实验一 组合逻辑电路的设计
实验报告组合逻辑电(3篇)

第1篇一、实验目的1. 理解组合逻辑电路的基本概念和组成原理;2. 掌握组合逻辑电路的设计方法;3. 学会使用逻辑门电路实现组合逻辑电路;4. 培养动手能力和分析问题、解决问题的能力。
二、实验原理组合逻辑电路是一种在任意时刻,其输出仅与该时刻的输入有关的逻辑电路。
其基本组成单元是逻辑门,包括与门、或门、非门、异或门等。
通过这些逻辑门可以实现各种组合逻辑功能。
三、实验器材1. 74LS00芯片(四路2输入与非门);2. 74LS20芯片(四路2输入或门);3. 74LS86芯片(四路2输入异或门);4. 74LS32芯片(四路2输入或非门);5. 逻辑电平转换器;6. 电源;7. 连接线;8. 实验板。
四、实验步骤1. 设计组合逻辑电路根据实验要求,设计一个组合逻辑电路,例如:设计一个3位奇偶校验电路。
2. 画出逻辑电路图根据设计要求,画出组合逻辑电路的逻辑图,并标注各个逻辑门的输入输出端口。
3. 搭建实验电路根据逻辑电路图,搭建实验电路。
将各个逻辑门按照电路图连接,并确保连接正确。
4. 测试电路功能使用逻辑电平转换器产生不同的输入信号,观察输出信号是否符合预期。
五、实验数据及分析1. 设计的3位奇偶校验电路逻辑图如下:```+--------+ +--------+ +--------+| | | | | || A1 |---| A2 |---| A3 || | | | | |+--------+ +--------+ +--------+| | || | || | |+-------+-------+||v+--------+| || F || |+--------+```2. 实验电路搭建及测试根据逻辑电路图,搭建实验电路,并使用逻辑电平转换器产生不同的输入信号(A1、A2、A3),观察输出信号F是否符合预期。
(1)当A1=0,A2=0,A3=0时,F=0,符合预期;(2)当A1=0,A2=0,A3=1时,F=1,符合预期;(3)当A1=0,A2=1,A3=0时,F=1,符合预期;(4)当A1=0,A2=1,A3=1时,F=0,符合预期;(5)当A1=1,A2=0,A3=0时,F=1,符合预期;(6)当A1=1,A2=0,A3=1时,F=0,符合预期;(7)当A1=1,A2=1,A3=0时,F=0,符合预期;(8)当A1=1,A2=1,A3=1时,F=1,符合预期。
组合逻辑电路设计实验报告

一、实验目的1. 理解组合逻辑电路的基本原理和组成。
2. 掌握组合逻辑电路的设计方法,包括逻辑表达式的推导和门电路的选择。
3. 学习使用逻辑门电路实现基本的逻辑功能,如与、或、非、异或等。
4. 通过实验验证组合逻辑电路的设计和功能。
二、实验原理组合逻辑电路是一种数字电路,其输出仅取决于当前的输入,而与电路的历史状态无关。
常见的组合逻辑电路包括逻辑门、编码器、译码器、多路选择器等。
三、实验设备1. 74LS系列逻辑门芯片(如74LS00、74LS02、74LS04、74LS08等)2. 逻辑电平显示器3. 逻辑电路开关4. 连接线四、实验内容1. 半加器设计(1)设计要求:实现两个一位二进制数相加,不考虑进位。
(2)设计步骤:a. 根据真值表,推导出半加器的逻辑表达式:S = A ⊕ B,C = A ∧ B。
b. 选择合适的逻辑门实现半加器电路。
c. 通过实验验证半加器的功能。
2. 全加器设计(1)设计要求:实现两个一位二进制数相加,考虑进位。
(2)设计步骤:a. 根据真值表,推导出全加器的逻辑表达式:S = A ⊕ B ⊕ Cin,Cout = (A ∧ B) ∨ (B ∧ Cin) ∨ (A ∧ Cin)。
b. 选择合适的逻辑门实现全加器电路。
c. 通过实验验证全加器的功能。
3. 译码器设计(1)设计要求:将二进制编码转换为相应的输出。
(2)设计步骤:a. 选择合适的译码器芯片(如74LS42)。
b. 根据输入编码和输出要求,连接译码器电路。
c. 通过实验验证译码器的功能。
4. 多路选择器设计(1)设计要求:从多个输入中选择一个输出。
(2)设计步骤:a. 选择合适的多路选择器芯片(如74LS157)。
b. 根据输入选择信号和输出要求,连接多路选择器电路。
c. 通过实验验证多路选择器的功能。
五、实验结果与分析1. 半加器实验结果通过实验验证,设计的半加器电路能够实现两个一位二进制数相加,不考虑进位的功能。
实验一组合逻辑电路设计

实验一组合逻辑电路设计(含门电路功能测试)一、实验目的1.掌握常用门电路的逻辑功能2.掌握小规模集成电路设计组合逻辑电路的方法3.掌握组合逻辑电路的功能测试方法二、实验设备与器材数字电路试验箱双踪示波器稳压电源数字多用表74LS20 二4输入与非门74LS00 四2输入与非门74LS10 三3输入与非门三、实验原理TTL集成逻辑电路种类繁多,使用时应对选用的器件做简单逻辑功能检查,保证实验的顺利进行。
测试门电路逻辑功能有静态测试和动态测试两种方法。
静态测试时,门电路输入端加固定的高(H)、低电平,用示波器、万用表、或发光二极管(LED)测出门电路的输出响应。
动态测试时,门电路的输入端加脉冲信号,用示波器观测输入波形与输出波形的同步关系。
下面以74LS00为例,简述集成逻辑门功能测试的方法。
74LS00为四输入2与非门,电路图如3-1所示。
74LS00是将四个二输入与非门封装在一个集成电路芯片中,共有14条外引线。
使用时必须保证在第14脚上加+5V电压,第7脚与底线接好。
整个测试过程包括静态、动态和主要参数测试三部分。
表3-1 74LS00与非门真值表1.门电路的静态逻辑功能测试静态逻辑功能测试用来检查门电路的真值表,确认门电路的逻辑功能正确与否。
实验时,可将74LS00中的一个与非门的输入端A、B分别作为输入逻辑变量,加高、低电平,观测输出电平是否符合74LS00的真值表(表3-1)描述功能。
测试电路如图3-2所示。
试验中A、B输入高、低电平,由数字电路实验箱中逻辑电平产生电路产生,输入F可直接插至逻辑电平只是电路的某一路进行显示。
仿真示意2.门电路的动态逻辑功能测试动态测试用于数字系统运行中逻辑功能的检查,测试时,电路输入串行数字信号,用示波器比较输入与输出信号波形,以此来确定电路的功能。
实验时,与非门输入端A加一频率为1kHz 的脉冲信号Vi,如图3-3所示,另一端加上开关信号,观测F输出波形是否符合功能要求。
实验一组合逻辑电路的设计

