概率论与数理统计(浙大版)第二章课件

合集下载

浙大概率论与数理统计课件 第二章随机变量及其分布

浙大概率论与数理统计课件 第二章随机变量及其分布
于是,所求概率为:
P( X 2)C (0.05) (0.95) 0.007125
2 3 2
请注意:
1、若将本例中的“有放回”改为”无放回”, 那么 各次试验条件就不同了, 此试验就不是伯努利试验 . 此时, 只能用古典概型求解.
P( X 2)
C C C
1 95
2 5
3 100
0.00618
这种对应关系在数学上理解为定义了一种实值 单值函数.定义域为样本空间S,取值为实数.
e.
s
这即为所谓的随机变量
X(e)
R
定义 设随机试验的样本空间为S={e}. X= X(e)是 定义在样本空间S上的实值单值函数.称X= X(e)为 随机变量. 简记为 r.v. 说明 (1)它是一个变量, 它的取值随试验结果而改变 (2)由于试验结果的出现具有一定的概率,故 随机变量取每个值和每个确定范围内的值也有一 定的概率. (3)随机变量通常用大写字母X,Y,Z,W,N 等表 示,而表示随机变量所取的值时,一般采用小写 字母 x, y, z, w, n等.
解:按第一种方法。 以 X 记 “ 第 一 人 维 护 的 20台 中 同 一 时 刻 发 生 故 障 的 台 数 ” 。 以 Ai i 1, 2, 3, 4 表 示 事 件 “ 第 i 人 维 护 的 2 0台 中 发 生 故 障 不 能 及 时 维 修 ” , 则 知 80台 中 发 生 故 障 不 能 及 时 维 修 的 概 率 为 :
k k nk
, 0, , n k 1,
P 易证:(1) ( X k ) 0
(2) P ( X k ) 1
k 0
n
称 r.v X 服从参数为n和p的二项分布,记作 X~b(n,p) 显然,当 n=1 时 X ~ B 1, p 此时有 PX k p k 1 p 1 k , k 0,1 0 p 1

概率论与数理统计浙大四版 第二章3讲

概率论与数理统计浙大四版 第二章3讲
解 X 的分布密度函数为
f(x) 13, 2 x5, 0, 其他.
设 A 表示“ X 的观测值大于 3”,
即 A={ X >3 }.
由 P (A 于 ) P { X 3 }
51 dx
2,
33
3
设Y 表示3次独立观测中观测值大于3的次数,
则 因而有
Y
~
b 3,
32.
P{Y2}23322132333231320
解: F(x) = P(X x) =
x
f (t)dt
f(x)2 1x2, 1x1
0, 其它
解: 对x < -1,F(x) = 0
求 F(x).
对 1x1,
F(x)10d t x21t2dt
1
x
1x21ar
cxsi1n 2
对 x>1, F (x) = 1

0,
x1
F(x) x
1x21arcsx in1 2,
1, x 1
(2) 求X的概率密度.
解: (1) P(0.3<X<0.7)=F(0.7)-F(0.3)=0.72-0.32=0.4
(2)
f(x)= dF ( x ) dx
2x,
0,
0 x 1 其它
注意到F(x)在1处导数不存在,根据改变被积函数 在个别点处的值不影响积分结果的性质,可以在
F(x) 没意义的点处,任意规定 F(x)的值.
由此得, 1) 对连续型 r.v X,有
P ( a X b ) P ( a X b )
P(aXb) P(aXb)
2) 由P(X=a)=0 可推知
P (X R a ) f(x )d x P (X a ) 1 而 {X=a} 并非不可能事件 {XR{a}}并非必然事件

