页岩气百科知识

页岩气百科知识
页岩气百科知识

页岩气,是从页岩层中开采出来的天然气,是一种重要的非常规天然气资源。页岩气常分布在盆地内厚度较大、分布广的页岩烃源岩地层中,分布范围广、厚度大,且普遍含气,这使得页岩气井能够长期地以稳定的速率产气。2012年3月中国公布发现可采资源潜力为25.1万亿立方米页岩气可供中国使用近200年。页岩气- 概述

页岩气钻井现场

页岩气(shale gas)是赋存于富有机质泥页岩及其夹层中,以吸附和游离状态为主要存在方式的非常规天然气,成分以甲烷为主,与“煤层气”、“致密气”同属一类。页岩气的形成和富集有着自身独特的特点,往往分布在盆地内厚度较大、分布广的页岩烃源岩地层中。页岩气很早就已经被人们所认知,但采集比传统天然气困难,随着资源能源日益匮乏,作为传统天然气的有益补充,人们逐渐意识到页岩气的重要性。[1]

页岩气- 主要特点

页岩气分布示意图

页岩气主体位于暗色泥页岩或高碳泥页岩中,页岩气是主体上以吸附或游离状态存在于泥岩、高碳泥岩、页岩及粉砂质岩类夹层中的天然气,它可以生成于有机成因的各种阶段天然气主体上以游离相态(大约50%)存在于裂缝、孔隙及其它储集空间。

以吸附状态(大约50%)存在于干酪根、粘土颗粒及孔隙表面,极少量以溶解状态储存于干酪根、沥青质及石油中天然气也存在于夹层状的粉砂岩、粉砂质泥岩、泥质粉砂岩、甚至砂岩地层中为天然气生成之后,在源岩层内的就近聚集表现为典型的原地成藏模式,与油页岩、油砂、地沥青等差别较大。与常规储层气藏不同,页岩既是天然气生成的源岩,也是聚集和保存天然气的储层和盖层。因此有机质含量高的黑色页岩、高碳泥岩等常是最好的页岩气发育条件。

页岩亦属致密岩石,故也可归入致密气层气。它起始于阿巴拉契亚盆地的泥盆系页岩,为暗褐色和黑色,富有机质,可大量生气。储集空间以裂缝为主并可以吸附气和水溶气形式赋存,为低(负)压、低饱和度(30%左右),因而为低产。但在裂缝发育带可获较高产量,井下爆炸和压裂等改造措施效果也好。

页岩气开发具有开采寿命长和生产周期长的优点——大部分产气页岩分布范围广、厚度大,且普遍含气,使得页岩气井能够长期地稳定产气。但页岩气储集层渗透率低,开采难度较大。随着世界能源消费的不断攀升,包括页岩气在内的非常规能源越来越受到重视。美国和加拿大等国已实现页岩气商业性开发。

页岩气- 储量分布

中国页岩气勘探

北美的克拉通盆地、前陆盆地侏罗系、泥盆系-密西西比系富集多种成因、多种成熟度的页岩气资源。而在中国许多盆地发育有多套煤系及暗色泥、页岩地层,互层分布大套的致密砂岩存在根缘气、页岩气发育有利条件,不同规模的天然气发现,但尚未在大面积区域内实现天然气勘探的进一突破。

中国南方海相页岩地层可能是页岩气的主要富集地区。除此之外,松辽、鄂尔多斯、吐哈、准噶尔等陆相沉积盆地的页岩地层也有页岩气富集的基础和条件。重庆綦江、万盛、南川、武隆、彭水、酉阳、秀山和巫溪等区县是页岩气资源最有利的成矿区带,因此被确定为首批实地勘查工作目标区。[2]

从全世界范围看,泥、页岩约占全部沉积岩的60%,页岩气资源前景巨大。主要分布在北美、

中亚和中国、拉美、中东和北非、前苏联。加拿大西部地区大约有550万至860万亿立方英尺页岩气储量。美国页岩气地质储量约28万亿立方米。2007年美国页岩气总产量500亿立方米,占当年美国天然气总量的8%以上。中国的页岩气储量超过其它任何一个国家,可采储量有36万亿立方米。按当前的消耗水平,这些储量足够中国使用300多年。页岩气- 成藏条件

沉积环境

页岩气的工业聚集需要丰富的气源物质基础,要求生烃有机质含量达到一定标准。那些有机质丰度高的黑色泥页岩是页岩气成藏的最好源岩,它们的形成需要较快速的沉积条件和封闭性较好的还原环境。沉积速率较快可以使得富含有机质页岩在被氧化破坏之前能够大量沉积下来,而水体缺氧可以抑制微生物的活动性,减小其对有机质的破坏作用。在沉积埋藏后控制甲烷产量的因素是缺氧、缺硫酸盐环境,低温、富含有机物质和具有充足的储存气体的空间。

总有机碳含量

总有机碳含量是烃源岩丰度评价的重要指标,也是衡量生烃强度和生烃量的重要参数。有机碳含量随岩性变化而变化,对于富含粘土的泥页岩来说,由于吸附量很大,有机碳含量最高,因此,泥页岩作为潜力源岩的有机含量下限值就愈高,而当烃源岩的有机质类型愈好,热演化程度高时,相应的有机碳含量下限值就低。

干酪根类型

在不同的沉积环境中,由不同来源有机质形成的干酪根,其组成有明显的差别,其性质和生油气潜能也有很大差别。因此研究干酪根的类型(性质)是油气地球化学的一项重要内容,也是评价干酪根生油、生气潜力的基础。干酪根类型是衡量有机质产烃能力的参数,不同类型的干酪根同时也决定了产物以油为主还是以气为主。页岩气可以在不同有机质类型的源岩中产出,有机质的总量和成熟度才是决定源岩产气能力的重要因素。

热演化程度

热演化程度含气页岩的热成熟度通常用Ro来表示,Ro越高表明生气的可能越大。美国五大产气页岩的热成熟度可以从0.4%~0.6%(临界值)到0.6%~2.0%(成熟),页岩气的生成贯穿于有机质向烃类演化的整个过程。也就是说,只要页岩层中的有机质达到了生烃标准,即Ro>0.4%,就可以生成天然气,它们就有可能在页岩中聚集成藏。一般地,当Ro>1.0%更易于生气,1.0%1.4%时则生成干气;Ro<0.6%为未成熟阶段,0.4%

页岩气- 主要用途

页岩气是一种清洁、高效的能源资源和化工原料,主要用于民用和工业燃料,化工和发电等,具有广阔开发前景,页岩气的开发和利用有利于缓解油气资源短缺,增加清洁能源供应,是常规能源的重要补充。[4]

页岩气开采技术,主要有水平井+多段压裂技术、清水压裂技术和压裂技术-同步压裂技术,这些先进的技术不断提高着页岩气井的产量。正是这些先进技术的成功应用,促进了美国页岩气开发的快速发展。

页岩气- 开采历史

美国

美国进行页岩气开采大约有80多年历史。页岩气开发极大改善了美国天然气供应格局和能源安全状况,其占美国天然气产量的比重从1996年的1.6%猛增至2010年的约23%,并使美国在2009年超过俄罗斯成为世界第一大天然气生产国和资源国。随着技术的进步及探明储量的持续增加,未来页岩气开采将进入爆发式增长期,带动美国的天然气生产进入“黄金时代”。

加拿大

页岩气开采

加拿大是继美国之后第二个实现页岩气商业化开采的国家,2009年的产量已达到72亿立方米。数据显示,加拿大西部地区大约有550万至860万亿立方英尺页岩气储量。

欧洲(除俄罗斯以外)

页岩气技术可采资源量相对较低,但分布广泛,主要集中在波兰、挪威、乌克兰和瑞典等国。波兰的页岩气可采资源量为欧洲之最。此外,德国、英国、西班牙等国也已开始开展页岩气研究和试探性开发,部分企业已着手商业性勘探开发。

法国由于担心页岩气的开采会对水资源管理带来较大负面影响,已暂时停止相关开采活动。

[5] 2013年7月,法国总统奥朗德日前发表声明说,不允许在法国境内开采页岩气,因为这将给生态带来风险。[6]