实验一组合逻辑电路的设计组合逻辑电路是一种电子电路,由逻辑门组成,用于执行特定的逻辑功能。
在本实验中,我们将设计一个基本的组合逻辑电路以及一些常见的组合逻辑电路,包括加法器、减法器、比较器等。
首先,我们将设计一个基本的组合逻辑电路,该电路由两个输入和一个输出组成。
输入可以是0或1,输出将依据输入的值进行逻辑运算得出。
在这个基本电路中,我们将使用两个逻辑门:与门和或门。
与门的真值表如下:输入1输入2输出000010100111与门的布尔表达式是:输出=输入1AND输入2或门的真值表如下:输入1输入2输出000011101111或门的布尔表达式是:输出=输入1OR输入2基于以上真值表和布尔表达式,我们可以通过逻辑门的连接来设计一个基本的组合逻辑电路。
具体设计步骤如下:1.首先,将两个输入引线分别连接到与门和或门的输入端。
这将确保输入的值能够传递到逻辑门中。
2.将与门和或门的输出引线连接到一个输出引线上,以便能够输出最终的逻辑结果。
3.最后,将逻辑门的电源连接到电路的电源上,以确保逻辑门能正常工作。
通过以上步骤,我们就完成了一个基本的组合逻辑电路的设计。
这个电路可以根据输入产生不同的输出,实现不同的逻辑功能。
除了基本的组合逻辑电路,我们还可以设计一些常见的组合逻辑电路,如加法器、减法器和比较器。
加法器是用来执行数字加法的组合逻辑电路。
在一个二进制加法器中,输入是两个二进制数和一个进位位,输出是一个和输出和一个进位位。
加法器的设计可以通过级联多个全加器来实现。
减法器是用来执行数字减法的组合逻辑电路。
在一个二进制减法器中,输入是两个二进制数和一个借位位,输出是一个差输出和一个借位位。
减法器的设计可以通过级联多个全减法器来实现。
比较器是用来比较两个数字的大小的组合逻辑电路。
比较器的输出取决于输入的大小关系。
如果两个输入相等,则输出为0。
如果第一个输入大于第二个输入,则输出为1、如果第一个输入小于第二个输入,则输出为-1、比较器的设计可以通过使用逻辑门和触发器来实现。
组合逻辑电路的设计与测试实验报告总结

组合逻辑电路的设计与测试实验报告总结
一、组合逻辑电路的设计与测试实验报告总结
1.组合逻辑电路的设计
组合逻辑电路是一种由数字电路组成的电路,可以使用计算机自动设计出一种实现特定功能的组合逻辑电路。
在设计组合逻辑电路时,应该先对要设计出的电路的功能特点作出简要分析,根据系统功能的需要,确定设计电路的输入、输出及简要功能,然后选择一种合适的建模语言,画出要实现的电路框架,并根据设计的功能特点,确定电路的功能逻辑关系,绘制出电路原理图,然后进行简单的仿真和验证,最后将电路接线调试完毕,实现功能。
2.测试实验报告总结
在组合逻辑电路测试实验中,我们根据给定需求,使用TTL逻辑IC、电阻、电容等元器件设计出一种实现开关抖动过滤的组合逻辑电路,最终实现了其功能。
在实验中,我们发现,使用合适的逻辑IC
及元器件,结合灵活恰当的电路设计,可以实现特定功能的电路设计。
从实验的结果来看,我们设计的组合逻辑电路,实现了基本的开关抖动过滤功能,并通过实验的验证,证明了设计有效。
实验表明,组合逻辑电路的设计与测试是能够有效地实现特定功能的电路设计
的关键,是建立数字电路的基础。
实验一组合逻辑电路的设计与测试

实验一组合逻辑电路的设计与测试一、实验目的实验一旨在通过设计和测试一组合逻辑电路,加深对组合逻辑电路的理解和运用。
二、实验器材1.FPGA(现场可编程门阵列)开发板2. 逻辑电路设计软件(如Quartus II)3.逻辑分析仪4.DIP开关5.LED灯三、实验内容1.设计一个4位二进制加法器电路,并实现其功能。
2.使用逻辑电路设计软件进行电路设计。
4.使用逻辑分析仪对电路进行测试,验证其功能和正确性。
四、实验步骤1.根据4位二进制加法器的电路原理图,使用逻辑电路设计软件进行电路设计。
将输入的两个4位二进制数与进位输入进行逻辑运算,得到输出的4位二进制和结果和进位输出。
2.在设计过程中,需要使用逻辑门(如与门、或门、异或门等)来实现电路的功能。
3.在设计完成后,将电路编译,并生成逻辑网表文件。
5.连接DIP开关到FPGA开发板上的输入端口,通过设置DIP开关的状态来设置输入数据。
6.连接LED灯到FPGA开发板上的输出端口,通过LED灯的亮灭来观察输出结果。
7.使用逻辑分析仪对输入数据和输出结果进行测试,验证电路的功能和正确性。
五、实验结果1.在设计完成后,通过DIP开关的设置,输入不同的4位二进制数和进位,观察LED灯输出的结果,验证电路的正确性。
2.使用逻辑分析仪对输入和输出进行测试,检查电路的逻辑运算是否正确。
六、实验总结通过本实验,我们学习了组合逻辑电路的设计和测试方法。
从设计到测试的过程中,我们深入了解了组合逻辑电路的原理和运作方式。
通过观察和测试,我们可以验证电路的正确性和功能是否符合设计要求。
此外,我们还学会了使用逻辑分析仪等工具对电路进行测试和分析,从而提高了我们的实验能力和理论应用能力。
通过这次实验,我们对组合逻辑电路有了更深入的了解,为将来在数字电路设计和工程实践中打下了基础。
实验一 组合逻辑电路设计

