二次函数中的分类讨论思想(供参考)

合集下载

初中二次函数蕴含的思维方法

初中二次函数蕴含的思维方法

初中二次函数蕴含的思维方法作者:***来源:《教育·教学科研》2020年第03期“二次函数”是初中数学的重要组成部分,也是中考的热点和难点。

二次函数中蕴含着丰富的思维方法,学生掌握好了这些思维方法就能掌握好二次函数的知识内容,对以后学习有非常重要的作用,它不但能提升学生的思维能力,也能激发学生的潜力。

下面,笔者就二次函数中几种常用的思维方法进行简单的探究。

数形结合思维的应用我国著名数学家华罗庚曾说:“数形结合百般好,隔裂分家万事休。

”每个几何图形都蕴含着一定的数量关系,而数量关系又常常可以通过几何图形予以直观地反映和描述,所以数形结合思维也就成为研究数学的重要思维方法之一。

二次函数中“数”“形”并进,让学生做到见“数”识“形”,见“形”而想“数”。

1.1二次函数y=ax2+bx+c(a≠0)的图象与系数a,b,c的关系。

例:如图抛物线y=ax2+bx+c的对称轴为直线x=1,且过点(3,0),下列结论:①abc>0;②a-b+c0;④b2-4ac>0;正确的有()个?A.1B.2C.3D.4解析:由抛物线开口方向得到a>0,由抛物线对称轴方程得到b=-2a1.2通过观察图象,由交点坐标可以直接写出不等式解集。

例:二次函数y1=ax2+bx+c的图象与一次函数y2=kx+b(k≠0)的图象(如图):当y2>y1时,根据图象写出x的取值范围。

解析:通过观察图像可知,使得的的取值范围是:-2函数方程思维的应用方程和方程组是初中阶段比较重要的部分,并且与数学其他板块的关联性也比较强,同时还是解决其他数学问题的工具。

解决二次函数问题常常会使用方程和方程组的思维,同样求解一元二次方程解时,也可以用到二次函数图象来解决。

2.1求两个函数交点坐标的应用。

例:如图,函数y= 与y=-2x+8的图象交于点A、B.求A、B两点的坐标。

解析:联立函数y= 和y=-2x+8得到关于x,y的方程组,解出方程组即可得到A、B两点的坐标。

高中数学二次函数分类讨论经典例题

高中数学二次函数分类讨论经典例题

高中数学二次函数分类讨论经典例题一、二次函数的定义和基本性质二次函数是形如y=ax²+bx+c的函数,其中a、b、c都是实数且a≠0。

二次函数的图像是抛物线,其开口方向取决于a的正负性。

下面将讨论二次函数的分类及其相关的经典例题。

二、二次函数的分类讨论1. a>0的情况:抛物线开口向上当a>0时,二次函数的图像是开口向上的抛物线。

此时,函数的最值为最小值,且最小值点的横坐标为-b/2b。

例如,考虑函数y=x²+2x+1,其图像为一条开口向上的抛物线,最小值点为(-1,0)。

2. a<0的情况:抛物线开口向下当a<0时,二次函数的图像是开口向下的抛物线。

此时,函数的最值为最大值,且最大值点的横坐标为-b/2b。

例如,考虑函数y=-x²+2x+1,其图像为一条开口向下的抛物线,最大值点为(1,0)。

3. a=0的情况:一次函数当a=0时,二次函数变为一次函数,即y=bx+c。

此时,函数的图像是一条直线,且不会有最值点。

例如,考虑函数y=2x+1,其图像为一条斜率为2的直线。

三、经典例题1. 求解二次函数的最值例如,求解函数y=x²-4x+3的最值。

首先,可以将该二次函数写成标准形式y=(x-2)²-1,从中可以得知最小值点为(2,-1)。

2. 求解二次函数与坐标轴的交点例如,求解函数y=2x²-5x+2与x轴和y轴的交点。

首先,将y=0代入函数方程得到2x²-5x+2=0,然后可以通过因式分解或者求解一元二次方程的方法求解得到x的值。

进而可以求得函数与x轴的交点。

类似地,可以将x=0代入函数方程得到y的值,从而求得函数与y轴的交点。

3. 求解二次函数的对称轴例如,求解函数y=-x²+4x-3的对称轴。

对称轴是过抛物线最高点(或最低点)的一条直线,其方程可以通过x=-b/2b得到。

对于该函数,对称轴方程为x=-2。

函数的概念与基本初等函数-高考文科数学复习资料

函数的概念与基本初等函数-高考文科数学复习资料

函数的概念与基本初等函数-高考文科数学复习资料学科思想分类讨论思想例已知二次函数最大值2,求的值.【思路分析】本题考查用分类讨论思想解决二次函数问题,解题的关键是对称轴的位置.【解析】①当②当时,时,得..,解得的差为,故该方程在③当综上可知,时,或.(1)求m的值,并确定【方法技巧】求解二次函数在闭区间上的最值问题,关键是抓住“三点一轴”,“三点”即区间端点与区间中上为增函数,求实数a的取值范围.点,“一轴”即二次函数的对称轴,合理进行讨论.数形结合思想例若a是实数,试讨论数.【思路分析】本题考查含参数的函数零点个数问题,求解时需将法求解.【解析】设,.转化为,利用数形结合是()222A.某1+某2+某3=14B.1+a +b=0C.某1+某3=4D.某1+某3>2某2的零点的个6.设定义域为R的函数(2)若的解析式;在上无解.4.已知函数,得..2.函数取值范围是__________.,若在上有训练题组1.若a>0,且a≠1,p=loga (a3+1),q=loga(a2+1),则p,q的大小关系是()A.p=qB.p“qD.当a>1时,p>q;当0”在同一直角坐标系内作出两个函数的图象如图.7.已知,下列不等式中成立的是()A.B.C.由图可知,当零点;当当当当时,函数有2个零点;时,函数有4个零点;时,函数有3个零点;时,函数有2个零点;的图象为的图象时,两函数图象无交点,因此函数无8.已知是方程D.的一个根,是方程的一个根,那么的值是()A.6B.3C.2D.1【方法技巧】本题中在某轴及其上方的部分不变,将某轴下方的部分以某轴为对称轴,翻折到上方而得到.转化与化归思想9.若函数例若函数(1)若函数(2)若函数函数的零点.【思路分析】本题考查函数零点的求解方法以及零点的性质,求解的关键是将函数的零点转化为方程的根.【解析】(1)令∵,得...有零点,求实数b的取值范围;有零点,试讨论零点的个数,并求出值范围__________.有零点,则实数a的取10.设f(某)是定义在R上的奇函数,且当某≥0时,f(某)=某2,若对任意某∈[a,a+2],f(某+a)≥f(3某+1恒成立,则实数a的取值范围是__________.11.设函数f(某)=ka某–a–某(a>0且a≠1)是定义域为的奇函数.(1)若(f1)>0,试求不等式(f某2+2某)+(f某–4)>的解集;3(2)若f(1)=2,且g(某)=a2某+a–2某–4f(某)求g(某)在[1,+∞)上的最小值.∴当函数存在零点时,时,.,此时方程12.已知某满足不等式数的最值.,求函(2)①由(1)知当的根为②当∴∵∴令∴当,,因此函数时,∵.∴的零点为0;...的解为,得时,.,故..的解为综合①②知,当分别为当时,函数;当时,函数时,函数或的零点有两个,;的零点只有一个,为的零点只有一个,为的零点与方程.的根的零【方法技巧】函数是可以相互转化的,一般地,由研究函数点,转化为研究方程函数思想例已知2≤某≤5,求代数式的最值.的根.13.对任意a∈[–1,1],函数f(某)=某2+(a–4)某+4–2的值总大于零,则某的取值范围是()A.1<某<3B.某<1或某>3C.1<某<2D.某<1或某>2【思路分析】本题考查二次函数的区间最值.解题的关键是结合二次函数的图象进行分析.【解析】设,所得函数是二次函数.14.如果0 15.设不等式2某–1>m(某2–1)对满足|m|≤2的一切实数配方,得,∴抛物线的顶点坐标是都成立,则的取值范围__________..∵自变量的取值范围是2≤某≤5,而某=1不在此16.设方程某2–(a2–a+1)某–4=0在[1,4]上有解,求实数的取值范围.范围内,∴二次函数是抛物线的图象的一部分,不含顶点,这部分在对称轴的右侧,根据二次函数的性质,∵a=–3<0,∴抛物线开口向下,在对称轴的右侧,y随某的增大而减小.∴当某=2时,当某=5时,【方法技巧】想到二次函数式的最值.;.是关于某的二次三项式,联的图象和性质求此代数1.【答案】C【解析】当0loga(a2+1),即p>q.当a>1时,y=a某和y=loga某在其定义域上均为增函数,则a3+1>a2+1,∴loga(a3+1)>loga(a2+1),即p>q.综上可得p>q.2.【答案】【解析】当时,,此时不等式的解集是时,;当时,,此时不等式无解;当以a的取值范围是.,此时不等式无解.所133.【答案】–2或23【解析】当a>1时,y=a是增函数,∴a–a=,∴a=2.某2当0某24.【解析】(1)由∵当当为减函数,∴时,时,,得,解得,∴.∵..为奇函数,不合题意;为偶函数.∴,此时.上单调递增,且∴实数a的取值范围为.∴.解得.5.【解析】令t=a某(a>0且a≠1),则原函数化为y=(t+1)2–2(t>0).①当0<a<1时,某∈[–1,1],t=a∈a,某此时f(t)在a上为增函数.11所以f(t)ma某=fa=+1–2=14.111所以+1=16,所以a=–5或a =3.1又因为a>0,所以a=3.11②当a>1时,某∈[–1,1],t=a∈,a,此时f(t)在,a上是增函数.某所以f(t)ma某=f(a)=(a+1)2–2=14,解得a=3(a=–5舍去).综上得a=3或3.6.【答案】D【解析】作出f(某)的图象,图象关于某=2对称,且某=2时,f(某)=1,故f(某)=1有3个不同实数根某,除此之外,只有两个根或无根.又f2(某)+af(某)+b=0有3个不同的实数解某1某3=3,故A,B,C正确.故选D.7.【答案】C【解析】在同一坐标系中分别作出,即当时,,,图象,如图,当时,.故选C.8.【答案】B【解析】将已知的两个方程变形得.在同一坐标系中分别作出象,如图所示.,、和.令的图记与的交点为,对称,便有代入上式,得有零点,有实数解.,则原方程化为上有实数解.(),与的交点为,,即,利用函数的性质易知A、B两点关于直线得9.【答案】【解析】∵函数∴方程设该方程在,再将.将A点坐标代入直线方程,.故选B.②当方程的解一个在上,另一个在上时,令,则或,即..综合①②知,函数10.【答案】(–∞,–5]有零点时,实数a的取值范围为【解析】因为当某≥0时,f(某)=某2,所以此时函数f(某)在[0,+∞)上单调递增.又因为f(某)是定义在R上的奇函数,且f(0)=0,所以f(某)在R上单调递增.若对任意某∈[a,a+2],不等式f(某+a)≥f(3某+1)恒成立,则某+a≥3某+1恒成立,即a≥2某+1恒成立,因为某∈[a,a+2],所以(2某+1)(a+2)+1=2a+5,即a≥2a+5,解得a≤–5.即ma某=2实数a的取值范围是(–∞,–5].11.【解析】因为f(某)是定义域为R的奇函数,所以f(0)=0,所以k–1=0,即k=1,f(某)=a某–a–某.(1)因为f(1)>0,所以a–a>0,又a>0且a≠1,所以a>1.因为f′(某)=a某lna+a–某lna=(a某+a–某)lna>0,所以f(某)在R上为增函数,原不等式可化为f(某2+2某)>f(4–某),所以某2+2某>4–某,即某2+3某–4>0,所以某>1或某所以不等式的解集为{某|某>1或某313(2)因为f(1)=2,所以a–a=2,1即2a–3a–2=0,所以a=2或a=–2(舍去).2所以g(某)=22某+2–2某–4(2某–2–某)=(2某–2–某)2–4(2某–2–某)+2.令t(某)=2某–2–某(某≥1),3则t(某)在(1,+∞)为增函数(由(1)可知),即t(某)≥t (1)=2,所以原函数为ω(t)=t2–4t+2=(t–2)2–2,所以当t=2时,ω(t)min=–2,此时某=log2(1+).即g(某)在某=log2(1+)时取得最小值–2.12.【解析】由,可解得,即,∴.∵∴当当,即,即时,时,有最小值有最大值6.,;∴当的最大值为6,最小值为13.【答案】B.【解析】依题意有某2+(a–4)某+4–2a>0恒成立,即(某–2)a+某2–4某+4>0恒成立.令g(a)=(某–2)a+某2–4某+4,把g(a)看作是关于主元a的函数,则g(a)是一次函数(某≠2)或是常数函数(某=2),因为a∈[–1,1],要g(a)>0恒成立,只需解得某<1或某>3,故选B.14.【答案】A 【解析】设y1=a|某|,y2=|loga某|,分别作出它们的图象如图所示:,由图可知,有两个交点.。