在亚太地区

中国和澳大利亚的页岩气储量都很丰富,上述两国以及印度、印尼都已相继开始对页岩气资源展开调查与勘探。中国页岩气开发刚刚起步,总体处于以资源评估与勘探为主的探索和准备阶段。2011年7月,中国国土资源部举行了首轮页岩气探矿权招标。中国相关部门和石油公司也已着手与美国有关机构在页岩气开发、技术合作研究等方面展开多种形式的合作。拉丁美洲

页岩气资源主要集中在阿根廷、墨西哥和巴西等国。目前道达尔、埃克森美孚等能源公司已经开始与阿根廷国内的石油公司合作,参与其国内矿区页岩气的开采。墨西哥的页岩气可采资源量位列世界第四, 2011年10月墨西哥北部与美交界处发现大规模页岩气田,预计该气田能满足墨西哥90多年的天然气需求。

页岩气- 中国开发情况

中国主要盆地和地区页岩气资源量约为15万亿-30万亿立方米,与美国28.3万亿立方米大致相当,经济价值巨大。[7]

长宁-威远页岩气示范区长宁区块[8]

2009年10月,中国国土资源部在重庆市綦江县启动了中国首个页岩气资源勘查项目。2012年3月,中国国家能源局于发布了《页岩气发展规划(2011-2015年)》,根据该规划,中国计划在“十二五”期间,完成探明页岩气地质储量6000亿立方米,可采储量2000亿立方米,实现2015年页岩气产量65亿立方米,基本完成全国页岩气资源潜力的评估与勘探,为“十三五”打好基础,目标是到2020年力争达到页岩气年开采量为600亿-1000亿立方米。中国是北美以外唯一一个现有石油服务行业规模较大而且政策和税收环境较为宽松的地区,加之中国页岩气储量丰富且能源供需严重不平衡,中国已被视为未来除美国之外页岩气开发最快的国家。

页岩气- 美国页岩气发展

开发背景

美国能源结构示意图及预测(来源EIA2011年度能源报告)

美国是世界能源消费大国,长期以来,美国政府将“能源独立”作为政策纲领,希望通过各种手段寻求更多能源供给渠道,改变石油对外依存度高的被动局面。1973年以阿战争,阿拉伯等石油输出国家组织(OPEC)对美国实施石油禁运,1979年伊朗革命造成中东政治陷

入混乱造成全球石油短缺,1990年伊拉克入侵科威特带来两国石油减产冲击美国石油进口,这三次“石油震撼”加上对本国油气资源日益减少的担心迫使美国政府进一步落实能源供给分散的策略,加快天然气以及非常规油气的勘探研究步伐,页岩气前期的勘探研发工作就是在这样的大背景下实现突破的。

2007年,美国页岩气产量366.2亿立方米,到2010年,产量突破千亿,达到1379.2亿立方米(相当于美国天然气总产量的23%)。预计,到2035年,美国页岩气产量将占到本国天然气总产量的45%,在未来能源格局中扮演更重要的角。美国页岩气开发获得的巨大成功并非“偶然事件”,在很大程度上得益于技术进步,美国系统完善的、有利于新兴产业发展的市场环境与政策等多方面因素。[9]

开发时间表

页岩气的时间表包括了若干个重要的里程碑:

1821年,在美国纽约的弗里多尼亚商业天然气井中首次生产出页岩气。

1859年,埃德温·德雷克表示油可大量生产,启动了美国的石油工业。

19世纪60年代到20世纪20年代,天然气,包括在阿巴拉契亚山脉和伊利诺伊州的盆地由浅,低压产出的页岩气,仅限于用在靠近生产领域的城市。

20世纪30年代,技术的发展使得运用大口径管道把大量的中大陆和东南部油田的天然气输送到东北部城市成为可能;天然气工业的迅速发展。

20世纪40年代后期,液压压裂首次用于刺激石油和天然气井。1947年泛美石油股份公司经营的堪萨斯州格兰特县的气井第一次运用了水力压裂技术。

20世纪70年代初,井下发动机,作为定向钻井技术的关键组成部分,发展加速。在随后的三十年里,定向钻井能力继续向前推进。

20世纪70年代末和80年代初,出于对美国的天然气资源日益减少的担心,联邦政府开始资助“非常规天然气藏”,如页岩气,致密砂岩和煤层的气体等方面的估算方法的研究和如何改善将气体从这些岩石中提取的方法。页岩埋藏较深,如得克萨斯州Barnett和宾夕法尼亚州Marcellus区块,都是被众所周知,认为其通透性基本上为零,因此也不考虑其经济性。20世纪80至90年代初,Mitchell 能源公司结合大裂缝设计,严谨的油藏描述,水平井,更低的成本和水力压裂,使得Barnett页岩区块具有经济性。

2003年至2004年,从Barnett页岩区块生产的页岩气超越了一些浅层天然气井的产量,如历史上的阿巴拉契亚俄亥俄区块和密歇根盆地Antrim页岩区块。现在每天约有20亿立方英尺的天然气是产自美国页岩气。

2005年至2010年,Barnett区块的页岩产量增长到大约每天5亿立方英尺。在其他主要盆地的主要页岩区块也开始发展。

2010年,Marcellus页岩区块亚特兰大中部/东北部地区--靠近东海岸的大城市的天然气需求中心的一个重要的组成部分-被认为拥有接近一半的技术可采近的页岩气资源。[9]

对美国产生的影响

美国页岩气的大开发,一是改变了全国能源供应结构,促使全国油气进口预期不断降低,对外依存度有望降至20世纪80年代以来的最低水平;二是诱发了油气价格联动机制减弱。自2009年初至2010年3月1日,原油价格已上涨了73%,而美国天然气价格却下降了15%;三是刺激了传统能源的替代应用。如,在交通行业中增加压缩天然气替代石油,发电行业中增加天然气替代煤炭等,其中在2005年至2010年的5年间,用于交通燃料的天然气消费量增长了43.5%,气发电的消费份额(相对于天然气的消费总量)从2005年的26%攀升至2010年的30.1%;四是带来了更多的就业机会、税收收入以及一定程度的区域经济增长。如,2008年Marcellus页岩气的发展给宾夕法尼亚州带来了23亿美元的经济收入,创造了29000个就业机会,给州政府和当地政府带来了2.4亿美元的税收。[9]

页岩气- 改变全球能源规则

美国页岩气分布图

页岩气的异军突起不仅改变了美国国内能源结构和能源战略,也影响着世界地缘政治和能源供应格局。

欧洲天然气市场呈现多元化供应格局。当前的美国天然气市场处于供过于求和高库存状态,在迫使一些LNG出口商将出口目标从美国转移到欧洲和亚太市场的同时,美国也正在向LNG 出口国转变,目前已经与欧洲签订了第一个LNG出口合同。

俄罗斯正逐渐失去在欧洲天然气市场强硬的定价权和一定范围的市场份额。随着更多的LNG 进入欧洲和亚太地区,欧洲天然气消费单一依赖俄罗斯的局面将得到改变,同时可能会有更多用户转向现货市场促使LNG价格降低。另外,中国面临的油气地缘竞争压力将会减弱。中国的能源消费大国地位和现阶段相对良好的经济环境,使得全球天然气供应商普遍认为中国会是未来管输气和LNG进口潜力最大的国家,进而导致来自美国、俄罗斯等资源国的能源合作愿望增强,而俄罗斯天然气价格的松动可能使中国在中俄天然气价格谈判过程中拥有更多的议价空间。

美国页岩气大发展催化世界油气地缘政治格局发生结构性调整。2009年美国以6240亿立方米的产量首次超过俄罗斯成为世界第一大天然气生产国,产量地位的更替意味着美国凭借资源主导优势在能源外交和巩固政治霸权方面有了更多的话语权。美国通过争夺天然气贸易伙伴达到排挤俄罗斯在亚欧大陆天然气供应垄断的目的已经初见成效,未来的油气地缘竞争依然是美国主导的大国博弈,只是大国势力结构已经并将继续发生变化。[9]