三.实验任务
1对74LS00,74LS20逻辑门进行功能测试。静态测试列出真值表,动态测试画出波形图,并说明测试的门电路功能是否正常。
2分析测试1.7中各个电路逻辑功能并根据测试结果写出它们的逻辑表达式。
3设计控制楼梯电灯的开关控制器。设楼上,楼下各装一个开关,要求两个开关均可以控制楼梯电灯。
4某公司设计一个邮件优先级区分器。该公司收到有A,B,C,三类邮件,A,类的优先级最高,B类次之,C类最低。邮件到达时,其对应的指示灯亮起,提醒工作人员及时处理。当不同类的邮件同时到达时,对优先级最高的邮件先做处理,其对应的指示灯亮,优先级低的暂不理会。按组合逻辑电路的一般设计步骤设计电路完成此功能,输入输出高低电平代表邮件到达。输出端驱动发光二极管指示。
3)分析实验数据,改进电路。
电路如图8所示:
图8
实验结果:可以达到实验目的,实现邮件优先级区分的功能。
电路如图1:
图1
真值表1.1:
A
B
C
0
0
1
0
1
1
1
0
1
1
1
0
表1.1
实验问题:与非门的引脚要连接正确,注意接地线及直流电源
实验结果:由二极管的发光情况可判断出74LS00实现二输入与非门的功能
(2)71LS00的动态逻辑功能测试
实验器材:函数发生器,示波器 ,74LS00,与非门,开关,直流电压源
实验目的:测试74LS00与非门的逻辑功能
(2)逻辑图b
实验目的:测定逻辑图b的电路功能
实验器材:直流电压源,开关,74LS00与非门
实验内容:根据电路逻辑图画出电路图,由测试结果写出逻辑表达式
实验一实验一组合逻辑电路设计

实验实验一一 组合逻辑电路设计一、实验目的1.熟练掌握组合逻辑电路的设计方法与调试方法;2.掌握MSI 译码器和数据选择器的应用; 3.进一步提高排除数字电路故障的能力。
二、实验原理译码器是一种将输入代码转换成特定输出信号的电路。
译码器可实现存贮系统和其它数字系统的地址译码、脉冲分配、程序计数、代码转换和逻辑函数发生以及用来驱动各种显示器件等。
数据选择器是根据地址选择码从多路输入数据中选择一路,送到输出。
数据选择器可以组成数据选通电路,实现多通道数字传输。
中规模集成组合逻辑电路通常带有控制端,利用控制端可以实现多片器件互连,或扩展电路的逻辑功能。
1.译码器74LS13874LS138 为中规模集成3线-8线译码器,其引脚排列如图1-1所示,逻辑功能见表1-2。
该译码器设置有三个使能端STA 、STB 和STC 。
当STA=1,且STB 、STC 都为0时,译码器处于工作状态,否则就禁止译码。
2.数据选择器74LS1518选1数据选择器的引脚图如图1-2所示,引脚功能见表1-2。
通过给定不同的地址代码(即A2A1A0的状态),从8个输入数据中选出一个,送至输出端Y,而Y为反码输出。
真值表表1-2 74LS151真值表三、实验条件1.数字电子技术实验箱、直流稳压电源、数字万用表;2.74LS138(译码器)1片、74LS151(数据选择器)1片、74LS00(与非门)1片、74LS04(非门)1片、74LS20(与非门)1片、74LS32(或门)1片。
四、实验内容及步骤1.试用74LS138构成数据分配器,画出其逻辑电路图,将1H z连续脉冲信号加到电路的输入端,输出端接电平显示发光二极管,改变输入地址码A2、A1、A0的值,观察实验现象,记录实验结果。
2.设计一个报警电路。
当第一路有报警信号时,数码管显示1;当第二路有报警信号时,数码管显示2;当第三路有报警信号时,数码管显示3;当有两路或两路以上有报警信号时,数码管显示8;当无报警信号时,数码管显示0。
组合逻辑电路的设计实验报告

组合逻辑电路的设计实验报告本实验旨在通过设计和实现组合逻辑电路,加深对数字电路原理的理解,提高实际动手能力和解决问题的能力。
1. 实验目的。
本实验的主要目的是:1)掌握组合逻辑电路的设计原理和方法;2)了解组合逻辑电路的实际应用;3)培养实际动手能力和解决问题的能力。
2. 实验原理。
组合逻辑电路由多个逻辑门组成,根据输入信号的不同组合产生不同的输出信号。
常见的组合逻辑电路包括加法器、减法器、译码器、编码器等。
在本实验中,我们将重点学习和设计加法器和译码器。
3. 实验内容。
3.1 加法器的设计。
加法器是一种常见的组合逻辑电路,用于实现数字的加法运算。
我们将学习半加器和全加器的设计原理,并通过实际电路进行实现和验证。
3.2 译码器的设计。
译码器是将输入的数字信号转换为特定的输出信号的组合逻辑电路。
我们将学习译码器的工作原理和设计方法,设计并实现一个4-16译码器电路。
4. 实验步骤。
4.1 加法器的设计步骤。
1)了解半加器和全加器的原理和真值表;2)根据真值表,设计半加器和全加器的逻辑表达式;3)根据逻辑表达式,画出半加器和全加器的逻辑电路图;4)使用逻辑门集成电路,搭建半加器和全加器的电路;5)验证半加器和全加器的功能和正确性。
4.2 译码器的设计步骤。
1)了解译码器的原理和功能;2)根据输入和输出的关系,设计译码器的真值表;3)根据真值表,推导译码器的逻辑表达式;4)画出译码器的逻辑电路图;5)使用逻辑门集成电路,搭建译码器的电路;6)验证译码器的功能和正确性。
5. 实验结果与分析。
通过实验,我们成功设计并实现了半加器、全加器和译码器的电路。
经过验证,这些电路均能正常工作,并能正确输出预期的结果。
实验结果表明,我们掌握了组合逻辑电路的设计原理和方法,提高了实际动手能力和解决问题的能力。
6. 实验总结。
通过本次实验,我们深入学习了组合逻辑电路的设计原理和方法,掌握了加法器和译码器的设计和实现技术。
组合电路研究实验报告(3篇)