概率论与数理统计(浙大版)第二章

概率论与数理统计(浙大版)第二章

二、伯努利(Bernoulli)试验及二项分布 1、伯努利(Bernoulli)试验 (1)n次独立重复试验
将试验E重复进行n次,若各次试验的结果互 不影响,则称这n次试验是相互独立的. (2)n重伯努利试验 满足下列条件的试验称为伯努利(Bernoulli)试验: ①每次试验都在相同的条件下重复进行;
令X=“正面出现的次数”,则X是一个随着试 验结果不同而取值不同的量,其对应关系如下:
基本结果(e) 正面出现的次数X(e)
e1=(正,正)
2
e2=(正,反)
1
e3=(反,正)
1
e4=(反,反)
0
由上可知,对每一个样本点e,都有一个X的取值X(e)
与之对应。我们把X称为定义在这个试验上的随机变量。
P ( X x k ) p k k 1 ,2 ,3 , ( 1 )
称 (1) 式为离散型随机变量X的分布律. 注:离散型随机变量X的分布律可用公式法和表格 法描述。
1)公式法: P (X x k ) p k k 1 ,2 ,3 ,
2) 表格法:
X x1 x2 L pk p1 p2 L
例1:将一枚硬币连掷两次,求“正面出现的次 数X ”的分布律。
及 时 维 修 ” , 则 知 80台 中 发 生 故 障 不 能 及 时 维 修 的 概 率 为 :
P A 1 A 2 A 3 A 4 P A 1 P X 2
而 Xb20,0.01,故 有 :
1
1
PX21PXk1 C 2 k00.01k0.9920k0.0169
k0
k0
即 有 : P A 1 A 2 A 3 A 4 0 .0 1 6 9
text(x(1),pk(1), num2str(pk(1)),'FontSize',21); text(x(3),pk(3), num2str(pk(3)),'FontSize',21);

概率论与数理统计浙大四版 第二章3讲2

概率论与数理统计浙大四版 第二章3讲2
则X在任意区G( 间G可以是开区,也间可以是 闭区间,或半开半间闭;区可以是有限区 也可以是无穷区间取)值上的概率为,
PXGfxdx
G
例2 某电子元件的寿命 X(单位:小时)是以
f x 1000
x2
x 100 x 100
为密度函数的连续型随机变量.求 5 个同类型的元 件在使用的前 150 小时内恰有 2 个需要更换的概率.
1
x0
0x1 1x2
x2

0,
x0

F(x)



x2 , 2 2x 1 x2 ,
0 x 1 1 x 2

2
1,
x2
对连续型r.v,若已知F(x),我们通过求导 也可求出 f (x),请看下例.
例3 设r.vX的分布函数为
0, x 0
(1) 求X取值在区间
F(x) 没意义的点处,任意规定 F(x)的值.
由于连续型 r.v唯一被它的密度函数所确 定. 所以,若已知密度函数,该连续型 r.v 的概率规律就得到了全面描述.
f (x)
o
x
下面给出几个常用连续型r.v的例子.
(1)若 r.vX的概率密度为: f ( x)
f(x)b1a, axb
例2 设r.v X 的密度函数为 f (x)
f(x)2 1x2, 1x1
0, 其它
求 F(x).
解: F(x) = P(X x) =
x
f (t)dt

f(x)2 1x2, 1x1
0, 其它
解: 对x < -1,F(x) = 0
求 F(x).
对 1x1,
0, 其它
求 F(x).

《概率论与数理统计》课件-第2章随机变量及其分布 (1)

《概率论与数理统计》课件-第2章随机变量及其分布 (1)
则称X服从参数为λ的泊松分布, 记为 X ~ P() .
HAINAN UNIVERSITY
概率论与数理统计
第二五章 基随本机极变限量定及理其分布
泊松分布的应用
“稠密性”问题(一段时间内,电话交换中心接到的呼叫次 数,公共汽车车站候车的乘客数,售票窗口买票的人数, 原子放射的粒子数,保险公司在一定时期内被索赔的次 数等)都服从泊松分布.
随机变量的分布函数
1.定义: 设X为一随机变量, x为任意实数, 称函数 F(x)=P{X≤x}为X的分布函数.
注: ① F(x)是一普通函数, 其定义域为 ,; ② F x的值为事件X x的概率; ③ F x可以完全地描述随机变量取值的规律性.
例如: Pa X b PX b PX a
连续型随机变量及概率密度函数
1.定义: 设X ~ F(x), 若存在一个非负可积的函数 f (x),
使 x R, 有
F ( x)
PX
x
x
f
(t)dt
,
则称X为连续型随机变量, f (x) 称为X的概率密度函数或
分布密度函数.
2.几何意义:
HAINAN UNIVERSITY
概率论与数理统计
第二五章 基随本机极变限量定及理其分布
二、随机变量的概念
定义: 设试验E的样本空间为 , 若对于每个样本
点 , 均有一个实数 X ()与之对应, 这样就得
到一个定义在 上的单值函数 X X () , 称X为随
机变量.
X
样本空间
实数
注: ① 随机变量是一个定义在样本空间上的实函数, 它取值的随机性是由样本点的随机性引起的;
x 1
x0
0 x x
不是 (不满足规范性)