专题14 二次函数的分类讨论问题(解析版)

专题14 二次函数的分类讨论问题(解析版)

专题14 二次函数的分类讨论问题1、已知抛物线y =﹣16x 2﹣23x +2与x 轴交于点A ,B 两点,交y 轴于C 点,抛物线的对称轴与x 轴交于H 点,分别以OC 、OA 为边作矩形AECO . (1)求直线AC 的解析式;(2)如图2,P 为直线AC 上方抛物线上的任意一点,在对称轴上有一动点M ,当四边形AOCP 面积最大时,求|PM ﹣OM |的最大值.(3)如图3,将△AOC 沿直线AC 翻折得△ACD ,再将△ACD 沿着直线AC 平移得△A 'C ′D '.使得点A ′、C '在直线AC 上,是否存在这样的点D ′,使得△A ′ED ′为直角三角形?若存在,请求出点D ′的坐标;若不存在,请说明理由.【答案】(1) y =13x +2;(2) 点M 坐标为(﹣2,53)时,四边形AOCP 的面积最大,此时|PM ﹣OM |有最大值√616; (3)存在,D ′坐标为:(0,4)或(﹣6,2)或(−35,195).【解析】(1)令x =0,则y =2,令y =0,则x =2或﹣6,△A (﹣6,0)、B (2,0)、C (0,2),函数对称轴为:x =﹣2,顶点坐标为(﹣2,83),C 点坐标为(0,2),则过点C 的直线表达式为:y =kx +2,将点A 坐标代入上式,解得:k =13,则:直线AC 的表达式为:y =13x +2; (2)如图,过点P 作x 轴的垂线交AC 于点H .四边形AOCP 面积=△AOC 的面积+△ACP 的面积,四边形AOCP 面积最大时,只需要△ACP 的面积最大即可,设点P 坐标为(m ,−16m 2−23m +2),则点G 坐标为(m ,13m +2),S △ACP =12PG •OA =12•(−16m 2−23m +2−13m ﹣2)•6=−12m 2﹣3m ,当m =﹣3时,上式取得最大值,则点P 坐标为(﹣3,52).连接OP 交对称轴于点M ,此时,|PM ﹣OM |有最大值,直线OP 的表达式为:y =−56x ,当x =﹣2时,y =53,即:点M 坐标为(﹣2,53),|PM ﹣OM |的最大值为:|√(−3+2)2+(52−53)2−√22+(53)2|=√616. (3)存在.△AE =CD ,△AEC =△ADC =90°,△EMA =△DMC ,△△EAM △△DCM (AAS ),△EM =DM ,AM =MC ,设:EM =a ,则:MC =6﹣a .在Rt△DCM 中,由勾股定理得:MC 2=DC 2+MD 2,即:(6﹣a )2=22+a 2,解得:a =83,则:MC =103,过点D 作x 轴的垂线交x 轴于点N ,交EC 于点H .在Rt△DMC 中,12DH •MC =12MD •DC ,即:DH ×103=83×2,则:DH =85,HC =√DC 2−DH 2=65,即:点D 的坐标为(−65,185);设:△ACD 沿着直线AC 平移了m 个单位,则:点A ′坐标(﹣6√10√10),点D ′坐标为(−65+√10185+√10),而点E 坐标为(﹣6,2),则A′D′2=(−6+65)2+(185)2=36,A′E 2=(√10)2+(√102)2=m 2√104,ED′2=(245+√10)2+(85+√10)2=m 2√101285.若△A ′ED ′为直角三角形,分三种情况讨论:△当A′D′2+A′E 2=ED′2时,36+m 2−√104=m 2+√101285,解得:m =2√105,此时D ′(−65+√10185+√10)为(0,4);△当A′D′2+ED′2=A′E 2时,36+m 2+10+1285=m 210+4,解得:m =−8√105,此时D ′(−6510185+10)为(-6,2);△当A′E 2+ED′2=A′D′2时,m 2√10+4+m 2√101285=36,解得:m =−8√105或m =√105,此时D ′(−65√10185√10)为(-6,2)或(−35,195).综上所述:D 坐标为:(0,4)或(﹣6,2)或(−35,195).2、已知抛物线1l :212y ax =-的项点为P ,交x 轴于A 、B 两点(A 点在B 点左侧),且sin ABP ∠=.(1)求抛物线1l 的函数解析式;(2)过点A 的直线交抛物线于点C ,交y 轴于点D ,若ABC ∆的面积被y 轴分为1: 4两个部分,求直线AC 的解析式;(3)在(2)的情况下,将抛物线1l 绕点P 逆时针旋转180°得到抛物线2l ,点M 为抛物线2l 上一点,当点M 的横坐标为何值时,BDM ∆为直角三角形?【答案】(1)21128y x =-;(2)直线AC 的解析式为114y x =+;(3)点M 横坐标为16-+16--16-+16--BDM ∆为Rt ∆.【解析】(1)当0x =时,2122y ax =-=- △顶点()0,2P -,2OP = △90BOP ∠=︒,△sin OP ABP BP ∠==△BP ==△4OB ===△()4,0B ,代入抛物线1l 得:1620a -=,解得18a =,△抛物线1l 的函数解析式为21128y x =- (2)△知抛物线1l 交x 轴于A 、B 两点 △A 、B 关于y 轴对称,即()4,0-A △8AB =设直线AC 解析式:y kx b =+点A 代入得:40k b -+= △4b k =△直线AC :4y kx k =+,()0,4D k △14|4|8||2AOD BOD S S k k ∆∆==⨯⨯= △21248x kx k -=+,整理得:2832160x kx k ---= △128x x k += △14x =-△284C x x k ==+,()284488C y k k k k k =++=+△2(84,88)C k k k ++ △21||32||2ABC C S AB y k k ∆=⋅=+ △若0k >,则:=1:4AOD OBCD S S ∆四边形 △15AOD ABC S S ∆∆= △()218325k k k =⨯+ 解得:10k =(舍去),214k = △直线AC 的解析式为114y x =+ △若k 0<,则8AOD BOD S S k ∆∆==-,()232ABC S k k ∆=-+△()218|32|5k k k -=⨯-+解得:10k =(舍去),214k =(舍去)综上所述,直线AC 的解析式为114y x =+. (3)由(2)得:()0,1D ,()4,0B△抛物线1l 绕点P 逆时针旋转180︒得到抛物线2l △抛物线2l 解析式为:22128y x =-- 设点M 坐标为21(,2)8m m --△若90BDM ∠=︒,如图1,则0m < 过M 作MN y ⊥轴于点N△90MND BOD BDM ∠=∠=∠=︒,MN m =-,22111(2)388DN m m =---=+ △90MDN BDO MDN DMN ∠+∠=∠+∠=︒ △BDO DMN ∠=∠ △BDO DMN ∆∆△BO ODDN MN=,即BO MN DN OD ⋅=⋅ △21438m m -=+解得:116m =-+,216m =--△若90DBM ∠=︒,如图2,过点M 作MQ x ⊥轴于点Q△90BQM DBM BDM ∠=∠=∠=︒,4BQ m =-,2211(2)288MQ m m =---=+ △90BMQ MBQ MBQ DBO ∠+∠=∠+∠=︒△BMQ DBO ∠=∠ △BMQ DBO ∆∆△BQ MQDO BO=,即BQ BO MQ OD ⋅=⋅△()214428m m -=+解得:116m =-+216m =--△若90BMD ∠=︒,则点M 在以BD 为直径的圆除点B 、D 外的圆周上 显然以AB 为真径的圆与抛物线2l 无交点,故此情况不存在满足的m综上所述,点M 横坐标为16-+16--16-+16--BDM ∆为Rt ∆. 3、已知:如图,一次函数y=12x+1的图象与x 轴交于点A ,与y 轴交于点B ;二次函数y=12x 2+bx+c 的图象与一次函数y=12x+1的图象交于B 、C 两点,与x 轴交于D 、E 两点且D 点坐标为(1,0) (1)求二次函数的解析式; (2)求四边形BDEC 的面积S ;(3)在x 轴上有一动点P ,从O 点出发以每秒1个单位的速度沿x 轴向右运动,是否存在点P 使得△PBC 是以P 为直角顶点的直角三角形?若存在,求出点P 运动的时间t 的值,若不存在,请说明理由. (4)若动点P 在x 轴上,动点Q 在射线AC 上,同时从A 点出发,点P 沿x 轴正方向以每秒2个单位的速度运动,点Q 以每秒a 个单位的速度沿射线AC 运动,是否存在以A 、P 、Q 为顶点的三角形与△ABD 相似,若存在,求a 的值,若不存在,说明理由.【答案】△y =12x 2−32x +1;(2)92;(3)t =1或3;(4)a =23√5或65√5【解析】(1)将B (0,1),D (1,0)的坐标代入y=12x 2+bx+c , 得:{c =1b +c +12=0,解得:{b =−32c =1故解析式y=12x 2−32x +1;(2)设C (x 0,y 0), 则有 {y 0=12x 0+1y 0=12x 02−32x 0+1 , 解得{x 0=4y 0=3, △C (4,3),由图可知:S=S △ACE -S △ABD ,又由对称轴为x=32可知E (2,0),△S=12AE•y 0-12AD×OB=12×4×3-12×3×1=92; (3)设符合条件的点P 存在,令P (t ,0): 当P 为直角顶点时,如图:过C 作CF△x 轴于F ;△Rt△BOP△Rt△PCF , △BOPF=OP CF ,即 14−t =t3, 整理得t 2-4t+3=0, 解得a=1或a=3; 故可得t=1或3.(4)存在符合条件的a 值,使△APQ 与△ABD 相似, △当△APQ△△ABD 时,AP AB=AQAD , 解得:a=6√55;△当△APQ△△ADB 时,AP AD=AQ AB , 解得:a=2√53,△存在符合条件的a 值,使△APQ 与△ABD 相似,a=6√55或2√53.4、已知,抛物线y =﹣x 2+bx +c 经过点A (﹣1,0)和C (0,3). (1)求抛物线的解析式;(2)在抛物线的对称轴上,是否存在点P ,使P A +PC 的值最小?如果存在,请求出点P 的坐标,如果不存在,请说明理由;(3)设点M 在抛物线的对称轴上,当△MAC 是直角三角形时,求点M 的坐标.【答案】(1)223y x x =-++;(2)当PA PC +的值最小时,点P 的坐标为()1,2;(3)点M 的坐标为()1,1、()1,2、81,3⎛⎫ ⎪⎝⎭或21,3⎛⎫- ⎪⎝⎭.【思路引导】()1由点A 、C 的坐标,利用待定系数法即可求出抛物线的解析式;()2连接BC 交抛物线对称轴于点P ,此时PA PC +取最小值,利用二次函数图象上点的坐标特征可求出点B 的坐标,由点B 、C 的坐标利用待定系数法即可求出直线BC 的解析式,利用配方法可求出抛物线的对称轴,再利用一次函数图象上点的坐标特征即可求出点P 的坐标;()3设点M 的坐标为()1,m ,则CM =,AC ==AM =AMC 90∠=、ACM 90∠=和CAM 90∠=三种情况,利用勾股定理可得出关于m 的一元二次方程或一元一次方程,解之可得出m 的值,进而即可得出点M 的坐标. 【解析】解:()1将()1,0A -、()0,3C 代入2y x bx c =-++中,得:{103b c c --+==,解得:{23b c ==,∴抛物线的解析式为223y x x =-++.()2连接BC 交抛物线对称轴于点P ,此时PA PC +取最小值,如图1所示.当0y =时,有2230x x -++=, 解得:11x =-,23x =,∴点B 的坐标为()3,0.抛物线的解析式为2223(1)4y x x x =-++=--+,∴抛物线的对称轴为直线1x =.设直线BC 的解析式为()0y kx d k =+≠, 将()3,0B 、()0,3C 代入y kx d =+中, 得:{303k d d +==,解得:{13k d =-=,∴直线BC 的解析式为3y x =-+.当1x =时,32y x =-+=,∴当PA PC +的值最小时,点P 的坐标为()1,2.()3设点M 的坐标为()1,m ,则CM =,AC ==AM =分三种情况考虑:①当90AMC ∠=时,有222AC AM CM =+,即22101(3)4m m =+-++,解得:11m =,22m =,∴点M 的坐标为()1,1或()1,2;②当90ACM ∠=时,有222AM AC CM =+,即224101(3)m m +=++-,解得:83m =, ∴点M 的坐标为81,3⎛⎫⎪⎝⎭;③当90CAM ∠=时,有222CM AM AC =+,即221(3)410m m +-=++,解得:23m =-, ∴点M 的坐标为21,.3⎛⎫- ⎪⎝⎭综上所述:当MAC 是直角三角形时,点M 的坐标为()1,1、()1,2、81,3⎛⎫⎪⎝⎭或21,.3⎛⎫- ⎪⎝⎭【方法总结】本题考查待定系数法求二次(一次)函数解析式、二次(一次)函数图象的点的坐标特征、轴对称中的最短路径问题以及勾股定理,解题的关键是:()1由点的坐标,利用待定系数法求出抛物线解析式;()2由两点之间线段最短结合抛物线的对称性找出点P 的位置;()3分AMC 90∠=、ACM 90∠=和CAM 90∠=三种情况,列出关于m 的方程.5、如图,动直线 y =kx+2(k >0)与 y 轴交于点 F ,与抛物线 y =14x 2+1 相交于A ,B 两点,过点 A ,B 分别作 x 轴的垂线,垂足分别为点 C ,D ,连接 CF ,DF ,请你判断△CDF 的形状,并说明理由.【答案】△CFD 是直角三角形.见解析。