第1篇一、实验目的1. 理解组合逻辑电路的基本原理和设计方法。
2. 掌握常用门电路的功能和特性。
3. 通过实验加深对组合逻辑电路分析和设计能力的培养。
4. 学习使用逻辑分析仪和示波器等实验设备。
二、实验原理组合逻辑电路是由逻辑门电路组成的,其输出仅取决于当前的输入,与电路的历史状态无关。
常见的组合逻辑电路有:半加器、全加器、编码器、译码器、多路选择器等。
三、实验器材1. 74LS00、74LS20等集成电路2. 逻辑分析仪3. 示波器4. 电源5. 逻辑探头6. 实验板四、实验内容及步骤1. 半加器实验(1)设计半加器电路,包括输入端A和B,输出端S和C。
(2)使用与非门和异或门搭建半加器电路。
(3)将输入端A和B接入逻辑探头,输出端S和C接入逻辑分析仪。
(4)通过逻辑分析仪观察半加器电路的输出波形,验证电路功能。
2. 全加器实验(1)设计全加器电路,包括输入端A、B和进位输入端Cin,输出端S和进位输出端Cout。
(2)使用与非门和异或门搭建全加器电路。
(3)将输入端A、B和进位输入端Cin接入逻辑探头,输出端S和进位输出端Cout接入逻辑分析仪。
(4)通过逻辑分析仪观察全加器电路的输出波形,验证电路功能。
3. 编码器实验(1)设计4-2编码器电路,包括输入端I0、I1、I2、I3和输出端Y0、Y1、Y2、Y3。
(2)使用与门和或门搭建4-2编码器电路。
(3)将输入端I0、I1、I2、I3接入逻辑探头,输出端Y0、Y1、Y2、Y3接入逻辑分析仪。
(4)通过逻辑分析仪观察编码器电路的输出波形,验证电路功能。
4. 译码器实验(1)设计2-4译码器电路,包括输入端I0、I1和输出端Y0、Y1、Y2、Y3。
(2)使用与门和或门搭建2-4译码器电路。
(3)将输入端I0、I1接入逻辑探头,输出端Y0、Y1、Y2、Y3接入逻辑分析仪。
(4)通过逻辑分析仪观察译码器电路的输出波形,验证电路功能。
5. 多路选择器实验(1)设计4选1多路选择器电路,包括输入端I0、I1、I2、I3和选择端S0、S1,输出端Y。
实验一组合逻辑电路设计

实验一组合逻辑电路设计一、简介组合逻辑电路是数字电路的一种重要类型,由逻辑门组成,并且没有存储功能。
它的输出只取决于当前的输入状态,与过去的输入状态无关。
本实验旨在设计一组使用逻辑门构成的组合逻辑电路。
二、设计目标本实验的设计目标是实现一个4位2进制加法器电路。
输入为两个4位的二进制数,输出为其和。
为了方便起见,我们假设输入的二进制数已经在输入端以2进制的形式输入。
三、设计思路1.首先,需要设计一个4位的全加器电路,用于对两个位的进位进行处理。
全加器电路由三个输入和两个输出组成。
2.其次,将4个全加器电路组成4位的加法器电路,将各个位的进位进行连接。
3.最后,将输入的两个4位二进制数,以及4个进位信号,分别连接到4个全加器电路的输入端,将各个位的和输出连接到最终的输出端。
四、详细设计1.全加器电路的设计全加器电路有三个输入和两个输出。
其中,三个输入分别为A、B和Cin,分别表示两个相加的输入和进位输入。
两个输出分别为Sum和Cout,分别表示两个输入的和和进位输出。
我们可以使用两个半加器和一个或门来实现全加器电路。
半加器的真值表如下:A B Sum Cout0000011010101101其中,Sum表示两个输入的和,Cout表示两个输入的进位。
将两个半加器按照如下方式连接起来即可构成全加器电路:A --->+------> SumB --->+----------,----> CoutCin --->,--+2.四位加法器电路的设计四位加法器电路由4个全加器电路连接组成。
其中,第一个全加器的输入分别为A0、B0和Cin,输出为S0和C0;第二个全加器的输入分别为A1、B1和C0,输出为S1和C1;依次类推,第三个全加器的输入为A2、B2和C1,输出为S2和C2;第四个全加器的输入为A3、B3和C2,输出为S3和C3将四个全加器按照如下方式连接起来即可构成四位加法器电路:A0--->+---------------->S0B0--->+-------Cin ----,-+-------------------,-------> C0A1---+---->,---------------->S1B1---+---->,-------C0----,--------------,-+---------------,------->C1A2---+------>,---------------->S2B2---+------>,-------C1----,-+---------------->C2A3---+-------+---->,---------------->S3B3---+-----,--------3.输入输出连接将输入的两个4位二进制数依次连接到四位加法器电路的输入端,将四位加法器电路的输出端连接到最终的输出端。
实验一组合逻辑电路的设计