概率论与数理统计课件第2章

概率论与数理统计课件第2章

X0
1
pk 03.5
0.25
4
625
0.0625
X的分布函数为
2 0.125
0
x0
0.5
0 x1
F
(
x)
0.75 0.875
1 x 2 2 x3
0.9375 3 x 4
Байду номын сангаас
1
x4
0.0
分布函数 是累计概率
例3 有人对随机变量X的分布列表述如下:
X -1
0 12 3
P
a 0.16
a2 2a 0.3
第2章 随机变量及其分布
2.1 随机变量及其分布函数 2.2 离散型随机变量及其分布律 2.3 几种常见的离散型分布 2.4 连续型随机变量及其密度函数 2.5 正态分布 2.6 随机变量函数及其分布
2.1 随机变量及其分布函数
一、随机变量 二、随机变量的分布函数
信息管理学院 徐晔
一、随机变量

包含出现1点
包含出现1,2点
包含出现1,2,3点
包含出现1,2,3,4 点 包含出现1,2,3,4,5 点包含出现1,2,3,4,5,6 点
分布函数的性质
F(x) P(X x), ( x )
(1) F x 在 , 上是一个不减函数 ,
即对 x1 , x2 , 且 x1 x2 ,都有 F x1 F x2 ;
样本点
1, 4, 5 2, 3, 4 2, 3, 5 2, 4, 5 3, 4, 5
黑球数 X
1 2 2 1 1
由上表可以看出,该随机试验的每一个结果都对应
着变量 X 的一个确定的取值,因此变量 X 是样本空
间Ω上的函数:

概率论与数理统计课件第2章

概率论与数理统计课件第2章

2
2.2.1 随机变量 • 注意: 注意:
(1)随机变量定义于抽象的样本空间上,不是普 )随机变量定义于抽象的样本空间上, 通的实函数。 通的实函数。 (2)随机事件可以通过随机变量的各种取值状态 )随机事件可以通过随机变量的各种取值状态 取值范围来表示 来表示。 和取值范围来表示。
3
2.1.2 随机变量的分布函数 • 既然随机事件可以通过随机变量的各种取值状态和取值 范围来表示, 范围来表示,研究随机现象的统计规律性就转化为研究 随机变量取值的规律性,即取值的概率。 随机变量取值的规律性,即取值的概率。但概率是集合 函数,随机变量定义于抽象空间上,都不便于处理。 函数,随机变量定义于抽象空间上,都不便于处理。 • 能不能找到一种方法,使得我们研究随机变量取值的规 能不能找到一种方法, 律性可以转化为研究普通的实函数? 律性可以转化为研究普通的实函数?
2.1 随机变量及其分布函数 在前面的讨论中,只是孤立地考虑一些事件的概率, 在前面的讨论中,只是孤立地考虑一些事件的概率, 这种研究方法缺乏一般性, 这种研究方法缺乏一般性,而且不便于分析数学工具的引 为了这一目的,随机变量的引入具有非常重要的意义。 入,为了这一目的,随机变量的引入具有非常重要的意义。 随机变量的引入是概率论发展史上的重大事件。 随机变量的引入是概率论发展史上的重大事件。它使得研 究概率论的数学工具更丰富有力,从此, 究概率论的数学工具更丰富有力,从此,概率论的研究进 入一个崭新的天地。 . 入一个崭新的天地。
P{ X ≥ 1} = 5 / 9 ,求p =
x≤0 , 0 < x ≤1 x >1
,概率 P{0 ≤ X ≤ 0.25} =