二次函数的专题

二次函数的专题

二次函数综合题类型专题一:数学思想方法【例题1】数形结合思想:解不等式1032--x x <0。

【例题2】分类讨论思想:已知如图26—2所示,抛物线n x x y +--=52经过点()0,1A ,与y 轴交于点B 。

(1)求抛物线所对应的关系式。

(2)P 是y 轴正半轴上一点,且PAB ∆是以AB 为腰的等腰三角形,试求P 点坐标。

【例题3】联系转化法:求证:抛物线32++-=m x y 和直线()x m y 12+-=一定有两个交点。

专题二:二次函数的平移问题【例题】已知二次函数142+-=x x y ,将此抛物线沿x 轴方向向左平移4个单位长度,得到一条新的抛物线。

(1)求平移后的抛物线解析式。

(2)若直线m y =与这两条抛物线有且只有四个交点,求实数m 的取值范围。

(3)若将已知的抛物线解析式改为c bx ax y ++=2(a ﹥0,b ,0),并将此抛物线沿x 轴方向向左平ab -个单位,试探索问题(2)。

专题三:求二次函数的解析式【例题】已知抛物线()b x x a y ++-=812的图像的一部分如图26—4所示,抛物线的顶点在第一象限,且经过点()7,0-A 和点B 。

(1)求a 的取值范围。

(2)若OB OA 2=,求抛物线的解析式。

专题四:综合题【例题1】已知:如图26—11所示,直角梯形ABCD 中,AD ∥BC ,090=∠A ,=BC 10=CD ,54sin =C 。

(1)求梯形ABCD 的面积。

(2)点F E 、分别是CD BC 、上的点,点E 从点B 出发向点C 运动,点F 从点C 出发向点D 运动,若两点均以每秒1个单位的速度同时出发,联结EF 。

求EFC ∆面积的最大值,并说明此时F E 、的位置。

【课后练习】1、抛物线()2122-+-=x y 可由抛物线22x y -=向______平移______个单位,再向______平移_______个单位得到。

二次函数中的分类讨论思想

二次函数中的分类讨论思想

二次函数中的分类讨论思想一、二次项系数引起的分类讨论【例1】若函数f (x )=ax 2-x +a +1在(-∞,2)上单调递减,则a 的取值范围是( )A .(0,14]B .[2,+∞)C .[0,14]D .[0,12] 分析:此函数的二次项系数为参数a ,故需分a =0、a >0两种情况讨论。

【针对性练习1】若函数仅有一个零点,则实数的取值为 . 【针对性练习2】已知函数f (x )=ax 2-2ax +2+b (a ≠0),若f (x )在区间[2,3]上有最大值5,最小值2.若b <1,g (x )=f (x )-mx 在[2,4]上单调,求m 的取值范围.二、对称轴与给定区间引起的分类讨论【例2】已知函数322)(2+-=axx x f 在区间]1,1[-上有最小值,记作)(a g ,求)(a g 的函数表达式。

分析:函数)(x f 的图像开口方向向上,其对称轴为2a x =,含有参数,故需分12-≤a 、121<<-a 、12≥a 三种情况讨论。

【针对性练习1】已知函数0(55log )(>+-=a x x x f a且)1≠a ,设,若方程 三、判别式引起的分类讨论【例3】设二次函数f (x )=x 2-ax +b ,若F (x )=f (x )+2-a -a 2且f (1)=0,且|F (x )|在[0,1]上单调递增,求实数a 的取值范围.分析:认清谁是变量,谁是参数,然后转化为相应的二次函数问题,利用数形结合的思想方法求解.【针对性练习1】 函数f (x )=x 2+ax +3,当x ∈[-2,2]时,a x f ≥)(恒成立,求a 的取值范围。

三、构造二次函数讨论方程根的个数【例4】已知定义在R 上的函数52)(2+=-x x f ,若时,关于的方程有解,求的取值范围.x 结合二次函数的性质可求得的范围.5.函数)0(12log )(2>+=x x x x g ,关于方程032)()(2=+++m x g m x g 有三个不同实数解,则实数m 的取值范围为( )1)(2--=x ax x f a ()log (3)a g x x =-[]0,4x ∈x ()20x f x a -⋅=a []0,4x ∈a。

再议二次函数中的数学思想

再议二次函数中的数学思想

初中数学教学的思想方法浅议湖北省仙桃市西流河二中刘中树摘要:数学思想方法是数学的精髓,在初中数学新课程标准中已把它列入基础知识的范畴.数学思想方法是学生获取知识、解决问题、建立合理而又迅速的思维结构的有效工具,是把数学知识、技能转化为数学能力的纽带.突出数学思想方法教学,是当代数学教育的必然要求也是数学素质教育的重要体现.关键词:数学思想数形结合图形变换分类讨论数学建模化归思想思想是指人们对数学理论和内容的本质的认识,是数学思想的具体化形式,实际上两者的本质是相同的,差别只是站在不同的角度看问题。

通常混称为“数学思想方法”。

常见的数学四大思想为:函数与、转化与化归、分类讨论、。

所谓数学思想,就是对数学知识和方法的本质认识,是对数学规律的理性认识.数学思想是数学的灵魂,是数学知识在更高层次上的抽象和概括,在数学教学中应对数学思想进行有效的渗透;所谓思想方法,就是客观存在反映在人的意识中经过思维活动而产生的结果,它是从大量的思维活动中获得的产物,经过反复提炼和实践,证明为正确、可以反复被应用到新的思维活动中,并产生出新的结果。

或者说思想方法就是那些颠扑不破思维产物。

所谓数学思想方法,就是指现实世界的空间形式和数量关系反映到人的意识中,经过思维活动而产生的结果,它是对数学事实与数学理论(概念、定理、公式、法则等)的本质认识。

是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用的来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用的方程来精确地阐明曲线的性质。

先生说过:“数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休。

在数学教学中,由数想形,以形助数的数形结合思想,具有可以使问题直观呈现的优点,有利于加深学生对知识的识记和理解;在解答数学题时,数形结合,有利于学生分析题中数量之间的关系,丰富表象,引发联想,启迪思维,拓宽思路,迅速找到解决问题的方法,从而提高分析问题和解决问题的能力.抓住数形结合思想教学,不仅能够提高学生数形转化能力,还可以提高学生迁移思维能力.等价转化是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的思想方法。

含参数二次函数分类讨论的方法总结

含参数二次函数分类讨论的方法总结

含参数二次函数分类讨论的方法总结二次函数求最值参数分类讨论的方法分类讨论是数学中重要的思想方法和解题策略。

它是根据研究对象的本质属性的相同点和不同点,将对象分为不同种类然后逐类解决问题。

对于二次函数y=a(x-m)+n,x∈[t,s]求最值的问题,解决此类问题的基本思路为:根据对称轴相对定义域区间的位置,利用分类讨论思想方法。

为做到分类时不重不漏,可画对称轴相对于定义域区间的简图分类。

分类图如下:t+s/2为对称轴,①表示对称轴在区间[t,s]的左侧,②表示对称轴在区间[t,s]内且靠近区间的左端点,③表示对称轴在区间内且靠近区间的右端点,④表示对称轴在区间[t,s]的右侧。

然后,再根据口诀“开口向上,近则小、远则大”;“开口向下,近则大、远则小”即可快速求出最值。

含参数的二次函数求最值的问题大致分为三种题型,无论哪种题型都围绕着对称轴与定义域区间的位置关系进行分类讨论。

题型一:“动轴定区间”型的二次函数最值。

例如,求函数f(x)=x-2ax+3在x∈[0,4]上的最值。

先配方,再根据对称轴相对于区间的位置讨论,然后根据口诀写出最值。

解:f(x)=x-2ax+3=(x-a)+3-a,此函数图像开口向上,对称轴x=a。

①、当a<0时,距对称轴x=a最近,4距对称轴x=a最远,∴x=0时,ymin=3,x=4时,ymax=19-8a。

②、当0≤a<2时,a距对称轴x=a最近,4距对称轴x=a 最远,∴x=a时,ymin=3-a2,x=4时,ymax=19-8a。

③、当2≤a<4时,a距对称轴x=a最近,距对称轴x=a最远,∴x=a时,ymin=3-a2,x=0时,ymax=3.④、当4≤a时,4距对称轴x=a最近,距对称轴x=a最远,∴x=4时,ymin=19-8a,x=0时,ymax=3.题型二:“区间定动轴”型的二次函数最值。

例如,已知函数f(x)=ax^2+(1-2a)x-3在[0,1]上最小值为-2,求实数a的值。

二次函数含参数分类讨论综合问题(函数)-全国各地2019中考数学压轴题函数大题题型分类汇编(解析版)

二次函数含参数分类讨论综合问题(函数)-全国各地2019中考数学压轴题函数大题题型分类汇编(解析版)