实验一 组合逻辑电路的设计一、实验目的:1、 掌握组合逻辑电路的设计方法。
2、 掌握组合逻辑电路的静态测试方法。
3、 加深FPGA 设计的过程,并比较原理图输入和文本输入的优劣。
4、 理解“毛刺”产生的原因及如何消除其影响。
5、 理解组合逻辑电路的特点。
二、实验的硬件要求:1、 EDA/SOPC 实验箱。
2、 计算机。
三、实验原理1、组合逻辑电路的定义数字逻辑电路可分为两类:组合逻辑电路和时序逻辑电路。
组合逻辑电路中不包含记忆单元(触发器、锁存器等),主要由逻辑门电路构成,电路在任何时刻的输出只和当前时刻的输入有关,而与以前的输入无关。
时序电路则是指包含了记忆单元的逻辑电路,其输出不仅跟当前电路的输入有关,还和输入信号作用前电路的状态有关。
通常组合逻辑电路可以用图1.1所示结构来描述。
其中,X0、X1、…、Xn 为输入信号, L0、L1、…、Lm 为输出信号。
输入和输出之间的逻辑函数关系可用式1.1表示: 2、组合逻辑电路的设计方法组合逻辑电路的设计任务是根据给定的逻辑功能,求出可实现该逻辑功能的最合理组 合电路。
理解组合逻辑电路的设计概念应该分两个层次:(1)设计的电路在功能上是完整的,能够满足所有设计要求;(2)考虑到成本和设计复杂度,设计的电路应该是最简单的,设计最优化是设计人员必须努力达到的目标。
在设计组合逻辑电路时,首先需要对实际问题进行逻辑抽象,列出真值表,建立起逻辑模型;然后利用代数法或卡诺图法简化逻辑函数,找到最简或最合理的函数表达式;根据简化的逻辑函数画出逻辑图,并验证电路的功能完整性。
设计过程中还应该考虑到一些实际的工程问题,如被选门电路的驱动能力、扇出系数是否足够,信号传递延时是否合乎要求等。
组合电路的基本设计步骤可用图1.2来表示。
3、组合逻辑电路的特点及设计时的注意事项①组合逻辑电路的输出具有立即性,即输入发生变化时,输出立即变化。
(实际电路中图 1.1 组合逻辑电路框图L0=F0(X0,X1,²²²Xn)² ² ²Lm=F0(X0,X1,²²²Xn)(1.1)图 1.2 组合电路设计步骤示意图图还要考虑器件和导线产生的延时)。
组合逻辑电路的设计实验报告

组合逻辑电路的设计实验报告一、实验目的组合逻辑电路是数字电路中较为基础且重要的部分。
本次实验的主要目的是通过设计和实现简单的组合逻辑电路,深入理解组合逻辑电路的工作原理和设计方法,掌握逻辑门的运用,提高逻辑分析和问题解决的能力。
二、实验原理组合逻辑电路是指在任何时刻,输出状态只取决于同一时刻输入信号的组合,而与电路以前的状态无关。
其基本组成单元是逻辑门,如与门、或门、非门等。
通过将这些逻辑门按照一定的逻辑关系连接起来,可以实现各种不同的逻辑功能。
例如,一个简单的 2 输入与门,只有当两个输入都为 1 时,输出才为 1;而 2 输入或门,只要有一个输入为 1,输出就为 1。
组合逻辑电路的设计方法通常包括以下几个步骤:1、分析问题,确定输入和输出变量,并定义其逻辑状态。
2、根据问题的逻辑关系,列出真值表。
3、根据真值表,写出逻辑表达式。
4、对逻辑表达式进行化简和变换,以得到最简的表达式。
5、根据最简表达式,选择合适的逻辑门,画出逻辑电路图。
三、实验设备与器材1、数字电路实验箱2、集成电路芯片:74LS00(四 2 输入与非门)、74LS04(六反相器)、74LS08(四 2 输入与门)、74LS32(四 2 输入或门)等。
3、导线若干四、实验内容与步骤(一)设计一个一位全加器1、分析问题一位全加器有三个输入变量 A、B 和 Cin(低位进位),两个输出变量 S(和)和 Cout(进位输出)。
2、列出真值表| A | B | Cin | S | Cout |||||||| 0 | 0 | 0 | 0 | 0 || 0 | 0 | 1 | 1 | 0 || 0 | 1 | 0 | 1 | 0 || 0 | 1 | 1 | 0 | 1 || 1 | 0 | 0 | 1 | 0 || 1 | 0 | 1 | 0 | 1 || 1 | 1 | 0 | 0 | 1 || 1 | 1 | 1 | 1 | 1 |3、写出逻辑表达式S = A⊕B⊕CinCout = AB +(A⊕B)Cin4、化简逻辑表达式S = A⊕B⊕Cin 已最简Cout = AB +(A⊕B)Cin = AB + ACin + BCin5、画出逻辑电路图使用 74LS00、74LS08 和 74LS32 芯片实现,连接电路如图所示。
典型组合电路实验报告(3篇)

第1篇一、实验目的1. 理解组合逻辑电路的基本原理和设计方法。
2. 掌握常用组合逻辑电路(如半加器、全加器、编码器、译码器等)的功能和实现方法。
3. 学会使用门电路和逻辑器件设计简单的组合逻辑电路。
4. 通过实验验证电路设计的正确性和性能。
二、实验原理组合逻辑电路是一种在任意时刻,输出信号仅取决于当前输入信号的逻辑电路。
其基本原理是通过基本的逻辑门(如与门、或门、非门、异或门等)来实现复杂的逻辑功能。
三、实验器材1. 74LS00与非门芯片2. 74LS20异或门芯片3. 74LS138译码器芯片4. 74LS151多路选择器芯片5. 电阻、电容、导线等6. 逻辑分析仪或示波器四、实验内容1. 半加器电路设计设计一个半加器电路,实现两个一位二进制数的加法运算。
- 确定输入输出变量:设A、B为输入,S为输出和,C为进位。
- 列出真值表:| A | B | S | C ||---|---|---|---|| 0 | 0 | 0 | 0 || 0 | 1 | 1 | 0 || 1 | 0 | 1 | 0 || 1 | 1 | 0 | 1 |- 画出逻辑图,并使用与非门和异或门搭建电路。
- 使用逻辑分析仪或示波器验证电路的正确性。
2. 全加器电路设计设计一个全加器电路,实现两个一位二进制数及来自低位进位的加法运算。
- 确定输入输出变量:设A、B为输入,Cin为低位进位,S为输出和,Cout为进位。
- 列出真值表:| A | B | Cin | S | Cout ||---|---|-----|---|------|| 0 | 0 | 0 | 0 | 0 || 0 | 0 | 1 | 1 | 0 || 0 | 1 | 0 | 1 | 0 || 0 | 1 | 1 | 0 | 1 || 1 | 0 | 0 | 1 | 0 || 1 | 0 | 1 | 0 | 1 || 1 | 1 | 0 | 0 | 1 || 1 | 1 | 1 | 1 | 1 |- 画出逻辑图,并使用与非门、异或门和与门搭建电路。
北科大__数电实验报告(3篇)