X |< 0.5} ;2)分布函数 分布函数F(x) 分布函数

概率论与数理统计浙大版第二章 ppt课件

概率论与数理统计浙大版第二章 ppt课件
一、随机变量 引例:
E1: 将一枚硬币连掷两次,观察正反面出现的情况。
概率论与数理统计浙大版第二章
2
精品资料
你怎么称呼老师? 如果老师最后没有总结一节课的重点的难点,你是
否会认为老师的教学方法需要改进? 你所经历的课堂,是讲座式还是讨论式?
教师的教鞭 “不怕太阳晒,也不怕那风雨狂,只怕先生骂我笨,
概率论与数理统计浙大版第二章
12
§2 离散型随机变量及其分布
概率论与数理统计浙大版第二章
13
一、离散型随机变量的定义及其分布律
1.离散型随机变量的定义 如果随机变量X所有可能的取值是有限个或无 穷可列个,则称X为离散型随机变量。
2.离散型随机变量的分布律
要掌握一个离散型随机变量的分布律,必须
且只需知道以下两点:
设e是一个随机试验其样本空间为se在e上引入一个变量x如果对s中每一个样本点e都有一个x的取值xe与之对应我们就称x为定义在随机试验e的一个随机变量
第二章 随机变量及其分布
随机变量 概率分布函数 离散型随机变量 连续型随机变量
随机变量的函数
概率论与数理统计浙大版第二章
1
第一节 随 机 变 量
在上一章中,我们把随机事件看作样本空间 的子集;这一章里我们将引入随机变量的概念, 用随机变量的取值来描述随机事件。
令X=“报童每天卖出的报纸份数” 试将“报童赔钱”这一事件用X的取值表 示出来。
解:分析
{报童赔钱}
{卖出报纸的钱不够成本}
当 0.50 X<1000× 0.3时,报童赔钱.
故{报童赔钱}{X 600}
概率论与数理统计浙大版第二章
10
3、随机变量的概率分布 对于一个随机试验,我们关心下列两件事情: (1)试验会发生一些什么事件? (2)每个事件发生的概率是多大?

概率论与数理统计(浙大第四版简明本盛骤)第二章

概率论与数理统计(浙大第四版简明本盛骤)第二章

A, A,
P A 1 2
如果是不放回抽样呢? 各次取牌不独立! 不是贝努利试验!
9
设A在n重贝努利试验中发生X次,则 k k P( X k ) Cn p (1 p)nk , k 01 , , ,n 并称X服从参数为p的二项分布,记 X b(n,p)
k k nk 注: 1 ( p q) Cn pq 其中q 1 p n k 0 n
x1 p1 x2 p2
… …
xi pi
… …
pi 0, pi 1
i 1

样本空间S={ X=x1,X=x2,…,X=xn,… } 由于样本点两两不相容
1 P( S ) P( X xi ) pi
i可能取值--即写出了样本点 2、写出相应的概率--即写出了每一个样本点出现的概率
P( X 3) P( A1 A 2 A3 ) p3
k k 一般 P( X k ) Cn p (1 p)nk , k 0,1, 2,, n
10
例:某人骑了自行车从学校到火车站,一路上 要经过3个独立的交通灯,设各灯工作独 立,且设各灯为红灯的概率为p,0<p<1, 以Y表示一路上遇到红灯的次数。 (1)求Y的概率分布律; (2)求恰好遇到2次红灯的概率。
解:这是三重贝努利试验
Y b(3, p)
3k
1
P(Y k ) C p (1 p)
k 3 k
, k 0,1,2,3
2 2 2 P ( Y 2) C 3 p (1 p)
11
例:某人独立射击n次,设每次命中率为p, 0<p<1,设命中X次,(1) 求X的概率分布 律;(2) 求至少有一次命中的概率。 解:这是n重贝努利试验 X b(n, p)

《概率论与数理统计》浙大内部课件(全套).PPT

《概率论与数理统计》浙大内部课件(全套).PPT
S
“和”、“交”关系式
n i 1
A
n
A
Ai=A1 A2 An;
Ai
n i 1
Ai A1
A2
An;
Ai
n i 1
i 1
例:设A={ 甲来听课 },B={ 乙来听课 } ,则: A B {甲、乙至少有一人来} A B {甲、乙都来} A B AB {甲、乙都不来} A B AB {甲、乙至少有一人不来}
16
概率统计中研究的对象:随机现象的数量规律
对随机现象的观察、记录、试验统称为随机试验。 它具有以下特性: 1. 可以在相同条件下重复进行 2. 事先知道可能出现的结果 3. 进行试验前并不知道哪个试验结果会发生
例:



抛一枚硬币,观察试验结果; 对某路公交车某停靠站登记下车人数; 对某批电子产品测试其输入电压; 对听课人数进行一次登记;
4



随着18、19世纪科学的发展,人们注意到某些生物、物理 和社会现象与机会游戏相似,从而由机会游戏起源的概率 论被应用到这些领域中,同时也大大推动了概率论本身的 发展。 法国数学家拉普拉斯将古典概率论向近代概率论进行推进, 他首先明确给出了概率的古典定义,并在概率论中引入了 更有力的数学分析工具,将概率论推向一个新的发展阶段。 他还证明了“煤莫弗——拉普拉斯定理”.拉普拉斯于 1812年出版了他的著作《分析的概率理论》,这是一部继 往开来的作品。这时候人们最想知道的就是概率论是否会 有更大的应用价值?是否能有更大的发展成为严谨的学科 概率论在20世纪再度迅速地发展起来,则是由于科学技术 发展的迫切需要而产生的。1906年,俄国数学家马尔科夫 提出了所谓“马尔科夫链”的数学模型。1934年,前苏联 数学家辛钦又提出一种在时间中均匀进行着的平稳过程理有极重要的地位,现 今仍在常用的许多统计方法,就是建立在“所研 究的量具有或近似地具有正态分布”这个假定的 基础上,而经验和理论(概率论中所谓“中心极 限定理”)都表明这个假定的现实性,现实世界 许多现象看来是杂乱无章的,如不同的人有不同 的身高、体重。大批生产的产品,其质量指标各 有差异 。看来毫无规则,但它们在总体上服从正 态分布。这一点,显示在纷乱中有一种秩序存在, 提出正态分布的高斯,一生在多个领域里面有不 少重大的贡献,但在德国10马克的有高斯图像的 钞票上,单只画出了正态曲线,以此可以看出人 们对他这一贡献评价之高。

概率论与数理统计-第二章-随机变量及其分布函数ppt课件

概率论与数理统计-第二章-随机变量及其分布函数ppt课件

表格: X
x1 x2
pk
p1 p2
概率分布图:
1P
xn
pn
0.5
x4 x3
x1
x2
X
.
由概率的性质易知离散型随机变量的分布列
pk
满足下列特征性质:
k 1
① pk 0(k 1,2,) [非负性]

pk 1 [规范性]用于确定待定参数
k 1
③ F( x) P( X x) P(X xi ). xi x
1. 2
.
【例2】设随机变量X的分布函数为
aex b, x 0
F(x)
0,
x0
解: 因为 F(x) 在 x=0 点右连续
求: 常数 a 和 b。
所以 lim F ( x) lim (ae x b) a b 0
x0
x0
又因为 F () lim (ae x b) b 1 x
1、两点分布 或(0 - 1)分布
two-point distribution
定义1 设离散型随机变量X的分布列为
X0 1 pk 1 p p
其中 0<p<1
则称 X 服从(0 - 1)分布,记作 X ~(0 - 1)分布
F(x)
(0 - 1)分布的分布函数
0 , x0 F ( x) 1 p, 0 x 1
X = “三次试验中 A 发生的次数”,
{ X 2} A1A2 A3 A1A2 A3 A1A2 A3 P{X 2} P(A1A2 A3 A1A2 A3 A1A2 A3 )
P(A1A2 A3 ) P(A1A2 A3 ) P(A1A2A3 ) P(A1)P(A2)P(A3) P(A1)P(A2)P(A3) P(A1)P(A2 )P(A3 ) C32 p2(1 p)32