2019全国各地中考数学压轴大题函数综合八、二次函数含参数分类讨论综合问题1.(2019•宁波)如图,已知二次函数y=x2+ax+3的图象经过点P(﹣2,3).(1)求a的值和图象的顶点坐标.(2)点Q(m,n)在该二次函数图象上.①当m=2时,求n的值;②若点Q到y轴的距离小于2,请根据图象直接写出n的取值范围.解:(1)把点P(﹣2,3)代入y=x2+ax+3中,∴a=2,∴y=x2+2x+3,∴顶点坐标为(﹣1,2);(2)①当m=2时,n=11,②点Q到y轴的距离小于2,∴|m|<2,∴﹣2<m<2,∴2≤n<11;2.(2019•杭州)设二次函数y=(x﹣x1)(x﹣x2)(x1,x2是实数).(1)甲求得当x=0时,y=0;当x=1时,y=0;乙求得当x=时,y=﹣.若甲求得的结果都正确,你认为乙求得的结果正确吗?说明理由.(2)写出二次函数图象的对称轴,并求该函数的最小值(用含x1,x2的代数式表示).(3)已知二次函数的图象经过(0,m)和(1,n)两点(m,n是实数),当0<x1<x2<1时,求证:0<mn<.解:(1)当x=0时,y=0;当x=1时,y=0;∴二次函数经过点(0,0),(1,0),∴x1=0,x2=1,∴y═x(x﹣1)=x2﹣x,当x=时,y=﹣,∴乙说点的不对;(2)对称轴为x=,当x=时,y=﹣是函数的最小值;(3)二次函数的图象经过(0,m)和(1,n)两点,∴m=x1x2,n=1﹣x1﹣x2+x1x2,∴mn=[﹣][﹣]∵0<x1<x2<1,∴0≤﹣≤,0≤﹣≤,∴0<mn<.3.(2019•温州)如图,在平面直角坐标系中,二次函数y=﹣x2+2x+6的图象交x轴于点A,B(点A在点B的左侧)(1)求点A,B的坐标,并根据该函数图象写出y≥0时x的取值范围.(2)把点B向上平移m个单位得点B1.若点B1向左平移n个单位,将与该二次函数图象上的点B2重合;若点B1向左平移(n+6)个单位,将与该二次函数图象上的点B3重合.已知m>0,n>0,求m,n 的值.解:(1)令y=0,则﹣,解得,x1=﹣2,x2=6,∴A(﹣2,0),B(6,0),由函数图象得,当y≥0时,﹣2≤x≤6;(2)由题意得,B1(6,m),B2(6﹣n,m),B3(﹣n,m),函数图象的对称轴为直线,∵点B2,B3在二次函数图象上且纵坐标相同,∴,∴n=1,∴,∴m,n的值分别为,1.4.(2019•台州)已知函数y=x2+bx+c(b,c为常数)的图象经过点(﹣2,4).(1)求b,c满足的关系式;(2)设该函数图象的顶点坐标是(m,n),当b的值变化时,求n关于m的函数解析式;(3)若该函数的图象不经过第三象限,当﹣5≤x≤1时,函数的最大值与最小值之差为16,求b的值.解:(1)将点(﹣2,4)代入y=x2+bx+c,得﹣2b+c=0,∴c=2b;(2)m=﹣,n=,∴n=,∴n=2b﹣m2,(3)y=x2+bx+2b=(x+)2﹣+2b,对称轴x=﹣,当b≤0时,c≤0,函数不经过第三象限,则c=0;此时y=x2,当﹣5≤x≤1时,函数最小值是0,最大值是25,∴最大值与最小值之差为25;(舍去)当b>0时,c>0,函数不经过第三象限,则△≤0,∴0≤b≤8,∴﹣4≤x=﹣≤0,当﹣5≤x≤1时,函数有最小值﹣+2b,当﹣5≤﹣<﹣2时,函数有最大值1+3b,当﹣2<﹣≤1时,函数有最大值25﹣3b;函数的最大值与最小值之差为16,当最大值1+3b时,1+3b+﹣2b=16,∴b=6或b=﹣10,∵4≤b≤8,∴b=6;当最大值25﹣3b时,25﹣3b+﹣2b=16,∴b=2或b=18,∵2≤b≤4,∴b=2;综上所述b=2或b=6;5.(2019•天门)在平面直角坐标系中,已知抛物线C:y=ax2+2x﹣1(a≠0)和直线l:y=kx+b,点A(﹣3,﹣3),B(1,﹣1)均在直线l上.(1)若抛物线C与直线l有交点,求a的取值范围;(2)当a=﹣1,二次函数y=ax2+2x﹣1的自变量x满足m≤x≤m+2时,函数y的最大值为﹣4,求m的值;(3)若抛物线C与线段AB有两个不同的交点,请直接写出a的取值范围.解:(1)点A(﹣3,﹣3),B(1,﹣1)代入y=kx+b,∴,∴,∴y=x﹣;联立y=ax2+2x﹣1与y=x﹣,则有2ax2+3x+1=0,∵抛物线C与直线l有交点,∴△=9﹣8a≥0,∴a≤且a≠0;(2)根据题意可得,y=﹣x2+2x﹣1,∵a<0,∴抛物线开口向下,对称轴x=1,∵m≤x≤m+2时,y有最大值﹣4,∴当y=﹣4时,有﹣x2+2x﹣1=﹣4,∴x=﹣1或x=3,①在x=1左侧,y随x的增大而增大,∴x=m+2=﹣1时,y有最大值﹣4,∴m=﹣3;②在对称轴x=1右侧,y随x最大而减小,∴x=m=3时,y有最大值﹣4;综上所述:m=﹣3或m=3;(3)①a<0时,x=1时,y≤﹣1,即a≤﹣2;②a>0时,x=﹣3时,y≥﹣3,即a≥,直线AB的解析式为y=x﹣,抛物线与直线联立:ax2+2x﹣1=x﹣,∴ax2+x+=0,△=﹣2a>0,∴a<,∴a的取值范围为≤a<或a≤﹣2;6.(2019•大连)把函数C1:y=ax2﹣2ax﹣3a(a≠0)的图象绕点P(m,0)旋转180°,得到新函数C2的图象,我们称C2是C1关于点P的相关函数.C2的图象的对称轴与x轴交点坐标为(t,0).(1)填空:t的值为2m﹣1(用含m的代数式表示)(2)若a=﹣1,当≤x≤t时,函数C1的最大值为y1,最小值为y2,且y1﹣y2=1,求C2的解析式;(3)当m=0时,C2的图象与x轴相交于A,B两点(点A在点B的右侧).与y轴相交于点D.把线段AD原点O逆时针旋转90°,得到它的对应线段A′D′,若线A′D′与C2的图象有公共点,结合函数图象,求a的取值范围.解:(1)C1:y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,顶点(1,﹣4a)围绕点P(m,0)旋转180°的对称点为(2m﹣1,4a),C2:y=﹣a(x﹣2m+1)2+4a,函数的对称轴为:x=2m﹣1,t=2m﹣1,故答案为:2m﹣1;(2)a=﹣1时,C1:y=﹣(x﹣1)2+4,①当t<1时,x=时,有最小值y2=,x=t时,有最大值y1=﹣(t﹣1)2+4,则y1﹣y2=﹣(t﹣1)2+4﹣=1,无解;②1≤t时,x=1时,有最大值y1=4,x=时,有最小值y2=﹣(t﹣1)2+4,y1﹣y2=≠1(舍去);③当t时,x=1时,有最大值y1=4,x=t时,有最小值y2=﹣(t﹣1)2+4,y1﹣y2=(t﹣1)2=1,解得:t=0或2(舍去0),故C2:y=(x﹣2)2﹣4=x2﹣4x;(3)m=0,C2:y=﹣a(x+1)2+4a,点A、B、D、A′、D′的坐标分别为(1,0)、(﹣3,0)、(0,3a)、(0,1)、(﹣3a,0),当a>0时,a越大,则OD越大,则点D′越靠左,当C2过点A′时,y=﹣a(0+1)2+4a=1,解得:a=,当C2过点D′时,同理可得:a=1,故:0<a或a≥1;当a<0时,当C2过点D′时,﹣3a=1,解得:a=﹣,故:a≤﹣;综上,故:0<a或a≥1或a≤﹣.7.(2019•贵阳)如图,二次函数y=x2+bx+c的图象与x轴交于A,B两点,与y轴交于点C,且关于直线x=1对称,点A的坐标为(﹣1,0).(1)求二次函数的表达式;(2)连接BC,若点P在y轴上时,BP和BC的夹角为15°,求线段CP的长度;(3)当a≤x≤a+1时,二次函数y=x2+bx+c的最小值为2a,求a的值.解:(1)∵点A(﹣1,0)与点B关于直线x=1对称,∴点B的坐标为(3,0),代入y=x2+bx+c,得:,解得,所以二次函数的表达式为y=x2﹣2x﹣3;(2)如图所示:由抛物线解析式知C(0,﹣3),则OB=OC=3,∴∠OBC=45°,若点P在点C上方,则∠OBP=∠OBC﹣∠PBC=30°,∴OP=OB tan∠OBP=3,∴CP=3;若点P在点C下方,则∠OBP′=∠OBC+∠P′BC=60°,∴OP′=OB tan∠OBP′=33,∴CP=33;综上,CP的长为3或33;(3)若a+1<1,即a<0,则函数的最小值为(a+1)2﹣2(a+1)﹣3=2a,解得a=1(正值舍去);若a<1<a+1,即0<a<1,则函数的最小值为1﹣2﹣3=2a,解得:a=﹣2(舍去);若a>1,则函数的最小值为a2﹣2a﹣3=2a,解得a=2(负值舍去);综上,a的值为1或2.8.(2019•天津)已知抛物线y=x2﹣bx+c(b,c为常数,b>0)经过点A(﹣1,0),点M(m,0)是x轴正半轴上的动点.(Ⅰ)当b=2时,求抛物线的顶点坐标;(Ⅱ)点D(b,y D)在抛物线上,当AM=AD,m=5时,求b的值;(Ⅲ)点Q(b+,y Q)在抛物线上,当AM+2QM的最小值为时,求b的值.解:(Ⅰ)∵抛物线y=x2﹣bx+c经过点A(﹣1,0),∴1+b+c=0,即c=﹣b﹣1,当b=2时,y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点坐标为(1,﹣4);(Ⅱ)由(Ⅰ)知,抛物线的解析式为y=x2﹣bx﹣b﹣1,∵点D(b,y D)在抛物线y=x2﹣bx﹣b﹣1上,∴y D=b2﹣b•b﹣b﹣1=﹣b﹣1,由b>0,得b>>0,﹣b﹣1<0,∴点D(b,﹣b﹣1)在第四象限,且在抛物线对称轴x=的右侧,如图1,过点D作DE⊥x轴,垂足为E,则点E(b,0),∴AE=b+1,DE=b+1,得AE=DE,∴在Rt△ADE中,∠ADE=∠DAE=45°,∴AD=AE,由已知AM=AD,m=5,∴5﹣(﹣1)=(b+1),∴b=3﹣1;(Ⅲ)∵点Q(b+,y Q)在抛物线y=x2﹣bx﹣b﹣1上,∴y Q=(b+)2﹣b(b+)﹣b﹣1=﹣﹣,可知点Q(b+,﹣﹣)在第四象限,且在直线x=b的右侧,∵AM+2QM=2(AM+QM),∴可取点N(0,1),如图2,过点Q作直线AN的垂线,垂足为G,QG与x轴相交于点M,由∠GAM=45°,得AM=GM,则此时点M满足题意,过点Q作QH⊥x轴于点H,则点H(b+,0),在Rt△MQH中,可知∠QMH=∠MQH=45°,∴QH=MH,QM=MH,∵点M(m,0),∴0﹣(﹣﹣)=(b+)﹣m,解得,m=﹣,∵AM+2QM =,∴[(﹣)﹣(﹣1)]+2[(b +)﹣(﹣)]=,∴b=4.。

高中数学二次函数的讲解(学习复习参考)课件

高中数学二次函数的讲解(学习复习参考)课件
2
由题 kf (1) 0, k (2k 2 3k 2) 0, ( k k 4)>0即 k 0或k 4.
(2) 已知二次方程 (m 2) x2 mx (2m 1) 0 的两根 分别属于( 1, 0)和(, 1 2)求 m 的取值范围.
f (-1)f (0) 0 (2m 1)(2m 1) 0 解:由题 f (1)f (2) 0 (4m 1)(8m 7) 0 1 1 m 1 1 2 2 m 4 2 1 m 7 8 4
m
h k
m
h k
例5: 已知函数y=x2+2x-3 且x [-2,2],
求函数的最值?
例6:已知函数y=-x2-2x+3且x[0,2],
求函数的最值?
二、含参变量的二次函数最值问题 1、轴动区间定 2、轴定区间动 例7:求函数y=x2+2ax+3在x[-2,2]时的 最值?
-a




1 二次方程有两异号实数根的充要条件是x1 x2
c 0; a
0 b 2 有 两正 实数根的充要条件是 x x 0; 1 2 a c x1 x2 0 a 0 b 3 有 两负 实数根的 充要条件是 x x 0. 1 2 a c x1 x2 0 a
3.实根分布问题
★一元二次方程
ax2 bx c 0(a 0)
(1)、当x为全体实数时的根
(1)当 b 2 4ac 0时, 方程有两个不相等的实数根
(2)当 b 2 4ac 0时, 方程有两个相等的实数根 2 (3)当 b 4ac 0时, 方程没有实数根

二次函数(含答案)

二次函数(含答案)