第1篇实验一:组合逻辑电路分析与设计一、实验目的1. 理解组合逻辑电路的基本概念和特点。
2. 掌握组合逻辑电路的分析方法。
3. 学会使用逻辑门电路设计简单的组合逻辑电路。
二、实验原理组合逻辑电路是指电路的输出仅与当前的输入有关,而与电路之前的状态无关。
组合逻辑电路通常由逻辑门组成,如与门、或门、非门、异或门等。
三、实验设备1. 数字电路实验箱2. 逻辑门电路芯片3. 导线4. 示波器四、实验内容1. 实验一:逻辑门电路识别(1)搭建一个简单的逻辑门电路,如与非门。
(2)使用示波器观察输入和输出信号,验证逻辑门电路的功能。
(3)记录实验数据,并分析实验结果。
2. 实验二:组合逻辑电路分析(1)设计一个简单的组合逻辑电路,如奇偶校验电路。
(2)根据电路图,列出真值表。
(3)使用逻辑门电路搭建电路,并观察输入和输出信号。
(4)记录实验数据,并分析实验结果。
3. 实验三:组合逻辑电路设计(1)设计一个组合逻辑电路,如二进制加法器。
(2)根据电路图,列出真值表。
(3)使用逻辑门电路搭建电路,并观察输入和输出信号。
(4)记录实验数据,并分析实验结果。
五、实验结果与分析1. 实验一:逻辑门电路识别通过搭建简单的逻辑门电路,观察输入和输出信号,验证了逻辑门电路的功能。
2. 实验二:组合逻辑电路分析通过设计奇偶校验电路,观察输入和输出信号,验证了组合逻辑电路的正确性。
3. 实验三:组合逻辑电路设计通过设计二进制加法器,观察输入和输出信号,验证了组合逻辑电路的正确性。
六、实验心得与体会1. 通过本次实验,我对组合逻辑电路有了更深入的了解,掌握了组合逻辑电路的分析方法和设计方法。
2. 实验过程中,我学会了使用逻辑门电路搭建电路,并观察输入和输出信号,验证电路的正确性。
3. 本次实验提高了我的动手能力和逻辑思维能力,对我今后的学习和工作具有重要意义。
七、实验改进建议1. 在实验过程中,可以尝试使用不同的逻辑门电路搭建电路,以加深对逻辑门电路的理解。
实验1组合逻辑电路的设计与测试

实验
1组合逻辑电路的设计与测试
一、实验目的 掌握组合逻辑电路的设计与测试方法
二、实验原理
1、组合电路的一般步骤如图
2、 组合逻辑电路设计举例
用“与非〞门设计一个表决电路。
当四个输入端中有三个或四个为“1”时,输出端才为“1”。
表5-5-1
表5-5-2
由卡诺图得出逻辑表达式,并演化成“与非〞的形式
Z =ABC +BCD +ACD +ABD
=ABC ACD BCD ABC ⋅⋅⋅
图5-5-1
表决逻辑电路
按图5-5-2接线,输入端A、B、C Z接逻辑电平显示输入插口,按真值表〔自拟〕要求,逐次改变输入变量,测量相应的输出值,验证逻辑功能,与表5-5-1进展比拟,验证所设计的逻辑电路是否符合要求。
三、实验设备与器件
1、+5V直流电源
2、逻辑电平开关
3、逻辑电平显示器
4、直流数字电压表
5、 74LS00 74LS20 cc4070
四、实验内容
1用与非门设计半加器
2用与非和异或门设计半加器
3用与非和异或设计全加器。
组合逻辑电路的分析与设计实验报告

组合逻辑电路的分析与设计实验报告实验名称:组合逻辑电路的分析与设计实验目的:通过实验了解组合逻辑电路的基本原理,掌握组合逻辑电路的分析与设计方法。
实验原理:1.组合逻辑电路:由与门、或门、非门等逻辑门电路按一定连接方式组成的电路。
2.逻辑门:与门、或门、非门是组合逻辑电路的基本构建模块,能实现逻辑运算。
-与门:只有所有输入信号都为1时,输出为1;否则输出为0。
-或门:只要任一输入信号为1时,输出为1;否则输出为0。
-非门:输入信号为1时,输出为0;输入信号为0时,输出为1实验步骤:1.分析给定的组合逻辑电路图,理清输入和输出的关系。
2.根据电路图,根据所学的逻辑门原理,推导出真值表。
3.根据真值表,使用卡诺图简化逻辑表达式,并进行逻辑代数运算,得出最简化的逻辑表达式。
4.使用逻辑表达式进行电路设计,画出电路图。
5. 使用工具软件(如LogicWorks等)进行电路模拟分析,验证电路的正确性。
6.根据实际需求,对电路进行优化设计。
实验结果与分析:1.根据给定的组合逻辑电路图,进行逻辑分析和设计,得出最简化的逻辑表达式和电路设计图。
2. 使用LogicWorks等工具软件进行模拟分析,验证电路的正确性。
3.根据分析结果,可进行电路优化设计,提高电路的性能和可靠性。
实验结论:通过本次实验,我们深入了解了组合逻辑电路的基本原理和设计方法。
通过逻辑分析和设计,我们能够得到最简化的逻辑表达式和电路设计图,并能使用工具软件进行模拟分析验证。
实验结果表明,组合逻辑电路能够实现所需的逻辑功能,并能根据实际需求进行优化设计。
组合逻辑电路的分析与设计是数字电路领域的重要工作,对于实际应用中的系统设计和实现具有重要意义。
组合电路设计实验报告