页岩气及其成藏条件概述

页岩气及其成藏条件概述 2010年7月,在四川川南地区中国石油集团公司第一口页岩气井(威201井)顺利完成加砂压裂施工任务,标志着中国石油集团公司进入了页岩气的实战阶段。页岩气是一种非常规天然气资源,其储量巨大,有关统计表明全球页岩气资源量约为456.24×1012m3。较早对页岩气进行研究的是美国和加拿大,这些国家在勘探和开发中都取得了丰富的成果,形成了较为完备的页岩气系统理论,进入了快速的发展阶段;而我国对页岩气的勘探开发还在初级阶段,研究相对程度相对落后,但我国页岩气资源量也十分丰富(预测为30-100×1012m3)。据有关专家介绍,随着我国经济发展对油气资源的需求,页岩气将是我国今后油气资源勘探和开发的重点。 1 页岩气及其特点 1.1 页岩气储量 从世界范围来看泥、页岩约占全部沉积岩的60%, 表1 世界较大页岩气储量地区表(×1012m3) 其资源量巨大。全球页岩气资源量为456.24×1012m3,主要分布在北美、中亚和中国、中东和北非、太平洋地区、拉美、前苏联等地区(表1) 在我国的松辽盆地白垩系、江汉盆地的第三系、渤海湾盆地、南华北、柴达木以及酒泉盆地均具有页岩气资源的分布。其中,四川盆地的古生代海相沉积环境形成的富有机碳页岩与美国东部的页岩气盆地发育相似。仅四川川南威远、泸州等地区的页岩气资源潜力(6.8-8.4×1012m3),相当于整个四川盆地的常规天然气资源的总量。 1.2 页岩气及特点 页岩是由固结的粘土级的颗粒物质组成,具有薄页状或薄片层状的一种广泛分布的沉积岩。页岩致密且含有大量的有机质故成暗色(如黑色、灰黑色等)。在大多数的含油气盆地中,页岩既是生成油气的烃原岩也是封存油气的盖层。在某些盆地中,如果在纵向上沉积较厚(几十米-几百米),横向上分布广泛(几百-几万平方公里)的页岩同时作为了烃原岩和储集岩,且在其内聚集了大量的天然气,那就是页岩气。 所谓页岩气是指富含有机质、成熟的暗色泥页岩,因热作用和生物作用而形成了大量储集在页岩裂缝、孔隙中的且以吸附和游离赋存形式为主的天然气。与常规储层天然气相比,页岩气具有独特的特点(表2)。表2 常规储层天然气与页岩气对比表 成因类型热成因、生物成因及石油裂解气热成因、生物成因

页岩气资源调查评价与勘查示范立项指导意见-资源评价部

页岩气资源调查评价与勘查示范立项指导意见 页岩气是一种清洁、高效的非常规天然气资源。中央高度重视页岩气资源调查工作,国土资源部积极落实中央部署,组织编制了《全国页岩气资源调查评价和勘查示范专项实施方案》,为专项的组织实施,规范页岩气资源调查项目立项工作,特提出如下指导意见。 一、项目设置 全国页岩气资源调查评价和勘查示范专项,按照页岩气地质理论和评价方法研究、页岩气资源调查评价(包括潜力评价、重点远景区调查评价、重点有利目标区调查评价)和勘查示范三个方面统筹部署。 页岩气资源调查评价,以沉积盆地或盆地群为单位设置计划项目,包括:盆地内页岩气资源潜力评价、重点远景区调查评价、重点有利目标区调查评价和勘查示范等4个方面的工作项目,以利于整体从盆地演化上,研究页岩气资源的时空分布和富集规律,也便于不同类型的项目资料共享,相互促进。 二、重点工作内容 页岩气资源潜力评价:以盆地或盆地群为单元,按类型、分层系,以富含有机质页岩为评价对象,进行潜力评价。主要以野外地质调查和非地震物探为主,必要时部署二维地

震,实施少量调查井。建立富有机质泥页岩层系地层剖面;分析和总结构造格局、富含有机质页岩的时空分布规律,获取地质评价基本参数(包括:TOC、Ro、有机质类型、热解分析、含气性、岩石矿物组合和结构),编制沉积盆地构造格架图、岩相古地理图、富有机质泥页岩等厚图及埋深图、TOC图、Ro图。评价页岩气资源潜力,提出页岩气远景区。 原则上盆地内重点二级构造单元有1口调查井控制。 重点远景区评价:以含气页岩为评价对象,以详细地质调查为主,辅以二维地震、调查井或参数井,确定含气页岩层段分布,建立含气页岩层系精细剖面;基本查明含气页岩层段的分布,岩石矿物学及物性特征,研究气体赋存与富集方式,储层孔隙度、渗透率及微裂缝发育等特征;获取有机质丰度、类型、热演化等有机地化参数。开展盆地模拟分析,研究页岩气富集规律,确定含油气性及有效含气页岩层分布,估算页岩气资源量,优选和评价有利目标区,分析勘查开发前景。 编制远景区含气页岩层系岩相古地理图、含气页岩层段等厚图及埋深图、含气页岩层系精细剖面图、TOC图、Ro 图、四性关系图(岩性、物性、电性、含气性)、资源评价图。 原则上每个重点远景区有3-5口调查井控制,有地球物理资料控制构造和地层展布。

中国页岩气形成机理 地质特征及资源潜力

中国页岩气形成机理地质特征及资源潜力 摘要:页岩气是以自生自储为主的非常规天然气,是油气资源中的新型矿种。 由于页岩气储层低孔低渗,要实现大规模开采必须克服许多理论和技术上的难题。本文分析中国页岩气基本特征、形成机理与富集条件、面临的难题等, 对中国页 岩气资源潜力进行预测, 以期为中国页岩气的研究和勘探开发提供依据。 关键词:非常规油气 ;页岩气;源岩油气 页岩气是一种潜在资源量非常巨大的非常规天然气资源,具有含气面积广、 资源量大、开采技术要求高、生产寿命长、稳产周期长等特点。近年来,严峻的 能源紧张形势使页岩气资源在世界范围内受到了广泛的关注。 一、页岩气勘探开发现状 油气工业的发展主要历经构造油气藏、岩性地层油气藏、非常规油气藏三个 阶段。油气藏分布方式分别有单体型、集群型、连续型三种类型。从构造油气藏 向岩性地层油气藏转变是第一次理论技术创新,以寻找油气圈闭为核心;从岩性地 层圈闭油气藏向非常规连续型油气藏转变是第二次理论技术创新或革命,以寻找有 利油气储集体为核心,致密化“减孔成藏”机理新论点突破了常规储集层物性下限与 传统圈闭找油的理念。随着勘探开发技术不断进步,占有80%左右资源的非常规油气,如页岩气、煤层气、致密气、致密油、页岩油等已引起广泛关注,并得到有效 开发, 在油气储产量中所占比例也逐年提高。传统观点仅认识到页岩可生油、生气,未认识到页岩亦可储油、储气,更未认识到还能聚集工业性页岩油、页岩气。 近年来,典型页岩气的发展尤为迅速,地质认识不断进步,优选核心区方法、实验分 析技术、测井评价技术、资源评价技术、页岩储集层水平井钻完井、同步多级并 重复压裂等先进技术获得应用, 形成“人造气”是页岩气快速发展的关键因素。页岩气突破的意义在于: 突破资源禁区,增加资源类型与资源量。 2、挑战储集层极限,实现油气理论技术升级换代,水平井多级压裂等核心技术,应用于其他致密油气等非常规和常规油气储集层中更加经济有效,可大幅度提高油 气采收率。 3、带动非常规油气技术发展,推动致密油气、页岩油等更快成为常规领域。 二、中国富有机质页岩特征 源岩油气是一种新资源类型, 包括页岩油、页岩气、煤层气等,自生自储,主要 产自源岩内储集层中。页岩是由粒径小于0.0039 mm的细粒碎屑、黏土、有机质 等组成,具页状或薄片状层理、易碎裂的一类沉积岩,也称为细粒沉积岩。页岩气 是指从富有机质黑色页岩中开采的天然气,或自生自储、在页岩纳米级孔隙中连续 聚集的天然气。中国三类富有机质页岩泛指海相、海陆交互相及陆相页岩和泥岩, 重点指含油气盆地中的优质泥质烃源岩,图中为依据中国页岩发育的层系和分布特 点编制的三类页岩分布图。中国南方地区海相页岩多为硅质页岩、黑色页岩、钙 质页岩和砂质页岩,风化后呈薄片状,页理发育。海陆过渡相页岩多为砂质页岩和 炭质页岩。陆相页岩页理发育, 渤海湾盆地、柴达木盆地新生界陆相页岩钙质含 量高,为钙质页岩,鄂尔多斯盆地中生界陆相页岩石英含量较高。 2、中国页岩形成的区域地质背景。古生代,在中国南方、华北及塔里木地区形成了广泛 的海相和海陆过渡相沉积, 发育多套海相富有机质页岩和海陆过渡相煤系炭质页岩。在后期改造过程中, 部分古生界海相页岩经历了挤压变形或隆升。四川盆地、华北地区、塔里木盆地构

