理想气体分子平均平动动能与温度的关系

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四、理想气体分子平均平动动能与温度的关系
(可以用一个公式加以概括)
k ε=kT v m 23212=
1.简单推导:理想气体的物态方程:RT m N m N RT M m PV A '
'== 而⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=2221322132v m V N v m n P n=N/V 为单位体积内的分子数,即分子数密度, k =R /N A =1.38×10-23J·K -1称为玻尔斯曼常量。

所以:kT v m 2
3212= 这就是理想气体分子的平均平动动能与温度的关系,是气体动理论的另一个基本公
式。

它表明分子的平均平动动能与气体的温度成正比。

气体的温度越高,分子的平均平动动能越大;分子的平均平动动能越大,分子热运动的程度越剧烈。

因此,温度是表征大量分子热运动剧烈程度的宏观物理量,是大量分子热运动的集体表现。

对个别分子,说它有多少温度,是没有意义的。

从这个式子中我们可以看出
2.温度的统计意义
该公式把宏观量温度和微观量的统计平均值(分子的平均平动动能)联系起来,从而揭
示了温度的微观本质。

关于温度的几点说明
1.由kT v m 23212=得02
1 02=v m T =,=ε,气体分子的热运动将停止。

然而事实上是绝对零度是不可到达的(热力学第三定律),因而分子的运动是用不停息的。

2.气体分子的平均平动动能是非常小的。

J K T 2110
,300-==ε J K T 15
810 ,10-==ε
例1. 一容器内贮有氧气,压强为P=1.013×105Pa ,温度t=27℃,求(1)单位体积内的分
子数;(2)氧分子的质量;(3)分子的平均平动动能。

解:(1)有P=nkT
得 ()
325235
1045.2273271038.110013.1--⨯=+⨯⨯⨯==m kT P n (2)kg N M m A 26233
1031.510
02.61032--⨯=⨯⨯==
(3)J kT k 21231021.6)27327(1038.12
323--⨯=+⨯⨯⨯==ε
例2. 利用理想气体的温度公式说明Dalton 分压定律。

解:容器内不同气体的温度相同,分子的平均平动动能也相同,即
k kn k k εεεε==== 21
而分子数密度满足
∑=
i n n 故压强为
()∑∑∑∑=⎪⎭
⎫ ⎝⎛=⎪⎭⎫ ⎝⎛===i ki i k i k i k P n n n n P εεεε32323232 即容器中混合气体的压强等于在同样温度、体积条件下组成混合气体的各成分单独存在时的分压强之和。

这就是Dalton 分压定律。

例3. 证明Avogadro 定律。

由 n=P/kT
两边同乘以体积V ,则
N=PV/RT
结论:在同温同压下,相同体积的任何理想气体所含的分子数相同,这就是Avogadro 定
律。

课堂练习题:
1. 若在某个过程中,一定量的理想气体的内能E随压
强p的变化关系为一直线(其延长线过E-p图的原
点),则该过程为
(A)等温过程. (B)等压过程.
(C)等容过程. (D)绝热过程.
4. 一瓶氦气和一瓶氮气密度相同,分子平均平动
动能相同,而且它们都处于平衡状态,则它们 (A)温度相同、压强相同.
(B)温度、压强都不相同.
(C)温度相同,但氦气的压强大于氮气的压强.
(D)温度相同,但氦气的压强小于氮气的压强.
5. 若室内生起炉子后温度从15℃升高到27℃,而室内气压不变,则此时室内的分子数减少了
(A) 0.5%. (B)4%.
(C)9%. (D)21%.。

相关文档
最新文档