概率论与数理统计浙大四版 第二章4讲

概率论与数理统计浙大四版 第二章4讲

服从正态分布 N(,2) 的随机变量
X的概率密度是 f(x) 1 e , (x2 2)2 x
2
X的分布函数P(X≤x)是怎样的呢?
设X~ N(,2) , X的分布函数是
F(x) 1 xe(t2 2)2d,tx
2
正态分布由它的两个参数μ和σ唯 一确定, 当μ和σ不同时,是不同的正 态分布。
f(x) 1 e , (x2 2)2 x
2
用求导的方法可以证明, x=μσ
为f (x)的两个拐点的横坐标。 这是高等数学的内容,如果忘记了,课下 再复习一下。
正态概率密度函数的几何特征总结
(1)曲线x关 μ对 于 ;称 (2)当 xμ时 ,f(x)取得最1大 ; 值
2πσ ( 3 )当 x 时 ,f( x ) 0 ; (4)曲线 x在 μσ处有; 拐点
决定了图形的中心位置,决定了图形
中峰的陡峭程度.
能不能根据密度函数的表达式, 得出正态分布的图形特点呢?
f(x) 1 e , (x2 2)2 x
2
容易看到,f(x)≥0 即整个概率密度曲线都在x轴的上方;
f(x) 1 e , (x2 2)2 x
2
令x=μ+c, x=μ-c (c>0), 分别代入f (x), 可 得
红线是拟 合的正态 密度曲线
可见,某大学男大学生的身高 应服从正态分布。
人的身高高低不等,但中等身材的占大 多数,特高和特矮的只是少数,而且较 高和较矮的人数大致相近,这从一个方 面反映了服从正态分布的随机变量的特 点。
请同学们想一想,实际生活中具有这 种特点的随机变量还有那些呢?
除了我们在前面的身高外,在正常条件 下各种产品的质量指标,如零件的尺寸; 纤维的强度和张力;农作物的产量,小麦 的穗长、株高;测量误差,射击目标的水 平或垂直偏差;信号噪声等等,都服从或 近似服从正态分布.

浙江大学《概率论与数理统计》第2章

浙江大学《概率论与数理统计》第2章

6
概率分布
写出所有可能取值 写出取每个可能取值相应的概率
例:若随机变量X的概率分布律为
P(X k) ck ,k 0,1, 2,, 0
k!
求常数c.
8
解:
1 P{X k}
k 0
k
c
ce
k0 k !
c e
例:某人骑自行车从学校到火车站, 一路上要经过3个独立的交通灯,设各 灯工作独立,且设各灯为红灯的概率 为p,0<p<1,以X表示首次停车时所通 过的交通灯数,求X的概率分布律。
P(X 3) 1 P(X 2) 0.875347981
37
超几何分布
若随机变量X的概率分布律为
P( X
k)
Cak
C nk b
CNn
,k
l1, l1
1, ..., l2 ,
其中,l1 max(0, n b), l2 min(a, n).
称X服从超几何分布
例:一袋中有a个白球,b个红球,a+b=N, 从中不放回地取n个球,设每次取到各球的 概率相等,以X表示取到的白球数,则X服从 超几何分布。
39
几何分布
若随机变量X的概率分布律为
P( X k) p(1 p)k1, k 1, 2,3,..., 0 p 1.
称X服从参数p的几何分布
例:从生产线上随机抽产品进行检测,设 产品的次品率为p,0<p<1,若查到一只次 品就得停机检修,设停机时已检测到X只产 品,则X服从参数p的几何分布。
np
事实上,Cnk pk
1 p
nk
k
n! !(n
k)!
n
k
1
n
nk
k

概率论与数理统计第二章课件PPT

概率论与数理统计第二章课件PPT

例2 某类灯泡使用时数在1000小时以上 的概率是0.2,求三个灯泡在使用1000 小时以后最多只有一个坏了的概率.
解: 设X为三个灯泡在使用1000小时已坏的灯泡数 .
X ~ B (3, 0.8),
P( X k)C (0.8) (0.2) , k 0,1,2,3
k 3 k
3k
P{X 1} =P{X=0}+P{X=1} =(0.2)3+3(0.8)(0.2)2
X
p
1
0
1
2
3 0.1
a b 0.2 0.3
求a,b满足什么条件。
a b 0.4, a 0, b 0
一旦知道一个离散型随机变量X的分布律后,我们便可求得X
所生成的任何事件的概率。特别地,对任意 a ,有 b
P a X b P X x P X x i i a x b a x b 1 1 pk