二次函数一、 知识梳理1.二次函数解析式的三种形式①一般式:f (x )=ax 2+bx +c (a ≠0). ②顶点式:f (x )=a (x -m )2+n (a ≠0). ③零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0).2. 二次函数的图象和性质解析式f (x )=ax 2+bx +c (a >0) f (x )=ax 2+bx +c (a <0)图象定义域 (-∞,+∞)(-∞,+∞)值域⎣⎢⎡⎭⎪⎫4ac -b 24a ,+∞ ⎝⎛⎦⎥⎤-∞,4ac -b 24a单调性在x ∈⎝ ⎛⎦⎥⎤-∞,-b 2a 上单调递减;在x ∈⎣⎢⎡⎭⎪⎫-b2a ,+∞上单调递增在x ∈⎝ ⎛⎦⎥⎤-∞,-b 2a 上单调递增;在x ∈⎣⎢⎡⎭⎪⎫-b2a ,+∞上单调递减对称性函数的图象关于x =-b2a对称 3. 思考辨析判断下面结论是否正确(请在括号中打“√”或“×”)(1)二次函数y =ax 2+bx +c ,x ∈[a ,b ]的最值一定是4ac -b 24a.( × ) (2)二次函数y =ax 2+bx +c ,x ∈R ,不可能是偶函数.( × ) (3)幂函数的图象都经过点(1,1)和点(0,0).( × ) (4)当n >0时,幂函数y =x n 是定义域上的增函数.( × )(5)若函数f (x )=(k 2-1)x 2+2x -3在(-∞,2)上单调递增,则k =±22.( × )(6)已知f (x )=x 2-4x +5,x ∈[0,3),则f (x )max =f (0)=5,f (x )min =f (3)=2.( × )二、 基础自测1.设b >0,二次函数y =ax 2+bx +a 2-1的图象为下列之一,则a 的值为( )A.-1-52B.-1+52C .1D .-1答案 D解析 因为b >0,故对称轴不可能为y 轴,由给出的图可知对称轴在y 轴右侧,故a <0,所以二次函数的图象为第三个图,图象过原点,故a 2-1=0,a =±1,又a <0,所以a =-1,故选D.2. 已知函数y =x 2-2x +3在闭区间[0,m ]上有最大值3,最小值2,则m 的取值范围为________. 答案 [1,2]解析 y =x 2-2x +3的对称轴为x =1.当m <1时,y =f (x )在[0,m ]上为减函数. ∴y max =f (0)=3,y min =f (m )=m 2-2m +3=2. ∴m =1与m <1矛盾,舍去.当1≤m ≤2时,y min =f (1)=12-2×1+3=2,y max =f (0)=3.当m >2时,y max =f (m )=m 2-2m +3=3,∴m =0或m =2,与m >2矛盾,舍去. 综上所述,1≤m ≤2.3. (2014·)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________. 答案 (-22,0) 解析 作出二次函数f (x )的草图,对于任意x ∈[m ,m +1],都有f (x )<0,则有⎩⎪⎨⎪⎧f (m )<0,f (m +1)<0,即⎩⎪⎨⎪⎧m 2+m 2-1<0,(m +1)2+m (m +1)-1<0,解得-22<m <0.三、 典型例题题型一 二次函数的图象和性质例1 已知函数f (x )=x 2+2ax +3,x ∈[-4,6]. (1)当a =-2时,求f (x )的最值;(2)求实数a 的取值范围,使y =f (x )在区间[-4,6]上是单调函数; (3)当a =1时,求f (|x |)的单调区间.解 (1)当a =-2时,f (x )=x 2-4x +3=(x -2)2-1,由于x ∈[-4,6], ∴f (x )在[-4,2]上单调递减,在[2,6]上单调递增,∴f (x )的最小值是f (2)=-1,又f (-4)=35,f (6)=15,故f (x )的最大值是35.(2)由于函数f (x )的图象开口向上,对称轴是x =-a ,所以要使f (x )在[-4,6]上是单调函数,应有-a ≤-4或-a ≥6,即a ≤-6或a ≥4. (3)当a =1时,f (x )=x 2+2x +3,∴f (|x |)=x 2+2|x |+3,此时定义域为x ∈[-6,6],且f (x )=⎩⎪⎨⎪⎧x 2+2x +3,x ∈(0,6],x 2-2x +3,x ∈[-6,0],∴f (|x |)的单调递增区间是(0,6], 单调递减区间是[-6,0].【思维升华】 (1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解决的关键都是考查对称轴与区间的关系,当含有参数时,要依据对称轴与区间的关系进行分类讨论;(2)二次函数的单调性问题则主要依据二次函数图象的对称轴进行分析讨论求解. 变式1 求函数在[0,2]上的值域.变式2 (1)已知函数在区间上有最小值3,求.(2)已知二次函数,若在上的最小值为,求的表达式.变式3 (1)如果函数f (x )=x 2+(a +2)x +b (x ∈[a ,b ])的图象关于直线x =1对称,则函数f (x )的最小值为________.(2)若函数f (x )=2x 2+mx -1在区间[-1,+∞)上递增,则f (-1)的取值范围是________. 答案 (1)5 (2)(-∞,-3] 解析 (1)由题意知⎩⎪⎨⎪⎧-a +22=1,a +b =2,得⎩⎪⎨⎪⎧a =-4,b =6. 则f (x )=x 2-2x +6=(x -1)2+5≥5. (2)∵抛物线开口向上,对称轴为x =-m 4, ∴-m4≤-1,∴m ≥4.又f (-1)=1-m ≤-3,∴f (-1)∈(-∞,-3].题型二 二次函数的应用例2 已知函数f (x )=ax 2+bx +1(a ,b ∈R ),x ∈R .(1)若函数f (x )的最小值为f (-1)=0,求f (x )的解析式,并写出单调区间; (2)在(1)的条件下,f (x )>x +k 在区间[-3,-1]上恒成立,试求k 的范围. 解 (1)由题意得f (-1)=a -b +1=0,a ≠0, 且-b2a =-1,∴a =1,b =2.∴f (x )=x 2+2x +1,单调减区间为(-∞,-1], 单调增区间为[-1,+∞).(2)f (x )>x +k 在区间[-3,-1]上恒成立,转化为x 2+x +1>k 在区间[-3,-1]上恒成立. 设g (x )=x 2+x +1,x ∈[-3,-1],则g (x )在[-3,-1]上递减. ∴g (x )min =g (-1)=1.∴k <1,即k 的取值范围为(-∞,1).【思维升华】 有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.用函数思想研究方程、不等式(尤其是恒成立)问题是高考命题的热点. 变式 已知函数f (x )=x 2+2ax +2,x ∈[-5,5]. (1)当a =-1时,求函数f (x )的最大值和最小值;(2)求实数a 的取值范围,使y =f (x )在区间[-5,5]上是单调函数. 解 (1)当a =-1时,f (x )=x 2-2x +2=(x -1)2+1,x ∈[-5,5], 所以当x =1时,f (x )取得最小值1; 当x =-5时,f (x )取得最大值37.(2)函数f (x )=(x +a )2+2-a 2的图象的对称轴为直线x =-a , 因为y =f (x )在区间[-5,5]上是单调函数, 所以-a ≤-5或-a ≥5,即a ≤-5或a ≥5. 故a 的取值范围是(-∞,-5]∪[5,+∞).分类讨论思想在二次函数最值中的应用例3 已知f (x )=ax 2-2x (0≤x ≤1),求f (x )的最小值.【思维点拨】 参数a 的值确定f (x )图象的形状;a ≠0时,函数f (x )的图象为抛物线,还要考虑开口方向和对称轴位置.解 (1)当a =0时,f (x )=-2x 在[0,1]上递减, ∴f (x )min =f (1)=-2.[2分] (2)当a >0时,f (x )=ax 2-2x 图象的开口方向向上,且对称轴为x =1a.①当1a ≤1,即a ≥1时,f (x )=ax 2-2x 图象的对称轴在[0,1],∴f (x )在[0,1a ]上递减,在[1a ,1]上递增.∴f (x )min =f (1a )=1a -2a =-1a.[6分]②当1a >1,即0<a <1时,f (x )=ax 2-2x 图象的对称轴在[0,1]的右侧,∴f (x )在[0,1]上递减. ∴f (x )min =f (1)=a -2.[9分](3)当a <0时,f (x )=ax 2-2x 的图象的开口方向向下, 且对称轴x =1a <0,在y 轴的左侧,∴f (x )=ax 2-2x 在[0,1]上递减. ∴f (x )min =f (1)=a -2.[11分]综上所述,f (x )min =⎩⎪⎨⎪⎧a -2, a <1,-1a, a ≥1.【提示】 (1)本题在求二次函数最值时,用到了分类讨论思想,求解中既对系数a 的符号进行了讨论,又对对称轴进行讨论.在分类讨论时要遵循分类的原则:一是分类的标准要一致,二是分类时要做到不重不漏,三是能不分类的要尽量避免分类,绝不无原则的分类讨论. (2)在有关二次函数最值的求解中,若轴定区间动,仍应对区间进行分类讨论. 变式 求f (x )=x 2-2ax -1在区间[0,2]上的最大值和最小值.解: f (x )=(x -a )2-1-a 2,对称轴为x =a .(1) 当a <0时,由图①可知,f (x )min =f (0)=-1,f (x )max =f (2)=3-4a(2)当0≤a1时,由图②可知,f(x)min=f(a)=-1-a2,f(x)max=f(2)=3-4a.(3)当1<a≤2时,由图③可知,f(x)min=f(a)=-1-a2,f(x)max=f(0)=-1(4)当a>2时,由图④可知,f(x)min=f(2)=3-4a,f(x)max=f(0)=-1.综上,(1)当a<0时,f(x)min=-1,f(x)max=3-4a;(2)当0≤a1时,f(x)min=-1-a2,f(x)max=3-4a;(3)当1<a≤2时,f(x)min=-1-a2,f(x)max=-1;(4)当a>2时,f(x)min=3-4a,f(x)max=-1【课堂总结】方法与技巧1.二次函数的三种形式(1)已知三个点的坐标时,宜用一般式.(2)已知二次函数的顶点坐标或与对称轴有关或与最大(小)值有关的量时,常使用顶点式.(3)已知二次函数与x轴有两个交点,且横坐标已知时,选用零点式求f(x)更方便.2.二次函数、二次方程、二次不等式间相互转化的一般规律(1)在研究一元二次方程根的分布问题时,常借助于二次函数的图象数形结合来解,一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.(2)在研究一元二次不等式的有关问题时,一般需借助于二次函数的图象、性质求解【失误与防范】1.对于函数y=ax2+bx+c,要认为它是二次函数,就必须满足a≠0,当题目条件中未说明a≠0时,就要讨论a=0和a≠0两种情况.2.幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限,至于是否出现在第二、三象限内,要看函数的奇偶性;幂函数的图象最多能同时出现在两个象限内;如果幂函数图象与坐标轴相交,则交点一定是原点.专项训练(A组)1.如果函数f(x)=x2-ax-3在区间(-∞,4]上单调递减,则实数a满足的条件是() A.a≥8 B.a≤8C.a≥4 D.a≥-4答案 A解析 函数图象的对称轴为x =a 2,由题意得a2≥4,解得a ≥8.2.一次函数y =ax +b 与二次函数y =ax 2+bx +c 在同一坐标系中的图象可能是( ) 答案 C解析若a >0,则一次函数y =ax +b 为增函数,二次函数y =ax 2+bx +c 的开口向上,故可排除A ;若a <0,一次函数y =ax +b 为减函数,二次函数y =ax 2+bx +c 开口向下,故可排除D ; 对于选项B ,看直线可知a >0,b >0,从而-b2a <0,而二次函数的对称轴在y 轴的右侧,故应排除B ,因此选C.3.若函数f (x )=x 2-ax -a 在区间[0,2]上的最大值为1,则实数a 等于( ) A .-1 B .1 C .2 D .-2答案 B解析 ∵函数f (x )=x 2-ax -a 的图象为开口向上的抛物线, ∴函数的最大值在区间的端点取得. ∵f (0)=-a ,f (2)=4-3a ,∴⎩⎪⎨⎪⎧ -a ≥4-3a ,-a =1,或⎩⎪⎨⎪⎧-a ≤4-3a ,4-3a =1,解得a =1. 4. 对于任意实数x ,函数f (x )=(5-a )x 2-6x +a +5恒为正值,则a 的取值范围是________. 答案 (-4,4)解析 由题意得⎩⎪⎨⎪⎧5-a >0,36-4(5-a )(a +5)<0,解得-4<a <4.5. 设函数y =x 2-2x ,x ∈[-2,a ],求函数的最小值g (a ). 解 ∵函数y =x 2-2x =(x -1)2-1.∴对称轴为直线x =1,而x =1不一定在区间[-2,a ],应进行讨论. 当-2<a <1时,函数在[-2,a ]上单调递减. 则当x =a 时,y min =a 2-2a ;当a ≥1时,函数在[-2,1]上单调递减,在[1,a ]上单调递增,则当x =1时,y min =-1.综上,g (a )=⎩⎪⎨⎪⎧a 2-2a , -2<a <1,-1, a ≥1.6. 已知二次函数f (x )的二次项系数为a ,且不等式f (x )>-2x 的解集为(1,3).若方程f (x )+6a =0有两个相等的根,求f (x )的单调区间.解 ∵f (x )+2x >0的解集为(1,3), 设f (x )+2x =a (x -1)(x -3),且a <0, ∴f (x )=a (x -1)(x -3)-2x =ax 2-(2+4a )x +3a .① 由方程f (x )+6a =0得ax 2-(2+4a )x +9a =0.②∵方程②有两个相等的根, ∴Δ=[-(2+4a )]2-4a ·9a =0, 解得a =1或a =-15.由于a <0,舍去a =1.将a =-15代入①式得 f (x )=-15x 2-65x -35=-15(x +3)2+65,∴函数f (x )的单调增区间是(-∞,-3],单调减区间是[-3,+∞).专项训练(B 组)7.设二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,且f (m )≤f (0),则实数m 的取值范围是( ) A .(-∞,0]B .[2,+∞)C .(-∞,0]∪[2,+∞)D .[0,2]答案 D解析 二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,则a ≠0,f ′(x )=2a (x -1)<0,x ∈[0,1],所以a >0,即函数的图象开口向上,又因为对称轴是直线x =1. 所以f (0)=f (2),则当f (m )≤f (0)时,有0≤m ≤2.8. 对于实数a 和b ,定义运算“*”:a *b =⎩⎪⎨⎪⎧a 2-ab , a ≤b ,b 2-ab , a >b .设f (x )=(2x -1)*(x -1),且关于x 的方程f (x )=m (m ∈R )恰有三个互不相等的实数根x 1,x 2,x 3,则m 的取值范围是________. 答案 (0,14)解析 由题意得f (x )=(2x -1)*(x -1)=⎩⎪⎨⎪⎧(2x -1)2-(2x -1)(x -1), x ≤0,(x -1)2-(2x -1)(x -1), x >0.即222,0(),0x x x f x x x x ⎧-≤⎪=⎨-+>⎪⎩如图所示,关于x 的方程f (x )=m 恰有三个互不相等的实数根x 1,x 2,x 3,即函数f (x )的图象与直线y =m 有三个不同的交点,则0<m <14.9. 已知函数f (x )=ax 2+bx +c (a >0,b ∈R ,c ∈R ).(1)若函数f (x )的最小值是f (-1)=0,且c =1,F (x )=⎩⎪⎨⎪⎧f (x ),x >0,-f (x ),x <0,求F (2)+F (-2)的值;(2)若a =1,c =0,且|f (x )|≤1在区间(0,1]上恒成立,试求b 的取值范围.解 (1)由已知c =1,a -b +c =0,且-b2a=-1,解得a =1,b =2. ∴f (x ) =(x +1)2.∴F (x )=⎩⎪⎨⎪⎧(x +1)2,x >0,-(x +1)2,x <0.∴F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8. (2)f (x )=x 2+bx ,原命题等价于-1≤x 2+bx ≤1在(0,1]上恒成立, 即b ≤1x -x 且b ≥-1x-x 在(0,1]上恒成立.又x ∈(0,1]时,1x -x 的最小值为0,-1x -x 的最大值为-2.∴-2≤b ≤0. 故b 的取值范围是[-2,0].10.设函数f (x )=ax 2+bx +c (a ,b ,c ∈R ),若a =c ,则函数f (x )的图象不可能是( )答案 D解析 由A ,B ,C ,D 四个选项知,图象与x 轴均有交点,记两个交点的横坐标分别为x 1,x 2,若只有一个交点,则x 1=x 2.因为a =c ,所以x 1x 2=ca =1,比较四个选项,可知选项D的x 1<-1,x 2<-1,所以D 不满足.。