一、实验目的1. 理解组合逻辑电路的基本原理和设计方法。
2. 掌握门电路的基本应用和组合逻辑电路的搭建。
3. 培养逻辑思维能力和实际操作能力。
二、实验原理组合逻辑电路是由门电路组成的,其输出信号仅与当前输入信号有关,而与电路之前的输入信号和输出信号无关。
常见的组合逻辑电路有编码器、译码器、数值比较器、数据选择器、奇偶检验器等。
三、实验器材1. 实验箱2. 74系列集成电路3. 跳线4. 数字逻辑分析仪5. 万用表四、实验步骤1. 编码器设计(1)根据设计要求,确定编码器的输入和输出信号。
(2)选用合适的门电路搭建编码器电路。
(3)将编码器电路与数字逻辑分析仪连接,观察输出波形。
(4)根据输出波形,验证编码器电路的正确性。
2. 译码器设计(1)根据设计要求,确定译码器的输入和输出信号。
(2)选用合适的门电路搭建译码器电路。
(3)将译码器电路与数字逻辑分析仪连接,观察输出波形。
(4)根据输出波形,验证译码器电路的正确性。
3. 数值比较器设计(1)根据设计要求,确定数值比较器的输入和输出信号。
(2)选用合适的门电路搭建数值比较器电路。
(3)将数值比较器电路与数字逻辑分析仪连接,观察输出波形。
(4)根据输出波形,验证数值比较器电路的正确性。
4. 数据选择器设计(1)根据设计要求,确定数据选择器的输入和输出信号。
(2)选用合适的门电路搭建数据选择器电路。
(3)将数据选择器电路与数字逻辑分析仪连接,观察输出波形。
(4)根据输出波形,验证数据选择器电路的正确性。
5. 奇偶检验器设计(1)根据设计要求,确定奇偶检验器的输入和输出信号。
(2)选用合适的门电路搭建奇偶检验器电路。
(3)将奇偶检验器电路与数字逻辑分析仪连接,观察输出波形。
(4)根据输出波形,验证奇偶检验器电路的正确性。
五、实验结果与分析1. 编码器电路输出波形符合设计要求,电路功能正常。
2. 译码器电路输出波形符合设计要求,电路功能正常。
3. 数值比较器电路输出波形符合设计要求,电路功能正常。
组合逻辑电路的设计实验报告