页岩气特点及成藏机理

页岩气特点及成藏机理 ---陈栋、王杰页岩气作为一种重要的非常规油气资源,随着能源资源的日益匮乏,作为传统天然气的有益补充,其重要性已经日益突出。随着国家新一轮页岩气勘探开发部署的大规模展开,正确认识和掌握页岩气的成因、成藏条件等知识,对于今后从事页岩气现场录井的工作人员提高录井质量具有较好的指导意义。 1.概况 页岩气(shale gas)是赋存于富有机质泥页岩及其夹层中,以吸附和游离状态为主要存在方式的非常规天然气,成分以甲烷为主,与“煤层气”、“致密气”同属一类。其形成和富集有着自身独特的特点,往往分布在盆地内厚度较大、分布较广的页岩烃源岩地层中。 2.特点 2.1 页岩气是主体上以吸附或游离状态存在于暗色泥页岩、高碳泥岩、页岩及粉砂质岩类夹层中的天然气,它可以生成于有机成因的各种阶段天然气主体上以游离相态(大约50%)存在于裂缝、孔隙及其它储集空间;以吸附状态(大约50%)存在于干酪根、粘土颗粒及孔隙表面,极少量以溶解状态储存于干酪根、沥青质及石油中天然气也存在于夹层状的粉砂岩、粉砂质泥岩、泥质粉砂岩、甚至砂岩地层中为天然气生成之后,在源岩层内的就近聚集表现为典型的原地

的有利目标。页岩气的资源量较大但单井产量较小,美国页岩气井的单井采气量为2800-28000m3/d。 2.5 在成藏机理上具有递变过渡的特点,盆地内构造较深部位是页岩气成藏的有利区,页岩气成藏和分布的最大范围与有效气源岩的面积相当。 2.6 原生页岩气藏以高异常压力为特征,当发生构造升降运动时,其异常压力相应升高或降低,因此页岩气藏的地层压力多变。 2.7 页岩气开发具有开采寿命长和生产周期长的优点—-大部分产气页岩分布范围广、厚度大,且普遍含气,使得页岩气井能够长期地稳定产气。但页岩气储集层渗透率低,开采难度较大。 3.成因 通过对页岩气组分特征、成熟度特征分析,页岩气是连续生成的生物化学成因气、热成因气或两者的混合。生物成因气是有机物在低温下经厌氧微生物分解作用形成的天然气;热成因气是有机质在较高温度及持续加热期间经热降解和裂解作用形成的天然气。相对于热成因气,生物成因的页岩气分布极限,主要分布盆地边缘的泥页岩中,在美国研究比较深入的五个盆地的五套页岩中,密执安盆地和伊利诺斯盆地发现了生物成因的页岩气藏,并且是勘探目标中的主要构成(Schoell,1980;Malter 等,2000)。 3.1 生物成因

射孔

5.3.完井设计的基本理论 5.3.1.完井方式 5.3.1.1射孔完井方式 套管射孔完井是钻穿油层直至设计井深,然后下面层套管至油层底部注水泥固井,最后射孔,射孔弹射穿油层套管、水泥环并穿透油层某一深度,建立起油流的通道。套管射孔完井既可选择性地射开不同压力、不同物性的油层,以避免层间干扰,还可避开夹层水、底水、气顶和夹层的坍塌,具备实施分层注采和选择性压裂或酸化等分层作业的条件。 尾管射孔完井是在钻头钻至油层顶界后,下技术套管注水泥固井,而后用小一级的钻头钻穿油层至设计井深,用钻具将尾管送下并悬挂在技术套管上,尾管 50,再对尾管注水泥固井,最后射孔。尾管射和技术套管的重合段一般不小于m 孔完井由于在钻开油层以前上部地层已被技术套管封固。因此,可以采用与油层相配伍的钻井液以平衡压力、欠平衡压力的方法钻开油层,有利于保护油层。此外这种完井方式可以减少套管重量和油井水泥的用量,从而降低完井成本。目前较深的油,气井大多采用此方法完井。 图5.2 套管射孔完井图5.3 尾管射孔完井 5.3.1.2裸眼完井方式

裸眼完井的最主要特点是油层完全裸露,因而油层具有最大的渗流面积。这种井称为水动力学完善井,其产能较高。裸眼完井虽然完善程度高,但使用局限性很大,例如:不能克服井壁坍塌和油层出砂对油井生产的影响;不能克服生产层范围内不同压力的油、气、水层的相互干扰;无法进行选择性酸化和压裂等。 5.3.1.3割缝衬管完井方式 割缝衬管完井方式是钻头钻至油层顶界后,先下技术套管注水泥固井,再从技术套管中下入直径小一级的钻头钻穿油层至设计井深。最后在油层部位下入预先割缝的衬管,依靠衬管顶部的衬管悬挂器(卡瓦封隔器),将衬管悬挂在技术套管上,并密封衬管和套管之间的环形空间,使油气通过衬管的割缝流入井筒。这种完井方式油层不会遭受固井水泥浆的损害,可以采用与油层相配伍的钻井液或其它保护油层的钻井技术钻开油层,当割缝衬管发生磨损或失效时也可以起出修理或更换。 5.3.1.4砾石充填完井方式 它是先将绕丝筛管下入井内油层部位,然后用充填液将在地面上预先选好的砾石泵送至绕丝筛管与井眼或绕丝筛管与套管之间的环形空间内,构成一个砾石充填层,以阻挡油层砂流入井筒,达到保护井壁、防砂入井的目的。砾石充填完井一般都使用不锈钢绕丝筛管而不用割缝衬管。

北美地区典型页岩气盆地成藏条件解剖要点

北美地区典型页岩气盆地成藏条件解剖 1、阿巴拉契亚盆地俄亥俄页岩系统 (1)概况 阿巴拉契亚盆地(Appalachian)位于美国的东部,面积280000平方公里,包括New York西部、Pennsylvania、West Virginia、Ohio、Kentucky和Tennessee 州等,是美国发现页岩气最早的地方。俄亥俄(Ohio)页岩发育在阿巴拉契压盆地西部,分布在肯塔州东北部和俄亥俄州,是该盆地的主要页岩区(图2)。该区古生代沉积岩是个巨大的楔形体,总体上是富含有机质页岩、碎屑岩和碳酸盐岩构成的旋回沉积体。 图1 美国含页岩气盆地分布图 1953年,Hunter和Young对Ohio页岩气3400口井统计,只有6%的井具有较高自然产能(平均无阻流量为2.98万m2/d),主要原因是这些井的页岩中天然裂缝网络比较。其余94%的井平均产量为1726m3/d,经爆破或压裂改造后产量达8063m3/d,提高产量4倍多。1988年前,美国页岩气主要来自Ohio页岩气系统。截止1999年末,该盆地钻了多达21000口页岩井。年产量将近34亿m3。天然气资源量58332—566337亿m3,技术性可采收资源量4106~7787亿m3。每口井的成本$200000-$300000,完井成本$25~$50。 (2)构造及沉积特征 阿巴拉契亚盆地东临Appalachian山脉,西濒中部平原,构造上属于北美地台和阿巴拉契亚褶皱带间的山前坳陷。伴随Laurentian古陆经历了由被动边缘型