基于分类讨论思想研究二次函数与等腰三角形结合问题的解决策略

基于分类讨论思想研究二次函数与等腰三角形结合问题的解决策略

基于分类讨论思想研究二次函数与等腰三角形结合问题的解决策略摘要:就当前来说,二次函数动点提问已经成为了每个学生学习过程中十分强烈的拦路虎,往往发生在选项题、填空题、回答问题中的最后一题上,也成了考试与数学考试区别不同层次学习者的主要方式。

对于有效处理中学数学二次函数与等腰三角形组合提问策略的研究方法非常多,本章将从分析讨论思路入手,以二次函数与等腰三角形组合的数学题为例,把看似复杂的动态提问层层分析,并逐步减轻了其复杂度,将其变成常见的数学题目,并最终帮助他们建立克服困难的勇气。

关键词:分类讨论;中学数学;二次函数引言:现代数学基础知识主要可分为二大类:一种是代数,其典型代表知识点是函数;另一类则是几何学,其中三角是在中学阶段掌握的基础图形之一。

函数问题与三角形的结合是常见的问题,主要考查学生对二次函数及三角形的基本性质是否熟练掌握,属于综合性较强的问题。

分类讨论思维,在数学领域是十分重要的数学思维方式,是中学数学中最基本的思维方式一种,更是历年考试的重心。

学会了掌握它就可以增强分析问题和解决问题的能力。

一、应用分类讨论思想的重要性及讨论原因1、分类讨论思想的重要性分析针对中国当前的教学改革形势,对中学的数学教学模式也将产生诸多的深远影响。

中学数学是对学生学习的主要学科,数学课程也是对学生思维能力训练的主要课题。

在初中学阶段也是对学生学习的黄金期,学生在这一阶段对新奇的事情更加好奇,在教育过程中,老师必须能全面的关注学生这一特点。

实际在数学专业教育过程中,学校应该可以采用多种多样的教学方式进行实际应用,以提高学生的读书自主积极性。

数学的理解与教学中,往往会出现分类探讨的问题,这对学生的更多思维能力的训练具有意义。

同时分类探讨也是数学解题中最主要的思维方式,对学生处理实际问题也具有促进意义。

而学生往往在解题过程中,并不知怎样分类探讨,于是这就要求老师可以通过与课本内容以及学生实际的学习状况相结合,进行创造情境并对方法的运用加以强调,从而激发和引导学生对分类探讨的解题思路进行更灵活多样的运用,使分类探讨的思维与实质都能进行更全面的展现[1]。

第二部分第3讲 分类讨论思想、转化与化归思想课件

第二部分第3讲 分类讨论思想、转化与化归思想课件
第二部分
第3讲 分类讨论思想、转化与化归思想




01
一、分类讨论思想
02
二、转化化归思想
一、分类讨论思想
思想方法诠释
1.分类讨论的思想含义
分类讨论,就是当问题所给的对象不能进行统一研究时,就需要对研究对象
按某个标准分类,然后对每一类分别研究得出每一类的结论,最后综合各类
结果得到整个问题的结果.实质上,分类讨论是“化整为零,各个击破,再积零
1- < 0,
由①得-1<q<0,或0<q<1,由②得q>1.
综上,可得q的取值范围是(-1,0)∪(0,+∞).
思维升华1.在中学数学中,一次函数、二次函数、指数函数、对数函数的
单调性,基本不等式,等比数列的求和公式等在不同的条件下有不同的结论,
或者在一定的限制条件下才成立,应根据题目条件确定是否进行分类讨论.
又因为|PF1|+|PF2|=6,|F1F2|=2 5,
14
4
解得|PF1|= ,|PF2|= ,
3
3
所以
1
2
=
7
.
2
若∠F1PF2=90°,
则|F1F2|2=|PF1|2+|PF2|2,
所以|PF1|2+(6-|PF1|)2=20,
所以|PF1|=4,|PF2|=2,
所以
1
2
综上知,
(1 + ) + (2 + ) = ,
(1 + )·(2 + ) =
1
.
2
1 + 2 = -,
1 ·2 =
1

谈谈运用分类讨论思想解题的步骤

谈谈运用分类讨论思想解题的步骤

分类讨论思想是根据题目的特点和要求,把所有研究的问题分成若干类,转化成若干个小问题,按不同情况分类,然后再逐一进行讨论、求解的思想.分类讨论思想是解答复杂问题的重要工具,尤其对于一些结论不唯一,表示形式不唯一,含有参数的复杂问题,运用分类讨论思想求解最为有效.运用分类讨论思想解题的步骤可以概括为以下几步:1.明确研究的对象.仔细分析题意,明确哪些变量、参数可直接影响所求的结果,据此确定研究的对象.常见的研究对象有参数、自变量、绝对值内部式子、方程的根,函数的定义域、直线的位置、角度等.2.明确分类标准.在确定了需要讨论的对象后,就可以选择合适的分类标准,按照其特征将所有可能会出现的情况全部罗列出来.常见的分类标准有概念、公式、定理的应用条件,代数式的意义,曲线的范围等.3.逐级讨论.在分类后,原先的复杂、困难的问题已经被分为若干个简单、容易的子问题,把所有子问题逐个逐级进行解答,计算出结果即可.当子问题也无法解答时,需要对子问题进一步分类,并且依然要遵循分类标准统一的原则,分类时要做到不重复、不遗漏任何一种情况.4.得出结论.最后需要将所有子问题的结果进行汇总,得到完整的结论.下面举例说明.例1.已知集合M ={a 2,a +1,-3},N ={a -3,2a -1,a 2+1},若M ∩N ={-3},求a 的值.解:因为M ∩N ={-3},所以-3∈N ={a -3,2a -1,a 2+1},(1)若a -3=-3,则a =0,此时M ={1,0,-3},N ={-3,-1,1},M ∩N ={-3,1},故不满足题意;(2)若2a -1=-3,则a =-1,此时M ={}1,0,-3,N ={}-4,-3,2,M ∩N ={}-3,满足题意;(3)若a 2+1=-3,此方程无实数解;所以a =-1.对于集合中求参数的值和参数的取值范围问题,通常要运用分类讨论思想求解.往往需讨论集合中元素的取值,集合是否为空集,含参方程是否有解.只有明确参数的不同取值会导致哪些不同的结果,找到进行分类讨论的原因,才能确定问题研究的对象和分类原则,合理进行分类.例2.设函数f ()x =a ln x +x -1x +1,其中a 为常数,试讨论函数f ()x 的单调性.解:由题意可知函数f ()x 的定义域为(0,+∞),对其求导可得f ′()x =ax 2+()2a +2x +ax (x +1)2,(1)当a ≥0时,f ′()x ≥0,则函数f ()x 在(0,+∞)上单调递增,(2)当a <0时,令g ()x =ax 2+()2a +2x +a ,可得∆=4()2a +1,①当a =-12时,∆=0,f ′()x ≤0,则函数f ()x 在(0,+∞)上单调递减,②当a <-12时,∆<0,f ′()x <0,则函数f ()x 在(0,+∞)上单调递减,③当-12<a <0时,∆>0,所以f ′()x ≤0,设x 1,x 2()x 1<x 2是函数g ()x 的两个零点,则x 1=-()a +1+2a +1a ,x 2=-()a +1-2a +1a,因为x 1=0,所以x ∈(0,x 1)时,g (x )<0,f ′()x <0,则函数f ()x 在(0,+∞)上单调递减;当x ∈(x 1,x 2)时,g (x )>0,f ′()x >0,则函数f ()x 在(0,+∞)上单调递增;当x ∈(x 2,+∞)时,g (x )<0,f ′()x <0,则函数f ()x 在(0,+∞)上单调递减.综上可知:当a ≥0时,函数f ()x 在(0,+∞)上单调递增,当a ≤-12时,函数f ()x 在(0,+∞)上单调递减,当-12<a <0时,函数f ()x 在æèççöø÷÷0,-()a +1+2a +1a ,思路探寻46(-()a+1-2a+1a,+∞)上单调递减,在(-()a+1+2a+1a,-()a+1-2a+1a)上单调递增.含参函数问题主要有两种类型,一是由于函数的概念或性质的限制,需要分类讨论参数的取值或取值范围;二是当参数为函数的系数时,需对参数进行分类讨论,此时要根据函数图象及函数对应方程的判别式来确定分类讨论的分界点.对于二次函数y=ax2+bx+c,当二次项的系数a>0时,二次函数图象的开口向上;当a=0时,该函数为一次函数;当a<0时,二次函数图象的开口向下.二次方程ax2+bx+c=0的判别式∆又决定了二次函数的零点的个数,如下表所示.因此,在讨论二次函数的零点时,可以分∆>0、=0、例3.已知函数f()x=ln xx+1+1x,当x>0且x≠1时,f()x>ln xx−1+k x,求k的取值范围.解:f()x-(ln x x-1+k x)=11-x2[2ln x+()k-1()x2-1x],令h()x=2ln x+()k-1()x2-1x()x>0,则h′()x=()k-1()x2+1+2xx2=k()x2+1-(x-1)2x2,(1)当k≤0时,由h′()x=k()x2+1-(x-1)2x2可知,当x≠1时,h′()x<0,h()1=0,当x∈()0,1时,h()x>0,可得11-x2h()x>0,当x∈()1,+∞时,h′()x<0,可得11-x2h()x>0,所以当x>0且x≠1时,f()x-æèöøln xx-1+k x>0,即f()x>ln xx-1+k x,(2)当0<k<1时,x∈æèöø1,11-k,()k-1(x2+1)+2x>0,所以当x∈æèöø1,11-k时,h()x>0,可得11-x2h()x<0,与题意不相符;(3)当k≥1时,此时h′()x>0,可得11-x2h()x<0,与题意不相符;综上所述,k的取值范围为(-∞,0].解答含参不等式问题,通常需要运用分类讨论思想对不等式的二次项系数以及一元二次不等式对应的方程的根来进行分类讨论.若含参一元二次不等式对应的方程存在两个根,则需要讨论两根的大小关系,进而确定解集.例4.设F1,F2为椭圆x29+y24=1的两个焦点,点P为椭圆上一点,已知点P,F1,F2是一个直角三角形的三个顶点,且|PF1|>|PF2|,则PF1|PF2|=________.解:(1)若∠PF2F1=90°,则|PF1|2=|PF2|2+|F1F2|2,又|PF1|+|PF2|=6,|F1F2|=25,解得|PF1|=143,|PF2|=43,可得|PF1||PF2|=72.(2)若∠F1PF2=90°,则|F1F2|2=|PF1|2+|PF2|2,所以|PF1|2+(6-|PF1|)2=20,又|PF1|>|PF2|,可得|PF1|=4,|PF2|=2,所以|PF1||PF2|=2.综上可知,|PF1||PF2|=72或2.要求|PF1||PF2|,需寻找满足|PF1|>|PF2|的条件,分两种情况讨论Rt△PF1F2的直角所在的位置.解答几何问题,经常要讨论图形中点、直线、曲线的位置,图形的形状、角的取值范围等.总之,对于某些不确定的数量、不确定图形的形状或位置、不确定的结论等,都需运用分类讨论思想,通过分类讨论,保证其完整性,使之具有确定性.分类讨论思想是解答含参集合问题、含参函数问题、含参不等式问题、含参解析几何问题、含参数列问题的重要工具.同学们要熟练掌握分类讨论思想的应用技巧和步骤,使复杂问题简单化.(作者单位:哈尔滨师范大学教师教育学院)思路探寻47。

