特定的正态曲线只有在其μ和δ确定以后才能确定。 5 、正态分布曲线是二项分布的极限曲线,二项分布的总概率等于 1 ,正态分布与 x 轴之间的总概率(所研究总体的全部变量出现的概率总和)或总面积也应该是等于 1 。而变量 x 出现在任两个定值 x1到x2(x1≠x2)之间的概率,等于这两个定值之间的面积占总面积的成数或百分比。正态曲线的任何两个定值间的概率或面积,完全由曲线的μ和δ确定。常用的理论面积或概率如下: 区间μ ± 1 δ面积或概率 =0.6826 μ ± 2 δ =0.9545 μ ± 3 δ=0.9973 μ± 1.960δ=0.9500 μ ±2.576 δ =0.9900

编写一个产生符合高斯分布的随机数函数

编写一个产生符合高斯分布的随机数函数信号检测与估计课程作业作业要求 1、利用计算机内部函数产生高斯分布的随机数,分别画出500,10000,100000点的波形,并进行统计分析(分别画出概率密度曲线,计算均值与方差) 2、利用计算机自己编写一个产生符合高斯分布的随机数函数,画出100000点的波形,并进行统计分析(同一) 提示:这一问分两步做,第一步先产生一个均匀分布的随机数序列(乘同余法、混合同余法等,可以用自己的方法),第二步通过适当变换得到符合高斯分布概率模型的随机数列 3、对随机数产生函数和高斯分布进行性能分析,并写出自己对于此次作业和上课的学习体会 一、利用内部函数产生高斯分布 首先利用matlab自带的内部函数randn()就可以方便的生成所需要的高斯分布随机数,然后画出概率密度曲线并计算出均值与方差即可。程序代码如下: A=randn(500,1); B=randn(10000,1);

C=randn(100000,1); subplot(2,3,1); bar(A); subplot(2,3,2); bar(B); subplot(2,3,3); bar(C); [f1,x1]=ksdensity(A); subplot(2,3,4); plot(x1,f1); title('500点高斯分布概率密度函数'); [f2,x2]=ksdensity(B); subplot(2,3,5); plot(x2,f2); title('10000点高斯分布概率密度函数'); [f3,x3]=ksdensity(C); subplot(2,3,6); plot(x3,f3); title('100000点高斯分布概率密度函数'); JZ500=mean(A) JZ1000=mean(B) JZ100000=mean(C) FC500=var(A) FC10000=var(B)

正态分布的数学期望与方差

正态分布的数学期望与方差 正态分布: 密度函数为:分布函数为 的分布称为正态分布,记为N(a, σ2). 密度函数为: 或者 称为n元正态分布。其中B是n阶正定对称矩阵,a是任意实值行向量。 称N(0,1)的正态分布为标准正态分布。 (1)验证是概率函数(正值且积分为1) (2)基本性质: (3)二元正态分布: 其中, 二元正态分布的边际分布仍是正态分布: 二元正态分布的条件分布仍是正态分布:

即(其均值是x的线性函数) 其中r可证明是二元正态分布的相关系数。 (4)矩,对标准正态随机变量,有 (5)正态分布的特征函数 多元正态分布 (1)验证其符合概率函数要求(应用B为正定矩阵,L为非奇异阵,然后进行向量线性变换) (2)n元正态分布结论 a) 其特征函数为: b) 的任一子向量,m≤n 也服从正态分布,分布为其中,为保留B 的第,…行及列所得的m阶矩阵。 表明:多元正态分布的边际分布还是正态分布 c) a,B分别是随机向量的数学期望及协方差矩阵,即 表明:n元正态分布由它的前面二阶矩完全确定 d) 相互独立的充要条件是它们两两不相关 e) 若,为的子向量,其中是,的协方差矩阵,则是,相应分量的协方差构成的相互协方差矩阵。则相互独立的充要条件为=0 f) 服从n元正态分布N(a,b)的充要条件是它的任何一个线性组合服

从一元正态分布 表明:可以通过一元分布来研究多元正态分布 g) 服从n元正态分布N(a,b),C为任意的m×n阶矩阵,则服从m元正态分布 表明:正态变量在线性变换下还是正态变量,这个性质简称正态变量的线性变换不变性 推论:服从n元正态分布N(a,b),则存在一个正交变化U,使得是一个具有独立正态分布分量的随机向量,他的数学期望为Ua,而他的方差分量是B的特征值。 条件分布 若服从n元正态分布N(a,b),,则在给定下,的分布还是正态分布,其条件数学期望: (称为关于的回归) 其条件方差为: (与无关)