组合逻辑电路的设计实验报告摘要:本次实验以组合逻辑电路的设计为主题,通过使用门电路和逻辑元件,构建和测试了一个复杂的逻辑电路。
实验结果表明,我们成功地设计出了一个功能稳定、正确运行的组合逻辑电路。
本实验的目的是培养学生对于数字逻辑和组合电路设计的理解能力,提高学生的实践能力和创新意识。
一、引言组合逻辑电路是由多个门电路和逻辑元件组成的数字电路。
设计和实现一个功能稳定、正确运行的组合逻辑电路对于电子工程专业的学生来说是至关重要的。
本实验通过组合逻辑电路的设计和实验,旨在加深学生对逻辑电路设计原理的理解,提高他们的实践能力。
二、实验材料和方法1.实验材料:门电路芯片、逻辑元件、电源、示波器、电路板等。
2.实验方法:(1)根据实验要求,准备所需的材料和工具。
(2)根据设计要求和逻辑关系,选择合适的门电路芯片和逻辑元件进行组合。
(3)按照设计图纸,将电路连接好,确保每个元件的引脚正确连接。
(4)将电源接入电路板,同时将示波器连接至所需的信号端口。
(5)打开电源,观察示波器上的信号输出情况,检查电路的运行状态。
(6)记录实验结果和观察到的现象。
三、实验结果我们设计的组合逻辑电路是一个基于门电路实现的计数器电路。
电路由多个与门、或门和触发器构成,通过时钟信号进行计数。
实验中,我们观察到电路的输出信号在时钟脉冲信号的驱动下能够正确计数,并在达到特定计数值后正确地复位。
通过实验,我们成功地设计出了一个功能稳定、正确运行的组合逻辑电路。
在测试过程中,我们对电路进行了多次测试和调试,确保了电路的稳定性和正确性。
四、实验分析通过本次实验,我们巩固了对组合逻辑电路设计原理的理解。
我们深入了解了与门、或门、触发器等逻辑元件的原理和功能,并通过实践掌握了它们的用法和连接方式。
在实验的过程中,我们遇到了一些困难和问题。
例如,当连接电路时,我们发现几个引脚的连接不正确,导致电路无法正常工作。
通过仔细检查和调试,我们最终找到了问题的原因并解决了它。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一 组合逻辑电路的设计
一、实验目的:
1、 掌握组合逻辑电路的设计方法。
2、 掌握组合逻辑电路的静态测试方法。
3、 加深FPGA 设计的过程,并比较原理图输入和文本输入的优劣。
4、 理解“毛刺”产生的原因及如何消除其影响。
5、 理解组合逻辑电路的特点。
二、实验的硬件要求:
1、 EDA/SOPC 实验箱。
2、 计算机。
三、实验原理
1、组合逻辑电路的定义
数字逻辑电路可分为两类:组合逻辑电路和时序逻辑电路。
组合逻辑电路中不包含记忆单元(触发器、锁存器等),主要由逻辑门电路构成,电路在任何时刻的输出只和当前时刻的输入有关,而与以前的输入无关。
时序电路则是指包含了记忆单元的逻辑电路,其输出不仅跟当前电路的输入有关,还和输入信号作用前电路的状态有关。
通常组合逻辑电路可以用图1.1所示结构来描述。
其中,X0、X1、…、Xn 为输入信号, L0、L1、…、Lm 为输出信号。
输入和输出之间的逻辑函数关系可用式1.1表示: 2、组合逻辑电路的设计方法
组合逻辑电路的设计任务是根据给定的逻辑功能,求出可实现该逻辑功能的最合理组 合电路。
理解组合逻辑电路的设计概念应该分两个层次:(1)设计的电路在功能上是完整的,能够满足所有设计要求;(2)考虑到成本和设计复杂度,设计的电路应该是最简单的,设计最优化是设计人员必须努力达到的目标。
在设计组合逻辑电路时,首先需要对实际问题进行逻辑抽象,列出真值表,建立起逻辑模型;然后利用代数法或卡诺图法简化逻辑函数,找到最简或最合理的函数表达式;根据简化的逻辑函数画出逻辑图,并验证电路的功能完整性。
设计过程中还应该考虑到一些实际的工程问题,如被选门电路的驱动能力、扇出系数是否足够,信号传递延时是否合乎要求等。
组合电路的基本设计步骤可用图1.2来表示。
3、组合逻辑电路的特点及设计时的注意事项
①组合逻辑电路的输出具有立即性,即输入发生变化时,输出立即变化。
(实际电路中
图 1.1 组合逻辑电路框图
L0=F0(X0,X1,···Xn) · · · Lm=F0(X0,X1,···Xn)
(1.1) 图 1.2 组合电路设计步骤示意图图
还要考虑器件和导线产生的延时)。
②组合逻辑电路设计时应尽量避免直接或间接的反
馈,以免出现不确定的状态或形成振荡。
如右图设计的
基本触发器,当输入~S 、~R 从“00”变为“11”时,无
法确定Q 和~Q 的值。
③组合逻辑电路容易出现“毛刺”,这是由于电路“竞
争-冒险”产生的。
如图1.3所示,图中与门的两个输入
分别由信号 A 经过不同路径传递而来。
按照理想情况分
析,电路输出端应该始终为 L=A ·~A =0。
考虑到信号在逻辑门中的传输延迟,~A 到达与门输入端的时间始终落后于 A 。
图 3.2-1(b )的波形显示,信号 A 的四次变化都产生了竞争。
但这四次竞争引起的结果是不一样的。
第一次和第三次竞争造 成输出错误,第二次和第四次竞争则没有造成输出错误。
换言之,只有第一次和第三次竞争引起了冒险,产生了尖峰干扰。
由于“毛刺”的影响,应避免使用组合
逻辑电路直接产生时钟信号,也应避免将组
合逻辑电路的输出作为另一个电路的异步控
制信号。
如右图,本意是设计一个计数范围
为“0~5”的六进制计数器,即输出QD 、QC 、
QB 、QA 从5“0101”变到6“0110”时,与
门输出“1”,控制“CLR ”异步复位到“0000”,
但是由于输出从3“0011”变到4“0100”时,
QC 先于QB 从“0”变到“1”,导致短暂的
“0111”出现,使与门输出“1”,引起复位,
从而使实际的电路计数范围为“0~3”,与设
计的初衷相悖。
④用VHDL 描述组合逻辑电路时,所有
的输入信号都应放在敏感信号表中。
⑤用IF 语句和CASE 语句描述电路分支时,一定要列举出所有输入状态(一般在最后加上“else ”或“when others ”分支),否则在综合时将引入LATCH ,使电路输出出现延时。
四、实验内容:
1、 用原理图方式设计1位二进制半加器半加器。
图 1.3 竞争-冒险实例
用开关K1、K2输入A、B,用两个LED显示S和C。
2、设计一个BCD码加法器。
BCD码是二进制编码的十进制码,也就是用4位二进制数来表示十进制中的0~9这十个数。
由于4位二进制数有0000~1111共16种组合,而十进制数只需对应4位二进制数的10种组合,故从4位二进制数的16种组合中取出10种组合来分别表示十进制中的0~9,则有许多不同的取舍方式,于是便形成了不同类型的BCD码。
本实验我们只针对最简单的情况,也是最常见的BCD码,就是用4位二进制的0000~1001来表示十进制的0~9,而丢弃4位二进制的1010~1111共6种组合,这样一来,就相当于用4位二进制的0~9对应十进制的0~9。
这样的BCD码进行相加时会出现两种可能,一种可能是当两个BCD码相加的值小于10时,结果仍旧是正确的BCD码;另外一种可能是当两个码相加的结果大于或者等于10时,就会得到错误的结果,这是因为4位二进制码可以表示0~15,而BCD码只取了其中的0~9的原因。
对于第二种错误的情况,有一个简单的处理方法就是作加6处理,就会得到正确的结果。
下面举例说明第二种情况的处理过程。
假如A=(7)10=(0111)2=(0111)BCD,B=(8)10=(1000)2=(1000)BCD,那么
A+B=(15)10=(1111)2≠(0001 0101)BCD。
但是对于(1111)2+(0110)2=(0001 0101)2=(0010 0001)BCD。
因此在程序设计时要注意两个输入的BCD码相加结果是否会出现大于或等于10的情况,如果是则必须作加6的修正处理。
BCD码加法器的VHDL源码如下:
3、设计BCD码译码器设计。
源码如下:
输入信号:D[3],D[2],D[1],D[0]所对应的管脚同四位拨码开关相连。
输出信号:代表7段字码驱动信号ledag[0]——ledag[6]的管脚分别同扫描数码管的段输入a,b,c,d,e,f,g相连。
使用数码管时注意设置“管脚复用”
4、设计一个4位硬件乘法器。
实现并行乘法器的方法有很多种,但是归结起来基本上分为两类,一类是靠组合逻辑电路实现,另一类通过流水线结构实现。
组合逻辑电路结构的并行乘法器的最大优点就是速度快,但是当位数很大时占用的逻辑资源较多。
下面就组合逻辑电路实现无符号数乘法的方法作详细介绍。
假如有被乘数A和乘数B,首先用A与B的最低位相乘得到S1,然后再把A左移1
位与B的第2位相乘得到S2,再将A左移3位与B的第三位相乘得到S3,依此类推,直到把B的所有位都乘完为止,然后再把乘得的结果S1、S2、S3……相加即得到相乘的结果。
需要注意的是,具体实现乘法器是,并不是真正的去乘,而是利用简单的判断去实现,举个简单的例子。
假如A左移n位后与B的第n位相乘,如果B的这位为‘1’,那么相乘的中间结果就是A左移n位后的结果,否则如果B的这位为‘0’,那么就直接让相乘的中
间结果为‘0’即可。
待B的所有位相乘结束后,把所有的中间结果相加即得到A与B相乘的结果。
五、实验步骤:
1.首先打开Quartus II软件,新建工程。
2.按照自己的想法,编写原理图或VHDL文件程序。
3.对自己的设计进行编译并仿真。
4.仿真无误后,根据附录一的引脚对照表,对实验中用到的拨挡开关及LED进行管脚绑定,然后再重新编译一次。
5.用下载电缆通过JTAG接口将对应的sof文件下载到FPGA中。
6.观察实验结果是否与自己的预期想法相吻合。
7.二进制半加器半加器要求分别用时序仿真“Timing”和功能仿真“Function”观察仿真波形,说明“毛刺”出现的原因。
其它实验只需进行功能仿真。
六、实验报告要求
1.总结组合逻辑电路的行为特点。
2.论述组合逻辑电路设计、分析和测试方法。
3. 分析“毛刺”产生的原因及如何消除其影响。
4.写出对于原理图和文本描述(VHDL)这两种设计输入方法的优劣心得。