含参数二次函数分类讨论的方法总结

含参数二次函数分类讨论的方法总结

二次函数求最值参数分类讨论的方法分类讨论是数学中重要的思想方法和解题策略,它是根据研究对象的本质属性的相同点和不同点,将对象分为不同种类然后逐类解决问题.一般地,对于二次函数y=a (x ?m )2+n ,x ∈[t ,s ]求最值的问题;解决此类问题的基本思路为:根据对称轴相对定义域区间的位置,利用分类讨论思想方法。

为做到分类时不重不漏,可画对称轴相对于定义域区间的简图分类。

含参数的二次函数求最值的问题大致分为三种题型,无论哪种题型都围绕着对称轴与定义域区间的位置关系进行分类讨论题型一:“动轴定区间”型的二次函数最值例1、求函数2()23f x x ax =-+在[0,4]x ∈上的最值。

分析:先配方,再根据对称轴相对于区间的位置讨论,然后根据口诀写出最值。

解:222()23()3f x x ax x a a =-+=-+- ∴此函数图像开口向上,对称轴x=a①、当a <0时,0距对称轴x=a 最近,4距对称轴x=a 最远, ∴x=0时,min y =3,x=4时,max y =19-8a②、当0≤a<2时,a 距对称轴x=a 最近,4距对称轴x=a 最远, ∴x=a 时,min y =3-a2,x=4时,max y =19-8a③、当2≤a<4时,a 距对称轴x=a 最近,0距对称轴x=a 最远, ∴x=a 时,min y =3-a2,x=0时,max y =3④、当4≤a 时,4距对称轴x=a 最近,0距对称轴x=a 最远, ∴x=4时,min y =19-8a ,x=0时,max y =3 例2、已知函数2()(21)3f x ax a x =+--在区间3[,2]2-上最大值为1,求实数a 的值 分析:取a=0,a ≠0,分别化为一次函数与二次函数,根据一次函数、二次函数的性质分类讨论. 解:1)若a=0,则f(x)=-x-3,而f(x)在3[,2]2-上取不到最大值为1,∴a ≠0 2)若a ≠0,则2()(21)3f x ax a x =+--的对称轴为0122a x a-=(Ⅰ)若3()12f -=,解得103a =-,此时0233[,2]202x =-∈-a<0, 0()f x 为最大值,但23()120f -≠ (Ⅱ) 若(2)1f =解得34a =此时013[,2]32x =-∈-0310,43a x =>=-距右端点2较远,(2)f 最大值符合条件(Ⅲ) 若0()1f x =解得32a -±=当302a -+=<时034[,2]2x =-∉-当302a --=<时034[,2]2x =∈-综收所述34a =或a =评注:此类题属于“动轴定区间”型的二次函数最值,解决此类问题的关键是讨论对称轴相对于定义域区间的位置,讨论时做到不重不漏。

分类讨论的思想方法

分类讨论的思想方法

科技信息分类讨论是一种重要的数学思想,它在人的思维发展中有着重要的作用。

当问题的对象不能进行统一研究时,就需要对研究的对象进行分类,然后对每一类分别研究,给出每一类结果,最后综合各类结果得到整个问题的解答。

因此,在近几年高考试题中,它都被列为一种重要的思想方法来考察。

有关分类讨论的数学问题,关键是明确分类讨论的原因,即认识为什么要分类讨论,只有明确了讨论的原因,才能准确、恰当地进行分类与讨论。

引起分类讨论的原因大致可以归纳为以下几种:(1)由数学概念而引起的分类讨论:如绝对值的定义、不等式的定义、二次函数的定义、直线与平面所成角、直线的倾斜角、两直线所成角、定比分点公式、两条异面直线所成角等。

(2)由数学运算要求而引起的分类讨论:如除法运算中的除数不能为零,偶次方根为非负数,对数运算中真数与底数的要求,指数运算中底数的要求,不等式中两边同乘以一个正数、负数,三角函数的定义域,异面直线上两点间的距离公式等。

(3)由函数的性质、定理、公式的限制而引起的分类讨论。

(4)由图形的不确定性而引起的分类讨论。

(5)由参数的变化而引起的分类讨论:如某些含有参数的问题。

由于参数的取值不同会导致所得结果不同,或者由于对不同的参数值要运用不同的求解或证明方法等。

(6)运用的解题方法途径有局限性。

(7)求解的数学问题的结论有多种情况或者多种可能性。

(8)较复杂或者非常规的数学问题,需要采取分类讨论的解题策略来解决的。

(9)其他根据实际情况具体分析而引起的分类讨论,如排列组合问题,应用问题等。

合理分类的三条标准:(1)对所讨论的全域分类要“既不重复,又不遗漏”。

(2)同一分类必须按同一标准进行。

(3)对多级讨论,应逐级进行,不能越级。

分类讨论是一种逻辑方法,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。

分类讨论的一般步骤是:(1)确定分类讨论的对象。

(2)对所讨论的对象进行合理分类(分类时要做到不重复、不遗漏、标准要统一、分层不越级)。

2023中考九年级数学分类讲解 - 第六讲 二次函数(含答案)(全国通用版)

2023中考九年级数学分类讲解 - 第六讲  二次函数(含答案)(全国通用版)