用泊松定理 取 =np=(400)(0.02)=8, 故 近似地有 P{X2}=1- P{X=0}-P {X=1}
=1-(1+8)e-8=0.996981.
泊松分布(Poisson distribution)
定义2 设随机变量X的可能取值为0,1,2,…,n,…,而X 的分布律为
pk P X k
路口1
路口2
路口3
X表示该汽车首次遇到红灯前已通过的路口的个数
路口1
路口2
路口3
1 1 1 P(X=3)= P( A1 A2 A3 ) =1/8 2 2 2

X
p
0
1
2
3
1 2
1 4

浙大概率论与数理统计课件概率论

浙大概率论与数理统计课件概率论
*
例2:从上例的袋中不放回的摸两球, 记A={恰是一红一黄},求P(A). 解:
(注:当L>m或L<0时,记 )
例3:有N件产品,其中D件是次品,从中不放 回的取n件, 记Ak={恰有k件次品},求P(Ak). 解:
*
例4:将n个不同的球,投入N个不同的盒中(n≤N),设每一球落入各盒 的概率相同,且各盒可放的球数不限, 记A={ 恰有n个盒子各有一球 },求P(A). 解:
原来这不是等可能概型
总样本点数为 ,每点出现的概率相等,而其中有 个 样本点使 发生,
①,②,…,
n
S={ },
①,②,…,
a
{ }
{红色}
解2: 视哪几次摸到红球为一样本点
解4: 记第k次摸到的球的颜色为一样本点: S={红色,白色},
*ห้องสมุดไป่ตู้
解:假设接待站的接待时间没有规定,而各来访者在一周 的任一天中去接待站是等可能的,那么,12次接待来 访者都是在周二、周四的概率为 212/712 =0.000 000 3.
例7:某接待站在某一周曾接待12次来访,已知所有这12次接待都是在周二和周四进行的,问是否可以推断接待时间是有规定的?
*
第四章 随机变量的数字特征 4.1 数学期望 4.2 方差 4.3 协方差及相关系数 4.4 矩、协方差矩阵 第五章 大数定律和中心极限定理 5.1 大数定律 5.2 中心极限定理 第六章 数理统计的基本概念 6.1 总体和样本 6.2 常用的分布
*
第七章 参数估计 7.1 参数的点估计 7.2 估计量的评选标准 7.3 区间估计 第八章 假设检验 8.1 假设检验 8.2 正态总体均值的假设检验 8.3 正态总体方差的假设检验 8.4 置信区间与假设检验之间的关系 8.5 样本容量的选取 8.6 分布拟合检验 8.7 秩和检验 第九章 方差分析及回归分析 9.1 单因素试验的方差分析 9.2 双因素试验的方差分析 9.3 一元线性回归 9.4 多元线性回归
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、离散型随机变量的定义及其分布律
1.离散型随机变量的定义 如果随机变量X所有可能的取值是有限个或无 穷可列个,则称X为离散型随机变量。
2.离散型随机变量的分布律
要掌握一个离散型随机变量的分布律,必须 且只需知道以下两点:
(1) X所有可能的取值: X x1, x2 , , xk , (2)X取每个值时的概率: P( X xk ) pk , k 1,2,3,
figure('color','w')
bar(x,pk,0.1,'r')
plot(x,pk,'r.','MarkerSize',31) ylim([0 0.6]) xlim([0,2.3])
ylim([0 0.6]) text(x(1),pk(1), num2str(pk(1)),'FontSize',21); xlim([0,2.3]) text(x(2),pk(2), num2str(pk(2)),'FontSize',21);
text(x(1),pk(1), num2str(pk(1)),'FontSize',21); text(x(3),pk(3), num2str(pk(3)),'FontSize',21);
text(x(2),pk(2), num2str(pk(2)),'FontSize',21);
text(x(3),pk(3), num2str(pk(3)),'FontSize',21); figure('color','w')
P(0<X ≤2)=3/4;
(4)随机变量的类型: 离散型与连续型随机变量。 这两种类型的随机变量因其取值方式的不同各
有特点,学习时注意它们各自的特点及描述方式 的不同。