向前陆盆地的演化过程。盆地以前寒武纪结晶岩为基底,古生代沉积岩呈巨大的楔形体(最大厚度12 000 m)埋藏于不对称的、向东变深的前陆盆地中。寒武系和志留一密西西比系为碎屑岩夹碳酸盐岩,奥陶系为碳酸盐岩夹页岩,宾夕法尼亚系为碎屑岩夹石灰岩及煤层。总体上由富有机质泥页岩(主要为碳质页岩)、粉砂质页岩、粉砂岩、砂岩和碳酸盐岩等形成3~4个沉积旋回构成,每个旋回底部通常为富有机质页岩,上部为碳酸盐岩。泥盆系黑色页岩处于第3个旋回之中,分布于泥盆纪Acadian 造山运动下形成的碎屑岩楔形体内(James,2000)。该页岩层可再分成由碳质页岩和较粗粒碎屑岩互层组成的五个次级旋迥(Ettensohn ,1985)。它们是在阿卡德造山运动的动力作用下和Catskill 三角洲的向西进积中沉积下来的。 (3)页岩气成烃条件分析 ①页岩分布特征 阿巴拉契亚盆地中南部最老的泥盆纪 页岩层系属于晚泥盆世。Antrim 页岩和New Albany 大致为Chattanooga 页岩和Ohio 页 岩的横向同位层系(Matthews,1993)。在俄 亥俄东边和南边,Huron 段分岔。有的地区已 经被插入的灰色页岩和粉砂岩分成两个层。 俄亥俄页岩系统,覆盖于Java 组之上 (图3)。由三个岩性段组成:下部 Huron 段 为放射性黑色页岩,中部Three Lick 层为 灰色与黑色互层的薄单元,上部Cleveland 段为放射性黑色页岩。俄亥俄页岩矿物组成 包括:石英、粘土、白云岩、重金属矿(黄 铁矿)、有机物。 图2是西弗吉尼亚中部和西部产气区泥 盆纪页岩层的地层剖面。中上泥盆统的分布 面积约128,000mi 2(331,520km 2),它们沿 盆地边缘出露地表。页岩埋藏深度为610~ 1520m ,页岩厚度一般在100-400ft(30— 120m),泥盆系黑色页岩最大厚度在宾夕尼亚州的中北部(图3)(deWitt 等,1993)。 ②页岩地球化学特征 图4表示Ohio 页岩下Huron 段烃源岩有机碳等值线图。从镜质体反射率特征来图2 阿巴拉契亚盆地西部中泥盆统-下密西西比系剖面 (据Moody 等,1987)

北美典型页岩气藏岩石学特征_沉积环境和沉积模式及启示

第29卷 第6期2010年 11月 地质科技情报 Geolog ical Science and Technolog y Information Vol.29 No.6Nov. 2010 北美典型页岩气藏岩石学特征、沉积环境和 收稿日期:2010 04 27 编辑:杨 勇 基金项目:国家自然科学重点基金(石油化工联合基金)项目(40839910);中国石油化工股份有限公司科研项目(J 1407 09 KK 0157)作者简介:杨振恒(1979 ),男,工程师,主要从事石油地质综合研究工作。E mail:yan gzhen hen g2010@ 沉积模式及启示 杨振恒,李志明,王果寿,腾格尔,申宝剑 (中国石油化工股份有限公司石油勘探开发研究院无锡石油地质研究所,江苏无锡214151) 摘 要:北美典型页岩气藏赋存的泥页岩主要为细颗粒沉积,呈暗色或黑色薄层状或块状产出。页岩气储层无机矿物成分中硅 质含量较高,含有黄铁矿、磷酸盐矿物(磷灰石)、钙质和黏土矿物。具有相对高有机质质量分数,代表了富有机质的缺氧的沉积环境。不含或者含较少的陆源碎屑输入。有机质类型以 和!型干酪根较为常见。生物化石碎片在页岩层中比较常见,化石碎屑的类型多样化。重点剖析了福特沃斯盆地Barnett 页岩的沉积发育模式,福特沃斯盆地是一狭长的前陆盆地,主要沉积区离物源区较远,Barnett 页岩沉积于较深的静水缺氧环境,沉积速度缓慢(饥饿性沉积),最终形成富含有机质的Barnett 页岩。常见生物化石碎片,但缺少生物扰动遗迹,推测盆地中大部分的生物化石为外部输入的结果。上升流作用致使磷酸盐矿物(磷灰石)发育。北美典型页岩气藏的岩石学特征、沉积环境和福特沃斯盆地Barnett 页岩沉积发育模式可以用来指导我国页岩气勘探,黔南坳陷下寒武统黑色高碳质页岩系、二叠系吴家坪组和四川广元 绵竹地区下寒武统泥页岩具有和北美典型页岩气藏可类比的岩石学特征、沉积环境和沉积模式,可作为页岩气勘探的优选区域。 关键词:页岩气;岩石学特征;有机碳含量;沉积环境;沉积模式 中图分类号:T E122.115 文献标志码:A 文章编号:1000 7849(2010)06 0059 07 近年来,页岩气在北美特别是美国得以成功地勘探和开发,引起了广泛的关注。国内外学者从页岩气系统出发,对页岩气成藏的有机碳质量分数、成熟度、裂缝系统、温度、压力、抬升与沉降史以及吸附 机理等进行了深入的研究[1 7] ,但是,对页岩气藏发育的泥页岩的岩石学特征、沉积环境和沉积模式研究还较少涉及。页岩气藏发育的泥页岩具有独特的岩石学特征,识别不同的岩石学特征是评价页岩气成藏条件、原地含气量和资源量的关键。在页岩气开发阶段,识别不同的岩相是实施开发方案的基础。在福特沃斯盆地,识别Barnett 页岩岩性是页岩气评价中关键的步骤[8]。笔者根据北美页岩气研究的最新成果,就页岩气藏发育的泥页岩的岩石学特征、沉积环境及福特沃斯盆地Barnett 页岩沉积模式进行讨论。北美典型页岩气藏岩石学特征、沉积环境和福特沃斯盆地Barnett 页岩沉积模式对我国页岩气研究和勘探同样具有指导意义。 1 典型页岩气藏岩石学特征 页岩气作为非常规天然气资源,其勘探、开发思 路和方式与常规油气资源有明显的不同之处。研究 表明,沉积物的岩石学特征是页岩气成藏的重要控 制因素[8 10] ,主要包括泥页岩的构造和粒度特征、有机碳质量分数、岩石矿物组成、生物化石特征等。1.1岩石构造和粒度特征 页岩气藏发育的泥页岩主要为暗色或黑色的细颗粒沉积层,呈薄层状或块状。德克萨斯州福特沃斯盆地Bar nett 页岩及其上下相邻地层由不同的岩相组成,Barnett 页岩及上下相邻地层可识别出3种 岩性[9] ,分别为薄层状硅质泥岩、薄层状含黏土的灰质泥岩(泥灰)和块状灰质泥粒灰岩。但是,主力产气层位上Barnett 页岩和下Barnett 页岩以层状硅质泥岩为主,主要由细微颗粒(黏土质至泥质大小)的物质组成(图1)。Barnett 页岩缺少粗粒的陆源碎屑物质,表明地质历史沉积时期这一地区离陆相物源区较远,属饥饿性沉积,最终形成了层状的Bar nett 页岩沉积充填样式。富页岩气前景的英属哥伦比亚西北部Baldo nnel 层Ducette 组地层被称之为暗色的以石英为主的细粒页岩,主要由多样的放射性的、碳质的含黏土的灰岩和细粒粉砂岩组成。1.2岩石矿物质量分数 页岩气储层无机矿物成分中硅质质量分数较高,另外还含有方解石和长石等矿物。所含硅质主

页岩气钻井地质及工程设计要点

页岩气钻井地质及工程设计要点 一、封面 页首写构造:大地构造单元名称。井别:参数井(或调查井)、压裂井等。井型:直井等。页首下写项目名称:××省××页岩气××井地质及工程设计页倒二行:编制单位。 页末:编制日期(出稿时年月日)。 二、扉页 页首:项目设计名称。页中:项目名称、承担单位、编制单位、项目负责、设计人、参加人员、单位负责、审核等。 页末:编制日期(出稿时年月日)。 三、责任表及目录 责任页表:井号、井别、井型、主管单位、项目名称、承担单位、项目负责、设计人、参加人、项目组意见、专家论证意见(右下角签字、日期)、主管单位(右下角签字、日期)。目录:可按二级大纲级别设置目录及章节所在页码。以上一至三项无须页码。 四、正文 1 目的和任务 扼要说明本项目的主要目的和任务。 2 井区位置概况 2.1 井区位置和交通 叙述井位所在区主要的行政隶属(省、县、乡或镇、村)地理位置、地理坐标、铁路、公路干线及要道、井场进出公路相通等情况。附交通位置示意插图(图内外框、坐标数据、比例尺、井位位置等)。 2.2 井区自然地理 1. 地形地貌:主要阐述井位及其附近的地形(平缓或宽阔、土地、植被、井位标高、高差、平坝面积等。 2. 水源、电力、通讯:重点叙述井位处钻探工程用水距离、水量及其保障等情况,扼要叙述电力和通讯情况。