第二章随机变量及其分布练习题

第二章随机变量及其分布练习题 1.甲、乙两人各进行一次射击,甲击中目标的概率是0.8,乙击中目标的概率 是0.6,则两人都击中目标的概率是( ) A.1.4 B.0.9 C.0.6 D.0.48 2.设随机变量1~62X B ?? ???,,则(3)P X =等于( ) A.516 B.316 C.5 8 D.716 3.设随机变量X 的概率分布列为 X 1 2 3 P 1 6 1 3 1 2 则E (X +2) ( ). A.113 B .9 C.133 D.73 4.两台相互独立工作的电脑,产生故障的概率分别为a ,b ,则产生故障的电脑 台数的均值为( ) A.ab B.a b + C.1ab - D.1a b -- 5.某普通高校招生体育专业测试合格分数线确定为60分.甲、乙、丙三名考生 独立参加测试,他们能达到合格的概率分别是0.9,0.8,0.75,则三人中至少有 一人达标的概率为( ) A .0.015 B .0.005 6.设随机变量~()X B n p ,,则22 ()()DX EX 等于( ) A.2p B.2(1)p - C.np D.2(1)p p - 7.对标有不同编号的6件正品和4件次品的产品进行检测,不放回地依次摸出 2件.在第一次摸出正品的条件下,第二次也摸到正品的概率是 ( ). A.35 B.25 C.110 D.59 8.从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶 数”,事件B =“取到的2个数均为偶数”,则P (B |A )= ( ). A.18 B.14 C.25 D.12

9.设随机变量ξ服从正态分布N(0,1),P(ξ>1)=p,则P(-1<ξ<0)等于(). A.1 2p B.1-p C.1-2p D. 1 2-p 10.已知随机变量X服从正态分布N(μ,σ2),且P(μ-2σ

(word完整版)基础随机变量及其分布知识点,推荐文档

随机变量及其分布 一、离散型随机变量的分布列 一般地,设离散型随机变量X 可能取的值为12,,,,,i n x x x x ??????,X 取每一个值(1,2,,)i x i n =???的概率()i i P X x p ==,则称以下表格 为随机变量X 的概率分布列,简称X 的分布列. 离散型随机变量的分布列具有下述两个性质: (1)0,1,2,,i P i n =???≥ (2)121n p p p ++???+= 常见的两种分布: 1.两点分布 如果随机变量X 的分布列为 则称X 服从两点分布,并称=P(X=1)p 为成功概率. 2.超几何分布 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{}X k =发生的概率为: (),0,1,2,3,...,k n k M N M n N C C P X k k m C --== =

则随机变量X 的概率分布列如下: {}*min ,,,,,,m M n n N M N n M N N =≤≤∈其中且。 注:超几何分布的模型是不放回抽样 二、条件概率 一般地,设A,B 为两个事件,且()0P A >,称() (|)()P AB P B A P A =为在事件A 发生的条件下,事件B 发生的条件概率. 0(|)1P B A ≤≤ 三、相互独立事件 设A ,B 两个事件,如果事件A 是否发生对事件B 发生的概率没有影响(即 ()()()P AB P A P B =),则称事件A 与事件B 相互独立。 ()()()A B P AB P A P B ?=即、相互独立 一般地,如果事件A 1,A 2,…,A n 两两相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积,即1212(...)()()...()n n P A A A P A P A P A =. 注:(1)互斥事件:指同一次试验中的两个事件不可能同时发生; (2) 相互独立事件:指在不同试验下的两个事件互不影响.