例1(用随机变量的取值表示随机事件)一报童 卖报,每份报0.50元, 其成本为0.30元。 报馆每天给 报童1000份报纸,并规定卖不出的报纸不得退回。
P( X xk ) pk k 1,2,3, (1)
称 (1) 式为离散型随机变量X的分布律. 注:离散型随机变量X的分布律可用公式法和表格 法描述。
1)公式法: P( X xk ) pk k 1,2,3,
2) 表格法:
X x1 x2 L pk p1 p2 L
例1:将一枚硬币连掷两次,求“正面出现的次 数X ”的分布律。
E2:掷一枚骰子,观察出现的点数. 令X=“正面出现的点数”
E3:某产品的使用寿命X,X>=0.
E4:掷一枚质地均匀的硬币,观察正反面出现的 情况.
令X
1, 0,
正面 反面
一般地,对每一个随机试验,我们都可以引入 一个变量X,使得试验的每一个样本点都有一个X 的取值X(e)与之对应,这样就得到随机变量的概念.
令X=“正面出现的次数”,则X是一个随着试 验结果不同而取值不同的量,其对应关系如下:
基本结果(e) 正面出现的次数X(e)
e1=(正,正)
2
e2=(正,反)
1
e3=(反,正)
1
e4=(反,反)
0
由上可知,对每一个样本点e,都有一个X的取值X(e)
与之对应。我们把X称为定义在这个试验上的随机变量。
引入随机变量后, 上述说法相应变为下列表述方式: (1)随机变量X可能取哪些值? (2)随机变量X取某个值的概率是多大?
对一个随机变量X,若给出了以上两条,我们 就说给出了随机变量X的概率分布(也称分布律)。
这一章我们的中心任务是学习离散型随机变量 与连续型随机变量的概率分布.
§2 离散型随机变量及其分布
1、随机变量的定义:
设E是一个随机试验,其样本空间为S={e},在E 上引入一个变量X,如果对S中每一个样本点e,都 有一个X的取值X(e)与之对应,我们就称X为定义 在随机试验E的一个随机变量.
2、随机变量的说明 (1)随机变量的表示:常用字母X,Y,Z,….表示; (2)引入随机变量的目的: 用随机变量的取值范围表示随机事件,利用高等数 学的工具研究随机现象。
例如:上例中,事件“正面出现两次”可表示为:“X=2” ;
事件“正面至少出现一次”可表示为:“X≥1”; “0<X≤2”表示事件“正面至少出现一次”。
(3)随机变量的特点: 具有随机性:在一次试验之前不知道它取哪一个 值,但事先知道它全部可能的取值。
随机变量的取值具有一定的概率:
例如:上例中P(X=2)=1/4; P(X≥1)=3/4;
解:在此试验中,所有可能的结果有: e1=(正,正);e2=(正,反); e3=(反,正) ;e4=(反,反)。
于是,正面出现的次数X ”的分布律:
X0 1 2
pk 1序
x=[0, 1, 2];
pk=[1/4,2/4,1/4];
figure('color','w')
figure('color','w')
stem(x,pk,'r.','MarkerSize',31)
plot(x,pk,'r.','MarkerSize',31) hold on plot(x,pk,'r-.') ylim([0 0.6]) hold off
ylim([0 0.6]) xlim([0,2.3]) text(x(1),pk(1), num2str(pk(1)),'FontSize',21); text(x(2),pk(2), num2str(pk(2)),'FontSize',21); text(x(3),pk(3), num2str(pk(3)),'FontSize',21);
第二章 随机变量及其分布
关键词: 随机变量 概率分布函数 离散型随机变量 连续型随机变量 随机变量的函数
第一节 随 机 变 量
在上一章中,我们把随机事件看作样本空间 的子集;这一章里我们将引入随机变量的概念, 用随机变量的取值来描述随机事件。
一、随机变量 引例:
E1: 将一枚硬币连掷两次,观察正反面出现的情况。
令X=“报童每天卖出的报纸份数” 试将“报童赔钱”这一事件用X的取值表 示出来。
解:分析
{报童赔钱}
{卖出报纸的钱不够成本}
当 0.50 X<1000× 0.3时,报童赔钱.
故{报童赔钱} {X 600}
3、随机变量的概率分布 对于一个随机试验,我们关心下列两件事情: (1)试验会发生一些什么事件? (2)每个事件发生的概率是多大?
相关文档
最新文档