3 基本数据 列表说明页岩气钻井地理位置、构造位置、井口坐标(经纬、直角)、井口标高、设计井深、目的层位、钻探目的、设计目的、完井方式、录井情况、随钻实验情况等。 4 钻探设计依据及目的 4.1 设计依据 根据有关资料或报告简要阐述页岩气厚度、地层、构造、测试结果、页岩气稳定情况、相关结论等。 4.2 钻探目的 简要叙述钻探所达到的目的:目的层系、获取岩芯地层、了解的地层、获取地层厚度、有机质含量、岩石力学特征、页岩储集能力、页岩含气量系列参数等,为××提供地质依据。5 井区地质概况 5.1 区域地层 简述区域由老到新有关主要的地层(系、统、组)。5.2井区地层 由老到新详细阐述井区钻井遇地层及其上下地层系、统、组、段的岩性、厚度、接触关系,附相关地层插图 。5.3区域构造 简述区域大地构造位置及构造轮廓,与本井区有关的褶曲、断裂并加以综述。附区域构造插图。 5.4井区构造 先综述井区构造基本形态:地层志向、倾向、倾角极值及一般值、发育断裂和褶曲条数、长度、断距。 分述有关褶曲、断裂具体情况。5.4构造演化特征 综述沉积环境、沉积相、构造运动及其演化情况等。

天然气分布规律及页岩气藏特征

天然气分布规律 辽河盆地的天然气在纵向上和横向上分布都很广泛。在横向上,由于气体形成的途径多于油的形成途径,气体的分布区域远远大于油层的分布;在纵向上,自目前勘探的最深部位到浅层均有气体存在,含气层系多,自下而上发育了太古界、中生界和新生界。特别是第三系自沙四段到明化镇组各层段均有气藏存在,沉积环境和演化史的特征,造成天然气原始组分富烃,贫H:S,少CO:和N2。 辽河断陷广泛发育多期张性断裂,把二级构造带切割成复杂的断块油气田。受构造、断裂活动影响,造成多次油气聚集、重新分配而形成多套含油气层系。 通过天然气的地球化学研究,结合盆地地质背景,天然气有如下分布规律:1.自生自储的天然气垂向分布 以自生自储为主的天然气层,自下而上分布有侏罗系的煤型气、正常凝析油伴生气、正常原油伴生气、生物一热催化过渡带气和生物成因气等。其特征主要是613C,依次变轻。侏罗系煤型气主要分布在深大断裂边缘,仅处于侏罗系发育的地区,如东部凹陷三界泡地区。正常凝析油伴生气主要发育在有机质埋深达到高成熟阶段的地区,主要为各个凹陷的沉降中心部位,如整个盆地的南部地区及东部凹陷北部地区。正常原油伴生气在整个盆地均有分布,主要是与原油伴生的气顶气和溶解气。生物一热催化过渡带气主要发育在有机母质埋深浅于3000m 的未成熟和低成熟阶段,并有良好的盖层发育的地区,部分地区的局部构造亦可形成小型气藏,在盆地的大部分地区均有分布,主要在东部和大民电凹陷的有利地区。生物成因气理论上在整个盆地浅层都存在。因此,只要有良好的储盖组合,在整个盆地中都可望发现生物成因气藏。 总体来看,三个凹陷中,大民屯凹陷以成熟阶段的石油伴生气和生物一热催化过渡带气为主.有少量生物成因气。东部凹陷在不同的构造部位分布不同类型的气体,中生界发育并位于深大断裂边缘的地区,有煤型气和深源气的存在。南、北凹陷深部位置,主要是高成熟和成熟的热催化一热裂解气。而凹陷中部广泛发育生物一热催化过渡带气。在构造高部位有利地区,发育有较可观的生物成因气。西部凹陷主要发育热催化一热裂解气,特别是凹陷南部沉降中心处,热裂解形成的正常凝析油伴生气更为广泛。在有机母质埋深浅的部位发育生物一热催化过渡带气。当然,如果存在有利的储盖组合,生物成因气的存在勿需置疑。 2.断裂构造导致天然气广泛运移 广泛发育的断裂构造,使大多数天然气发生不同程度的运移,造成天然气更加广泛、更加复杂的分布格局。断裂构造或不整合面为气体运移通道,形成新生古储的古潜山油气藏。天然气的垂向和侧向运移,造成了大面积浅层气藏的形成。这部分气体的气源岩母质类型、演化程度,特别是天然气同位素组成特征均与原生气藏一致。最明显的差别是甲烷含量相对高,重烃含量低,愈向浅层,甲烷含量愈高,反映运移的地质特点是由斜坡低部位向高部位甲烷含量升高,由低台阶向高台阶甲烷含量亦升高,如兴隆台气田不同台阶的天然气组分由下到上变干。曙光一高升油气藏也有类似分布。在大民屯凹陷东部浅层及东、西部凹陷的大部分地区浅层干气也是运移形成 3.天然气藏类型分布 构造运动造成了多套油气层和多种类型的储集层,形成了多样的天然气藏类型,根据控制油气的主要因素,可以划分出四大类油气藏:(1)构造油气藏,包括背

页岩气国内外研究现状

页岩气国内外研究现状 一、页岩气的定义 关于页岩气的定义,Curtis 认为页岩气可以是储存在天然裂隙和颗粒间孔隙中的游离气,也可以是干酪根和页岩颗粒表面的吸附气或者是干酪根和沥青质中的溶解气。中国地质大学张金川教授给出的定义是:主体位于暗色泥页岩或者高碳泥页岩中,以吸附和游离状态为主要存在方式的地层中的天然气聚集。 二、页岩气资源的地质特征 2.1 多相态存在于致密页岩中 页岩气是以有游离、吸附和溶解状态存在于暗色泥页岩中的天然气,其赋存形式具有多样性,但以游离态和吸附态为主,溶解态仅少量存在。从美国的情况看,游离气在20%~80%之间,吸附气在80%~20%之间,范围很宽,其中部分页岩气含少量溶解气。游离气主要存在于粒间空隙和天然裂隙中,吸附气则存在于基质表面。随着页岩气研究的不断深入,学者们开始认为吸附态页岩气至少占到总储量的一半。天然气在页岩中的生成、吸附与溶解逃离,如图1 所示,当吸附在基质表面的气量达到饱和后,富余的气体会解析进入基质孔隙,然后随着天然气的产出,裂隙内压力降低,基质内气体进入裂隙聚集后流出。 2.2 源岩层系 页岩系统包括富有机质页岩,富有机质页岩与粉砂岩、细砂岩夹层,粉砂岩、细砂岩夹富有机质页岩;页岩气形成于富有机质页岩,储存于富有机质页岩或一套与之密切相关的连续页岩组合中,不同盆地页岩气层组合类型不相同。即页岩气为源岩层系天然气聚集的一种,为天然气生成后,未排出源岩层系,滞留在源岩层系中形成的。源岩层系油气聚集除页岩气外,还包括煤层气、页岩油和油页

岩。 2.3 页岩气为连续型油气聚集 Curtis对页岩气(Shale gas)进行了界定,并认为页岩气在本质上就是连续生成的生物化学成因气、热成因气或两者的混合,它具有普遍的地层饱含气性、隐蔽聚集机理、多种岩性封闭和相对很短的运移距离,它可以在天然裂缝和孔隙中以游离方式存在,在干酪根和粘土颗粒表面上以吸附状态存在,甚至在干酪根和沥青质中以溶解状态存在。即页岩气为连续型气藏(图1)。 2.4 页岩气为源岩层系油气聚集 在页岩气藏中,天然气也存在于夹层状的粉砂岩、粉砂质泥岩、泥质粉砂岩,甚至砂岩地层中,为天然气生成之后在源岩层内就近聚集的结果,表现为典型的“原地”成藏模式。从某种意义来说,页岩气藏的形成是天然气在源岩中大规模滞留的结果。 中国页岩气藏与北美地区相比较有以下特殊性:( 1) 海相页岩热演化程度较高(Ro值为2. 5%~5. 0% ) 、构造活动较强,需寻找保存有利的地区,避开露头和断裂破坏区:( 2) 陆相页岩热演化程度较低、分布非均质性较强:( 3) 地面多山地、丘陵等复杂地表,埋藏较深(5000~7000m) 。所以在勘探开发过程要有针对性地采取合理措施开发我国页岩气。张金川等学者认为页岩气成藏模式介于煤层气和根缘气之间,表现为过渡特征,并将我国页岩气资源富集类型分为:南方型、北方型和西北型。

