第五章-异方差性(作业任务)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.3 为了研究中国出口商品总额EXPORT对国内生产总值GDP的影响,搜集了1990~2015年相关的指标数据,如表5.3所示。

表3 中国出口商品总额与国内生产总值(单位:亿元)

资料来源:《国家统计局网站》

(1) 根据以上数据,建立适当线性回归模型。

(2) 试分别用White检验法与ARCH检验法检验模型是否存在异方差?

(3) 如果存在异方差,用适当方法加以修正。

解:(1)

100,000

200,000300,000400,000500,000600,000700,000

X

Y

Dependent Variable: Y Method: Least Squares Date: 04/18/20 Time: 15:38 Sample: 1991 2015 Included observations: 25

Variable

Coefficient Std. Error t-Statistic Prob. C -673.0863 15354.24 -0.043837 0.9654 X

4.061131

0.201677

20.13684

0.0000

R-squared 0.946323 Mean dependent var 234690.8 Adjusted R-squared 0.943990 S.D. dependent var 210356.7 S.E. of regression 49784.06 Akaike info criterion 24.54540 Sum squared resid 5.70E+10 Schwarz criterion 24.64291 Log likelihood -304.8174 Hannan-Quinn criter. 24.57244 F-statistic 405.4924 Durbin-Watson stat 0.366228

Prob(F-statistic) 0.000000 模型回归的结果:

^

673.0863 4.0611i

X i Y =-+

()(0.043820.1368)t =-

20.9463,25

==

R n

(2)white:该模型存在异方差

Heteroskedasticity Test: White

F-statistic 4.493068 Prob. F(2,22) 0.0231 Obs*R-squared 7.250127 Prob. Chi-Square(2) 0.0266 Scaled explained SS 8.361541 Prob. Chi-Square(2) 0.0153

Test Equation:

Dependent Variable: RESID^2

Method: Least Squares

Date: 04/18/20 Time: 17:45

Sample: 1991 2015

Included observations: 25

Variable Coefficient Std. Error t-Statistic Prob.

C -1.00E+09 1.43E+09 -0.700378 0.4910

X^2 -0.455420 0.420966 -1.081847 0.2910

X 102226.2 60664.19 1.685117 0.1061 R-squared 0.290005 Mean dependent var 2.28E+09 Adjusted R-squared 0.225460 S.D. dependent var 3.84E+09 S.E. of regression 3.38E+09 Akaike info criterion 46.83295 Sum squared resid 2.51E+20 Schwarz criterion 46.97922 Log likelihood -582.4119 Hannan-Quinn criter. 46.87352 F-statistic 4.493068 Durbin-Watson stat 0.749886 Prob(F-statistic) 0.023110

ARCH检验:该模型存在异方差

Heteroskedasticity Test: ARCH

F-statistic 18.70391 Prob. F(1,22) 0.0003 Obs*R-squared 11.02827 Prob. Chi-Square(1) 0.0009

Test Equation:

Dependent Variable: RESID^2

Method: Least Squares

Date: 04/18/20 Time: 19:55

Sample (adjusted): 1992 2015

Included observations: 24 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

C 8.66E+08 6.92E+08 1.251684 0.2238

RESID^2(-1) 0.817146 0.188944 4.324802 0.0003

R-squared 0.459511 Mean dependent var 2.37E+09 Adjusted R-squared 0.434944 S.D. dependent var 3.90E+09 S.E. of regression 2.93E+09 Akaike info criterion 46.51293 Sum squared resid 1.89E+20 Schwarz criterion 46.61110 Log likelihood -556.1552 Hannan-Quinn criter. 46.53898 F-statistic 18.70391 Durbin-Watson stat 0.888067 Prob(F-statistic) 0.000273

(3)修正:加权最小二乘法修正

Dependent Variable: Y

Method: Least Squares

Date: 04/18/20 Time: 20:46

Sample: 1991 2015

Included observations: 25

Weighting series: W2

Weight type: Inverse variance (average scaling)

Variable Coefficient Std. Error t-Statistic Prob.

C 10781.17 2188.706 4.925821 0.0001

X 3.931606 0.192004 20.47667 0.0000

Weighted Statistics

R-squared 0.947998 Mean dependent var 51703.40 Adjusted R-squared 0.945737 S.D. dependent var 11816.72 S.E. of regression 8420.515 Akaike info criterion 20.99135 Sum squared resid 1.63E+09 Schwarz criterion 21.08886

相关文档
最新文档