第六讲 二次函数专项一 二次函数的图象和性质知识清单一、二次函数的概念一般地,形如 (a ,b ,c 为常数,a≠0)的函数叫做二次函数.其中x是自变量,a ,b ,c 分别是函数解析式的二次项系数、 和常数项. 二、二次函数的图象和性质1. 二次函数的图象是一条 .其一般形式为y =ax 2+bx +c ,由配方法可化成y =a (x -h )2+k 的形式,其中h=2ba-,k=244ac b a -.2. 二次函数y =ax 2+bx +c (a ≠0)的图象和性质3. 二次函数y =ax 2+bx +c (a ≠0)的图象与系数a ,b ,c 符号的关系ab <0(a ,b 异号)对称轴在y 轴右侧 c决定抛物线与y 轴的交点c >0 交点在y 轴正半轴 c =0 交点在原点 c <0交点在y 轴负半轴考点例析例1 抛物线y=ax 2+bx+c 经过点(-1,0),(3,0),且与y 轴交于点(0,-5),则当x=2时,y 的值为( )A .-5B .-3C .-1D .5分析:画出抛物线的大致图象,可知抛物线的对称轴为x=1,根据抛物线的对称性可求出y 的值. 例2 一次函数y=ax+b 的图象如图1所示,则二次函数y=ax 2+bx 的图象可能是( )A B C D分析:根据一次函数y=ax+b 的图象经过的象限得出a <0,b >0,可知二次函数y=ax 2+bx 的图象开口向下,对称轴在y 轴右侧.例3 二次函数y=ax 2+bx+c (a≠0)的图象如图2所示,下列说法中,错误的是( ) A .对称轴是x=12B .当-1<x <2时,y <0C .a+c=bD .a+b >-c图2分析:由图可知,对称轴是x=1+22-=12,选项A 正确;当-1<x <2时,函数图象在x 轴的下方,所以当-1<x <2时,y <0,选项B 正确;当x=-1时,y=a-b+c=0,所以a+c=b ,选项C 正确;当x=1时,y=a+b+c <0,所以a+b <-c ,选项D 错误.例4二次函数y =ax 2+bx +c (a ≠0)的部分图象如图所示,对称轴为x =12,且经过点(2,0).有下列说法:①abc <0;②﹣2b +c =0;③4a +2b +c <0;④若112y ⎛⎫- ⎪⎝⎭,,252y ⎛⎫ ⎪⎝⎭,是抛物线上的两点,则y 1<y 2;图1⑤14b +c >m (am +b )+c (其中m ≠12).其中正确的有( ) A .2个B .3个C .4个D .5个图3分析:由抛物线的开口方向、对称轴的位置、与y 轴的交点可得a ,b ,c 的符号,从而可得abc 的正负;由对称轴x=2b a -=12,得b=-a ,由图象易知当x=-1时,y=a-b+c=﹣2b+c =0;根据抛物线经过点(2,0),可得4a+2b+c=0;根据“开口向下,抛物线上的点距离对称轴越近,点的纵坐标越大”可判断y 1与y 2的大小;由图象知当x =12时,y 有最大值为14a+12b+c=14b +c ,由此可判断14b +c 与m (am +b )+c 的大小关系.归纳:(1)几种常见代数式的判断①2a ±b 2b a-与±1比较②a ±b +c 令x =±1,看纵坐标 ③4a ±2b +c 令x =±2,看纵坐标 ④9a ±3b +c令x =±3,看纵坐标⑤3a +c ,3b -2c 等关于a ,c 或b ,c 的代数式 一般由②③④式与①式结合判断(2①当已知抛物线的解析式及相应点的横坐标时,可先求出相应点的纵坐标,然后比较大小.ꎻ②利用抛物线上的对称点的纵坐标相等,把各点转化到对称轴的同侧,再利用二次函数的增减性比较大小. ③利用“开口向上,抛物线上的点距离对称轴越近,点的纵坐标越小;开口向下,抛物线上的点距离对称轴越近,点的纵坐标越大”也可以比较大小. 跟踪训练1.已知二次函数y=(a-1)x 2,当x >0时,y 随x 的增大而增大,则实数a 的取值范围是( ) A .a >0 B .a >1 C .a≠1 D .a <12.二次函数y=x 2+4x+1的图象的对称轴是( )A .x=2B .x=4C .x=-2D .x=-4 3.关于二次函数y=2(x-4)2+6的最大值或最小值,下列说法正确的是( ) A .有最大值4B .有最小值4C .有最大值6D .有最小值64.一次函数y=ax+b (a≠0)与二次函数y=ax 2+bx+c (a≠0)在同一平面直角坐标系中的图象可能是( )A B C D5.如图3,二次函数y=ax2+bx+c的图象经过点A(-1,0),B(3,0),与y轴交于点C.有下列结论:①ac>0;②当x>0时,y随x的增大而增大;③3a+c=0;④a+b≥am2+bm.其中正确的个数为()A.1 B.2 C.3 D.4第5题图6.定义:[a,b,c]为二次函数y=ax2+bx+c(a≠0)的特征数,下面给出特征数为[m,1-m,2-m]的二次函数的一些结论:①当m=1时,函数图象的对称轴是y轴;②当m=2时,函数图象过原点;③当m>0时,函数有最小值;④如果m<0,当x>12时,y随x的增大而减小.其中所有正确结论的序号是.专项二确定二次函数的解析式知识清单用待定系数法求二次函数的解析式时,若已知条件给出了图象上任意三点(或任意三组对应值),可设解析式为;若给出顶点坐标为(h,k),则可设解析式为;若给出抛物线与x轴的两个交点为(x1,0),(x2,0),则可设解析式为.考点例析例在平面直角坐标系中,抛物线y=x2﹣4x+5与y轴交于点C,则该抛物线关于点C成中心对称的抛物线的解析式为()A.y=﹣x2﹣4x+5 B.y=x2+4x+5 C.y=﹣x2+4x﹣5 D.y=﹣x2﹣4x﹣5分析:由抛物线的解析式求得抛物线的顶点坐标与点C的坐标,然后结合中心对称的性质,求得新抛物线的顶点坐标,用待定系数法求出新抛物线的解析式.跟踪训练1.若抛物线y=x2+bx+c与x轴两个交点间的距离为4,对称轴为直线x=2,P为这条抛物线的顶点,则点P 关于x轴的对称点的坐标是()A.(2,4)B.(-2,4)C.(-2,-4)D.(2,-4)2.在“探索函数y=ax2+bx+c的系数a,b,c与图象的关系”活动中,老师给出了如图所示直角坐标系中的四个点:A(0,2),B(1,0),C(3,1),D(2,3),同学们探索了经过这四个点中的三个点的二次函数图象,发现这些图象对应的函数解析式各不相同,其中a的值最大为()A.52B.32C.56D.12第2题图专项三二次函数图象的平移知识清单二次函数图象的平移规律平移前的解析式平移方向及距离平移后的解析式口诀顶点坐标y=a(x-h)2+k (a≠0)向左平移m个单位长度y=a(x-h+m)2+k左加右减纵坐标不变向平移m个单位长度y=a(x-h-m)2+k向上平移m个单位长度y=a(x-h)2+k+m上加下减横坐标不变向平移m个单位长度y=a(x-h)2+k-m平移前后a值不变例将抛物线y=-x2-2x+3向右平移1个单位长度,再向下平移2个单位长度,得到的抛物线必定经过()A.(-2,2)B.(-1,1)C.(0,6)D.(1,-3)分析:先将y=-x2-2x+3转化成顶点式y=a(x-h)2+k,再利用二次函数的平移规律:左加右减,上加下减,得出平移后抛物线的解析式,最后把各选项的点代入判断即可.跟踪训练1.将抛物线y=ax2+bx+c(a≠0)向下平移2个单位长度,以下说法错误的是()A.开口方向不变B.对称轴不变C.y随x的变化情况不变D.与y轴的交点不变2.抛物线的函数解析式为y=3(x-2)2+1,若将x轴向上平移2个单位长度,将y轴向左平移3个单位长度,则该抛物线在新的平面直角坐标系中的函数解析式为()A.y=3(x+1)2+3 B.y=3(x-5)2+3 C.y=3(x-5)2-1 D.y=3(x+1)2-13.已知抛物线y=a(x-h)2+k与x轴有两个交点A(-1,0),B(3,0),抛物线y=a(x-h-m)2+k与x轴的一个交点是(4,0),则m的值是()A.5 B.-1 C.5或1 D.-5或-14.已知抛物线y=x2+kx-k2的对称轴在y轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则k的值是()A.-5或2 B.-5 C.2 D.-25.把抛物线y=2x2+1向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为.6.如图,二次函数y=(x-1)(x-a)(a为常数)的图象的对称轴为x=2.(1)求a的值.(2)向下平移该二次函数的图象,使其经过原点,求平移后图象所对应的二次函数的解析式.第6题图专项四二次函数与一元二次方程的关系知识清单二次函数y=ax2+bx+c(a≠0)与一元二次方程ax2+bx+c=0(a≠0)的关系:Δ=b2-4ac一元二次方程ax2+bx+c=0根的情况二次函数y=ax2+bx+c的图象与x轴的位置关系Δ>0有两个不等的实数根有两个不同的公共点Δ=0有两个相等的实数根只有唯一的公共点Δ<0无实数根没有公共点考点例析例已知关于x的一元二次方程x2+x-m=0.(1)若方程有两个不相等的实数根,求m的取值范围;(2)二次函数y=x2+x-m的部分图象如图所示,求一元二次方程x2+x-m=0的解.分析:(1)由方程x2+x-m=0有两个不相等的实数根,可得Δ>0,列不等式即可求出m的取值范围;(2)根据二次函数图象的对称性,可得二次函数y=x2+x-m的图象与x轴的另一个交点,从而得到一元二次方程x2+x-m=0的解.解:跟踪训练1.已知直线y=kx+2过第一、二、三象限,则直线y=kx+2与抛物线y=x2-2x+3的交点个数为()A.0 B.1 C.2 D.1或22.已知二次函数y=ax2+bx+c的自变量x与函数y的部分对应值见表格,有下列结论:①c=2;②b2-4ac>0;③方程ax2+bx=0的两根为x1=-2,x2=0;④7a+c<0.其中正确的有()3.在平面直角坐标系xOy中,若抛物线y=x2+2x+k与x轴只有一个交点,则k=.4.对于任意实数a,抛物线y=x2+2ax+a+b与x轴都有公共点,则b的取值范围是.5.武汉)已知抛物线y=ax2+bx+c(a,b,c是常数),a+b+c=0.下列四个结论:①若抛物线经过点(-3,0),则b=2a;②若b=c,则方程cx2+bx+a=0一定有根x=-2;③抛物线与x轴一定有两个不同的公共点;④点A(x1,y1),B(x2,y2)在抛物线上,若0<a<c,则当x1<x2<1时,y1>y2.其中正确的是.(填序号)专项五二次函数的应用知识清单构建二次函数模型解决实际问题的一般步骤:(1)审题,分析问题中的变量和常量;(2)建立二次函数模型表示它们之间的关系;(3)充分结合已知条件,利用函数解析式或图象等得出相应问题的答案,或把二次函数解析式用顶点坐标公式或用配方法化为顶点式,确定出二次函数的最大(小)值;(4)结合自变量的取值范围和问题的实际意义,检验结果的合理性.考点例析例1某超市经销一种商品,每件成本为50元.经市场调研,当该商品每件的销售价为60元时,每个月可销售300件,若每件的销售价每增加1元,则每个月的销售量将减少10件.设该商品每件的销售价为x 元,每个月的销售量为y件.(1)求y与x的函数解析式;(2)当该商品每件的销售价为多少元时,每个月的销售利润最大?最大利润是多少?分析:(1)根据“该商品每件的销售价为60元时,每个月可销售300件,若每件的销售价每增加1元,则每个月的销售量将减少10件”列出y与x的函数解析式;(2)设每个月的销售利润为w元,根据等量关系“利润=(售价-进价)×销量”列出函数解析式,配方后根据二次函数的性质求解.解:例2某游乐场的圆形喷水池中心O有一雕塑OA,从A点向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为x轴,点O为原点建立直角坐标系,点A在y轴上,x轴上的点C,D为水柱的落水点,水柱所在抛物线(第一象限部分)的函数解析式为y=-16(x-5)2+6.(1)求雕塑高OA;(2)求落水点C,D之间的距离;(3)若需要在OD上的点E处竖立雕塑EF,OE=10 m,EF=1.8 m,EF⊥OD.问:顶部F是否会碰到水柱?请通过计算说明.分析:(1)根据给出的抛物线的函数解析式,令x=0,求出点A的纵坐标,可得出雕塑高OA;(2)根据给出的抛物线的函数解析式,令y=0,求出点D的横坐标,可得出OD的长度,由喷出的水柱为抛物线且形状相同,可得出OC的长,结合CD=OC+OD即可求出落水点C,D之间的距离;(3)将x=10代入函数解析式y=-16(x-5)2+6求出y的值,将求出的y值与1.8比较后即可得出顶部F是否会碰到水柱.解:跟踪训练1.某快餐店销售A,B两种快餐,每份利润分别为12元,8元,每天卖出份数分别为40份,80份.该店为了增加利润,准备降低每份A种快餐的利润,同时提高每份B种快餐的利润.售卖时发现,在一定范围内,每份A种快餐利润每降1元可多卖2份,每份B种快餐利润每提高1元就少卖2份.如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是______元.2.某公司计划购进一批原料加工销售,已知该原料的进价为6.2万元/吨,加工过程中原料的质量有20%的损耗,加工费m(万元)与原料的质量x(吨)之间的关系为m=50+0.2x,销售价y(万元/吨)与原料的质量x(吨)之间的关系如图所示.(1)求y与x之间的函数解析式;(2)设销售收入为p(万元),求p与x之间的函数解析式;(3)原料的质量x为多少吨时,所获销售利润最大,最大销售利润是多少万元?(销售利润=销售收入-总支出)第2题图3. 如图①是一座抛物线型拱桥侧面示意图.水面宽AB与桥长CD均为24 m,在距离D点6米的E处,测得桥面到桥拱的距离EF 为1.5 m ,以桥拱顶点O 为原点,桥面为x 轴建立平面直角坐标系. (1)求桥拱顶部O 离水面的距离.(2)如图②,桥面上方有3根高度均为4 m 的支柱CG ,OH ,DI ,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为1 m . ①求出其中一条钢缆抛物线的函数解析式;②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求彩带长度的最小值.① ②第3题图专项六 二次函数中的分类讨论思想分类讨论思想就是按照一定的标准,把研究对象分成为数不多的几个部分或几种情况,然后逐个加以解决,最后予以总结作出结论的思想方法.我们在运用分类讨论思想时,必须遵循下列两个原则:一是要有分类意识,善于从问题的情境中抓住分类对象;二是要找出科学合理的分类标准,应当满足互斥、无漏、最简原则. 引起分类讨论的因素较多,归纳起来主要有以下几个方面:①由数学概念、性质、定理、公式的限制条件引起的讨论;②由数学变形所需要的限制条件引起的讨论;③由图形的不确定性引起的讨论;④由于题目含有字母引起的讨论等等. 考点例析例 已知关于x 的二次函数y 1=x 2+bx+c (实数b ,c 为常数).(1)若二次函数的图象经过点(0,4),对称轴为x=1,求此二次函数的解析式; (2)若b 2-c=0,当b-3≤x≤b 时,二次函数的最小值为21,求b 的值;(3)记关于x 的二次函数y 2=2x 2+x+m ,若在(1)的条件下,当0≤x≤1时,总有y 2≥y 1,求实数m 的最小值.分析:(1)将(0,4)代入二次函数y 1=x 2+bx+c ,可求得c ,由对称轴为x=-2b=1,可求出b ;(2)二次函数y 1=x 2+bx+c 图象的对称轴为x=-2b ,需要分三种情况:b <-2b ,b-3>-2b 和b-3≤-2b≤b 进行分类讨论;(3)设函数y 3=y 2-y 1,根据二次函数图象的增减性进行求解. 解:跟踪训练科研人员为了研究弹射器的某项性能,利用无人机测量小钢球竖直向上运动的相关数据.无人机上升到离地面30米处开始保持匀速竖直上升,此时,在地面用弹射器(高度不计)竖直向上弹射一个小钢球(忽略空气阻力),在1秒时,它们距离地面都是35米,在6秒时,它们距离地面的高度也相同.其中无人机离地面高度y1(米)与小钢球运动时间x(秒)之间的函数关系如图所示;小钢球离地面高度y2(米)与它的运动时间x(秒)之间的函数关系如图中抛物线所示.(1)直接写出y1与x之间的函数解析式;(2)求出y2与x之间的函数解析式;(3)小钢球弹射1秒后直至落地时,小钢球和无人机的高度差最大是多少米?参考答案专项一二次函数的图象和性质例1 A 例2 D 例3 D 例4 B1.B 2.C 3.D 4.C 5.B6.①②③专项二确定二次函数的解析式例 A1.A 2.A专项三二次函数图象的平移例 B1.D 2.C 3.C 4.B 5.y=2x2+4x6. 解:(1)因为y=(x-1)(x-a)=x2-(a+1)x+a,图象的对称轴为x=2,所以+12a=2,解得a=3.(2)由(1),知a=3,则该二次函数的解析式为y=x²-4x+3.所以二次函数的图象向下平移3个单位后经过原点.所以平移后图象所对应的二次函数的解析式是y=x²-4x.专项四二次函数与一元二次方程的关系例(1)由题意,知Δ>0,即1+4m>0,解得m>-14.(2)二次函数y=x2+x-m图象的对称轴为x=-12,所以该函数图象与x轴的两个交点关于直线x=-12对称.由图可知抛物线与x轴的一个交点为(1,0),所以另一个交点为(-2,0).所以一元二次方程x2+x-m=0的解为x1=1,x2=-2.1.C 2.B 3.1 4.①②④专项五二次函数的应用例1 (1)y=300-10(x-60)=-10x+900.(2)设每个月的销售利润为w元.由(1),知w=(x-50)y=(x-50)(-10x+900)=-10x2+1400x-45 000=-10(x-70)2+4000.因为-10<0,所以当x=70时,w有最大值为4000.所以该商品每件的销售价为70元时,每个月的销售利润最大,最大利润是4000元.x2=11.所以OD=11 m..因为从A点向四周喷水,喷出的水柱为抛物线,且形状相同,所以OC=OD=11 m.所以CD=OC+OD=22 m1.12642.解:(1)设y与x之间的函数解析式为y=kx+b.w(万元).(3)设销售利润为所以原料的质量x为24吨时,所获销售利润最大,最大销售利润是65.2万元.3. 解:(1)根据题意,知点F的坐标为(6,-1.5),可设拱桥侧面所在抛物线的函数解析式为y1=a1x2.=a2(x-6)2+1.(2)①根据题意,知右边钢缆所在抛物线的顶点坐标为(6,1),可设其解析式为y2②设彩带的长度为L m.所以当x=4时,L 最小值=2.答:彩带长度的最小值是2 m .专项六 二次函数中的分类讨论思想例 (1)因为二次函数的图象经过点(0,4),所以c=4.(2)当b 2-c=0时,b 2=c ,此时函数的解析式为y 1=x 2+bx+b 2. 根据题意,分三种情况:所以(b-3)2+b (b-3)+b 2=21,解得b 3=4,b 4=-1(舍去).(3)由(1),知二次函数的解析式为y 1=x 2-2x+4.设函数y 3=y 2-y 1=x 2+3x+m-4. 所以当x=0时,y 3即y 2-y 1有最小值m-4,所以m-4≥0,即m≥4.所以m 的最小值为4. 跟踪训练解:(1)y 1=5x+30.(2)当x=6时,y 1=5×6+30=60.因为y 2的图象是过原点的抛物线,所以可设y 2=ax 2+bx . 因为点(1,35),(6,60)在抛物线y 2=ax 2+bx 上,所以=35366=60.a b a b ++⎧⎨⎩,解得=5=40.a b ⎩-⎧⎨,所以y 2=-5x 2+40x .所以y 2与x 的函数解析式为y 2=-5x 2+40x . (3)设小钢球和无人机的高度差为y 米. 令y 2=0,则-5x 2+40x=0,解得x=0或x=8.因为6<x≤8,所以当x=8时,y的最大值为70.70米.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

相关文档
最新文档