谈页岩气的赋存形式研究及其石油地质意义

谈页岩气的赋存形式研究及其石油地质意义 谈页岩气的赋存形式研究及其石油地质意义 摘要:页岩气是一种赋存在页岩中的天然气,其赋存表现形式有很多种,但主要是以游离或者吸附状态的形式存在的。所以,本文论述了页岩气的赋存表现形式以及形成过程中受到的主要影响因素,并探究了赋存形式对页岩气地质储量的重要影响意义。 关键词:页岩气;赋存形式;地质意义 随着经济建设不断发展,人们对能源资源的需求量不断增加,一些规模比较大、储量丰富、容易开采的天然气资源越来越少,这就迫使人们将天然气开采的重心转移到开采成本相对较低、但对开采技术要求比较高的页岩气、煤层气以及砂岩气等方面来,其中比较重要的是页岩气的开采。由于页岩气不仅赋存形式丰富,而且还具有很强的特殊性,容易受到各种因素的干扰,对页岩气藏的地质储量研究产生直接的影响。 一、页岩气的主要赋存形式 页岩气的赋存形式主要有:游离状态、吸附状态以及溶解状态。一般情况下,页岩气赋存的主要状态和溶解度的大小有直接性的联系。当气体在页岩流体体系中的溶解饱和度较低时,页岩气主要以吸附状态和溶解状态的形式存在;当气体在掩饰流体体系中的溶解饱和度较高时,页岩气就会以游离状态的形式出现;当生成的页岩气既能够满足有机质又能够满足岩石表面吸附要求时,页岩气就会以游离状态的形式进行集中性的运移和聚集。 二、影响页岩气赋存形式的主要因素 (一)页岩气形成的主要原因 一般来讲,页岩气的赋存表现形式和形成原因有很大关系。一般在页岩气形成过程中,其组成成分会随着形成原因的不同发生改变,在这一过程中,从微生物的逐步分解到混合气体的形成,再到分解为热解成因气,高碳链烷烃的成分会不断的增加。微生物分解为成因气的地质条件多为水动力比较活跃、成熟度相对较低的盆地边缘地带,

页岩气成藏地质条件分析

页岩气是指主体位于暗色泥页岩或高碳泥页岩中,以吸附或游离状态为主要存在方式的天然气聚集为典型的“原地”成藏模式,页岩气大部分吸附在有机质和粘土矿物表面,与煤层气相似,另一部分以游离状态储集在基质孔隙和裂缝孔隙中,与常规储层相似。页岩气藏按其天然气成因可分为两种主要类型:热成因型和生物成因型,此外还有上述两种类型的混合成因型。北美地区是全球唯一实现页岩气商业开发的地区。目前北美地区已发现页岩气盆地近30个,发现Barnett等6套高产页岩。2008年,北美地区的页岩气产量约占北美地区天然气总产量的13%。至2008年底,美国页岩气井超过4.2万口;页岩气年产量600亿方以上,约占美国当年天然气总产量的10%。目前,美国已发现页岩气可采储量约7.47万亿方。FortWorth盆地密西西比系Barnett页岩气藏的成功开采掀起了全球开采页岩气的热潮。美国涉足页岩气的油气公司已从2005年23家增至2008年60多家;欧洲石油公司纷纷介入美国的页岩气勘探开发。页岩气作为一种非常规油气藏在国内也逐步受到关注。页岩气藏形成的主体是富有机质页岩,它主要形成于盆地相、大陆斜坡、台地凹陷等水体相对稳定的海洋环境和深湖相、较深湖相以及部分浅湖相带的陆相湖盆沉积体系,如FortWorth盆地Barnett组沉积于深水(120 ̄215m)前陆盆地,具有低于风暴浪基面和低氧带(OMZ)的缺氧厌氧特征,沉积营力基本上通过浊流、泥石流、密度流等悬浮机制完成,属于静水深斜坡盆地相。生物成因气的富集环境不同于热成因型页岩气。富含有机质的浅海地带,寒冷气候下盐度较低、水深较大的极地海域,以及大陆干旱-半干旱的咸水湖泊都是生物成因气形成的有利沉积环境;而缺氧和少硫酸盐是生物气大量生成的生化环境。在陆相环境中,由于淡水湖相盐度低,缺乏硫酸盐类矿物,甲烷在靠近地表不深的地带即可形成。但由于埋得太浅,大部分散失或被氧化,不易形成气藏。只有在半咸水湖和咸水湖,特别是碱性咸水湖中,可以抑制甲烷菌过早地大量繁殖,同时也有利于有机质的保存。埋藏到一定深度后,有机质分解,使PH值降低到6.5 ̄7.5范围时,产甲烷的细菌才能大量繁殖。这时形成的甲烷就比较容易保存,并能在一个条件下聚集成气藏。(1)热成熟度(Ro)。美国五大页岩气系统的页岩气的类型较多,既有生物气、未熟-低熟气、热解气,又有原油、沥青裂解气据(Curtis,2002),这些类型的天然气形成的成熟度范围较宽,可以从0.400%变化到2.0%,页岩气的生成贯穿于有机质生烃的整个过程。不同类型的有机质在不同演化阶段生气量不同,页岩中只要有烃类气体生成(R>0.4%),就有可能在页岩中聚集起来形成气藏。 生物成因气一般形成于成熟度较差的岩层中。密执安盆地Antrim生物成因型页岩的R仅为0.4% ̄0.6%,未进入生气窗,页岩Ro越高,TOC越低,越不利于生物气的形成。而福特沃斯盆地Barnett页岩热成因型气藏的页岩处于成熟度大于1.1%的气窗内,Ro值越高越有利于天然气的生成。所以热成熟度不是判断页岩生烃能力的唯一标准。 (2)有机碳含量(TOC)。有机碳含量是评价页岩气藏的一个重要指标,多数盆地研究发现页岩中有机碳的含量与页岩产气率之间有良好的线性关系,原因有两方面:①是因为有机碳是页岩生气的 物质基础,决定页岩的生烃能力,②是因为它决定了页岩的吸附气大小,并且是页岩孔隙空间增加的重要因素之一,决定页岩新增游离气的能力。如Antrim黑色页岩页岩气以吸附气为主(70%以上),含气量1.415 ̄2.83m/t,高低与有机碳含量呈现良好的正相关性。Ross等的实验结果表明,有机碳与甲烷吸附能力具有一定关系,但相关系数较低(R2=0.39)。他认为在这个地区有机碳与吸附气量关系还可能受其他多种因素的影响,如粘土成分及含量、有机质热成熟度等。(1)矿物成分。页岩中的矿物成分主要是粘土矿物、陆源碎屑(石英、长石等)以及其他矿物(碳酸盐岩、黄铁矿和硫酸盐等),由于矿物结构、力学性质的不同,所以矿物的相对含量会直接影响页岩的岩石力学性质、物性、对气体的吸附能力以及页岩气的产能。粘土矿物为层状硅酸盐,由于Si-O四面体排列方式,决定了它电荷丰富、表面积大,因此对天然气有较强的吸附能力,并且不同的粘土矿物对天然气的吸附能力也不同,蒙皂石吸附能力最强,高岭石、绿泥石次之,伊利石最弱。石英则增强了岩石的脆性,增强了岩石的造缝能力,也是水力压裂成功的保证。Nelson认为除石英之外,长石和白云石也是黑色页岩段中的易脆组分。但石英和碳酸盐矿物含量的增加,将降低页岩的孔隙,使游离气的储集空间减少,特别是方解石的胶结作用,将进一步减少孔隙,因此在判断矿物成分对页岩气藏的影响时,应综合考虑各种成分对储层的影响。 (2)储集空间。页岩气除吸附气吸附在有机质和粘土矿物表面外,游离气则主要储集在页岩基质孔隙和裂缝等空间中。虽然页岩为超致密储层,孔隙度和渗透率极低,但是在孔隙度相对较高的区带,页岩气资源潜力仍然很大,经济可采性高,特别是吸附气含量非常低的情况下。页岩中孔隙包括原生孔隙和次生孔隙。原生孔隙系统由微孔隙组成,内表面积较大。在微孔隙中拥有许多潜在的吸附地方,可储存大量气体。裂缝则沟通页岩中的孔隙,页岩层中游离态天然气体积的增加和吸附态天然气的解析,增强岩层渗透能力,扩大泄油面积,提高采收率。一般来说,裂缝较发育的气藏,其品质也较好。美国东部地区产气量高的井,都处在裂缝发育带内,而裂缝不发育地区的井,则产量低或不产气,说明天然气生产与裂缝密切相关。实际上,裂缝一方面可以为页岩中天然气的运移提供通道和储集空间,增加储层的渗透性;另一方面裂缝也可以导致天然气的散失和水窜。 (3)储集物性。页岩的物性对产量有重要影响。在常规储层研究中,孔隙度和渗透率是储层特征研究中最重要的两个参数,这对于页岩气藏同样适用。据美国含气页岩统计,页岩岩心孔隙度小于4% ̄6.5%(测井孔隙度4% ̄12%),平均5.2%;渗透率一般为 (0.001 ̄2)×10μm,平均40.9×10μm。页岩中也可以有很大的孔隙度,并且有大量的油气储存在这些孔隙中,如阿巴拉契亚盆地的Ohio页岩和密歇根盆地的Antrim页岩,孔隙度平均为5% ̄6%,局部可高达15%,游离气可以充满孔隙中的50%。页岩的基质渗透率很低,但在裂缝发育带,渗透率大幅度增加,如在断裂带或裂缝发育带,页岩储层的孔隙度可达11%,渗透率达2×10μm。页岩气藏是自生自储型气藏,从某种意义来说,页气藏的形成是天然气在源岩中大规模滞留的结果,烃源岩中天然气向常规储层初次运移的通道为裂缝、断层等,所以连通烃源岩和常规[1][2][3] [4][5] [6][7]3-32 -62-321 沉积环境 2 生烃条件 3 储集条件 4 保存条件 oo岩(转129页) 页岩气成藏地质条件分析 黄菲 王保全 ① ② (中法渤海地质服务有限公司 ②中海石油<中国>有限公司天津分公司渤海油田勘探开发研究院) ①摘要关键词页岩气藏为自生自储型气藏,它的生烃条件、储集条件、保存条件相互影响,息息相关,热成熟度和有机碳含量控制页岩的生气能力,而有机碳含量还影响页岩的储集性,是增加页岩孔隙空间的重要因素;页岩气藏储层致密,孔隙度和渗透率极低,裂缝的存在会提高储层的渗透率,矿物成分影响其储集性能,其中粘土矿物有利于增加微孔隙,并且增加岩石对天然气的吸附能力,而石英和白云石脆性较大,则有利于增加储层中的裂缝,并且对水力压裂造缝有利;页岩气藏对保存条件的要求较低。 页岩气有机碳含量热成熟度储集条件保存条件