概率论与数理统计小报告 正态随机数的产生方法

概率论与数理统计小报告(二)_________正态随机数的产生方法 学院数理学院 专业信息与计算科学 班级 姓名 学号

依据中心极限定理产生正态分布随机数 摘要:由中心极限定理可知,当n很大时,具有期望μ,方差σ2的分布近似为标准正态分布,故可据此产生标准正态分布。并利用Matlab自带的函数对结果进行检验。 关键字:正态分布中心极限定理随机数 正态分布(Normal distribution)又名高斯分布(Gaussian distribution),是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。 若随机变量服从一个位置参数为、尺度参数为的概率分布,记为: 则其概率密度函数为 正态分布的数学期望值或期望值等于位置参数,决定了分布的位置;其方差的开平方或标准差等于

clc,clear for i=1:1000 R=rand(1,12); X(i)=sum(R)-6; end X=X'; m=mean(X) v=var(X) subplot(1,2,1),cdfplot(X) %绘制经验累计分布函数图,显示了一维向量X的累计概率分布F(x)的图形subplot(1,2,2),histfit(X) %绘制分组数据的柱状分布函数图,即频数图 h=kstest(X, [X normcdf(X, 0,1)])% H = kstest(X)执行Kolmogorov-Smirnov检验标准正态分布比较数据向量x的值。零假设是x为标准的正态分布;另一种假设是x不是标准正态分布。在5%显著水平进行检验,若结果h为1,则说明零假设不成立,拒绝零假设。否则,结果为0,零假设成立,即原分布为标准正态分布 运行结果如下: h = 0 (检验表明分布为标准正态分布) R = (产生的一组12个【0,1】上均匀分布的随机数) Columns 1 through 4 0.5700 0.4027 0.3702 0.0801 Columns 5 through 8

随机变量及其分布知识点整理

随机变量及其分布知识点整理 一、离散型随机变量的分布列 一般地,设离散型随机变量X 可能取的值为12,,,,,i n x x x x ??????,X 取每一个值(1,2,,)i x i n =???的概率()i i P X x p ==,则称以下表格 为随机变量X 的概率分布列,简称X 的分布列. 离散型随机变量的分布列具有下述两个性质: (1)0,1 ,2,,i P i n =???≥ (2)121n p p p ++???+= 1.两点分布 如果随机变量X 的分布列为 则称X 服从两点分布,并称=P(X=1)p 为成功概率. 2.超几何分布 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{}X k =发生的概率为: (),0,1,2,3,...,k n k M N M n N C C P X k k m C --=== {}*min ,,,,,,m M n n N M N n M N N =≤≤∈其中且。 注:超几何分布的模型是不放回抽样 二、条件概率 一般地,设A,B 为两个事件,且()0P A >,称()(|)() P AB P B A P A =为在事件A 发生的条件下,事件B 发生的条件概率. 0(|)1P B A ≤≤ 如果B 和C 互斥,那么[()|](|)(|)P B C A P B A P C A =+ 三、相互独立事件 设A ,B 两个事件,如果事件A 是否发生对事件B 发生的概率没有影响(即()()()P AB P A P B =),则称事件A 与事件B 相互独立。()()()A B P AB P A P B ?=即、相互独立 一般地,如果事件A 1,A 2,…,A n 两两相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概

生成高斯分布的matlab程序

clear all; close all; clc; randn('seed',0); %%一维高斯函数 mu=0; sigma=1; x=-6:0.1:6; y=normpdf(x,mu,sigma); plot(x,y); figure; %%二维或多维高斯函数 mu=[00]; sigma=[0.30;00.35]; [x y]=meshgrid(linspace(-8,8,80)',linspace(-8,8,80)'); X=[x(:) y(:)]; z=mvnpdf(X,mu,sigma); surf(x,y,reshape(z,80,80)); hold on; %再生成一个 mu=[40]; sigma=[1.20;0 1.85]; [x y]=meshgrid(linspace(-8,8,80)',linspace(-8,8,80)'); X=[x(:) y(:)]; z=mvnpdf(X,mu,sigma); surf(x,y,reshape(z,80,80)); Matlab 的随机函数(高斯分布均匀分布其它分布) Matlab中随机数生成器主要有: betarnd 贝塔分布的随机数生成器 binornd 二项分布的随机数生成器 chi2rnd 卡方分布的随机数生成器 exprnd 指数分布的随机数生成器 frnd f分布的随机数生成器 gamrnd 伽玛分布的随机数生成器 geornd 几何分布的随机数生成器 hygernd 超几何分布的随机数生成器 lognrnd 对数正态分布的随机数生成器 nbinrnd 负二项分布的随机数生成器 ncfrnd 非中心f分布的随机数生成器

相关文档
最新文档