页岩气吸附解吸研究调研

国内部分 2009--上扬子区志留系页岩气成藏条件 王社教等,对四川盆地长芯1井120m处所取岩心开展了70℃的等温吸附实验,该样品为志留系龙马溪组黑色页岩,有机碳含量为5.9,成熟度为3.26%。在70℃等温条件下,随着压力增高,页岩吸附甲烷的能力逐渐增大,在压力达到8.5 MPa时,页岩的甲烷吸附能力达到l m3/t。推测成熟度过高是导致吸附能力较低的主要原因。 2010--四川盆地下志留统龙马溪组页岩气成藏条件及有利地区分析蒲泊伶等,在温度为40 ℃、湿度为1.68% ~ 2 .25%、甲烷浓度为99.999% 的实验条件下进行的等温吸附实验表明,龙马溪组页岩具有较强的吸附气体的能力。龙马溪组页岩的压力系数可达1.4~ 1.89,埋深大致为0~3000m,选定8. 28MPa 作为地层平均压力,在8.28 MPa下页岩的吸附气含量为1.12~ 1.74m3/ t,平均为1.28 m3/ t。将实测数据拟合后发现,页岩中吸附气含量与压力和有机碳含量呈正相关关系。

2010--页岩等温吸附异常初探 方俊华等,对9个下志留统龙马溪组的页岩样进行了等温吸附实验,采用美国Terra-Tek公司的等温吸附解析仪IS-100型,实验前页岩样经平衡水分处理,温度为30℃。将页岩样品破碎到小于6 0-8 0目(0.25 mm ),再进行筛分分析,以确定样品的粒径分布。页岩样的水分含量达到平衡,就分别将80~150g的样品密封在两个不同实验缸内。在压力点早期,以0.01s的间隔收集数据,而在压力点晚期,则以0. 1min的间隔收集,连续进行,至30min内压力变化小于要求值为止。逐渐加压至最终压力。 结果表明,压力在130896~1034kPa时,页岩吸附量达到最大值,随后,随着压力的增加,吸附量逐渐减少,等压力达到一定程度时,吸附量减少到负值,出现所谓的“倒吸附”现象。 倒吸附的原因:1、煤与页岩在粘土矿物含量等方面不同;2、煤与龙马澳黑色页岩中有机组分存在方式不同;3、CH4的超临界赋存。 建议:1、选用新鲜样品粉末进行等温吸附实验;2、确立页岩实验测试的最佳粒度;3、选取新参数作为评价依据。

泥页岩储层特征及油气藏描述

泥页岩储层特征及油气藏描述 1、页岩气地质理论 页岩气藏因其自身的有效基质孔隙度很低,主要由大范围发育的区域性裂缝或热裂解生气阶段异常高压在沿应力集中面、岩性接触过渡面、脆性薄弱面产生的裂缝提供成藏所需的储集孔隙度和渗透率,孔隙度最高仅为4%-5%,渗透率小于1x10-3μm2。 页岩在地层组成上多为暗色泥岩与浅色粉砂岩的薄互层。在页岩中,天然气的赋存状态多种多样,除极少量的溶解状态天然气以外,大部分以吸附状态赋存于岩石颗粒和有机质表面,或以游离状态赋存于孔隙、裂缝中。吸附状态天然气的赋存与有机质含量关系密切,其中吸附状态天然气的含量为20%-85%,其成藏体现出非常复杂的多机理递变特点,表现为成藏过程中的无运移或极短距离的有限运移,因此页岩气藏具有典型煤层气、典型常规圈闭气成藏的多重机理。 页岩气藏的形成是天然气在烃源岩中大规模滞留的结果,是“自生自储”式气藏,运移距离极短,现今保存状态基本上可以反映烃类运移时的状态,即天然气主要以游离相、吸附相和溶解相存在。在生物化学生气阶段,天然气首先吸附在有机质和岩石颗粒表面,饱和后则富余的天然气以游离相或溶解相进行运移,当达到热裂解生气阶段,由于压力升高,若页岩内部产生裂缝,则天然气以游离相为主向其中运移聚集,受周围致密页岩烃源岩层遮挡、圈闭,易形成工业性页岩气藏。由于扩散作用对气态烃的运移起到相当大的作用,天然气继续大量生成,将因生烃膨胀作用使富余的天然气向外扩散运移,此时无论是页岩地层本身还是薄互层分布的砂岩储层,均表现为普遍的饱含气性。 在陆相盆地中,湖沼相和三角洲相沉积产物一般是页岩气成藏的最好条件,但通常位于或接近盆地的沉降-沉积中心,导致页岩气的有利分布区集中于盆地中心处。从天然气的生成角度分析,生物气的产生需要厌氧环境,而热成因气的产生也需要较高的温度条件,因此靠近盆地中心方向是页岩气成藏的有利区域。 2、页岩气的主要特征 2.1页岩气的成因特征 页岩气的成因类型有生物成因型、热解成因型和热裂解成因3类型及其混合类型。对生物成因气而言,其源岩的热演化程度低,R o一般不到0.7%,所生成

相关文档
最新文档