国内大跨径悬索桥锚碇锚固系统比较研究

国内大跨径悬索桥锚碇锚固系统比较研究
国内大跨径悬索桥锚碇锚固系统比较研究

浅谈预应力岩锚在锚碇系统中的应用

浅谈预应力岩锚在锚碇系统中的应用 摘要:预应力岩锚是充分利用预应力混凝土与自然岩体的摩擦力提供锚固力的一种施工工艺,其广泛应用于山区桥梁施工过程中的锚碇系统,比传统的混凝土锚碇更经济、更环保。 关键词:预应力岩锚,锚固系统 前言 预应力岩锚一般用于山区拱桥的锚固系统中,它是利用预应力浆体与岩体的摩擦力提供锚固力的一种锚固形式,在国内应用较少,在施工过程中如何保证其与岩体的有效结合是预应力岩锚能否有效提供锚固力的关键,现分析马蹄河特大桥预应力岩锚施工工艺,找出预应力岩锚施工的控制要点,保证预应力岩锚的施工质量。 1工程概况 沿德高速的马蹄河特大桥为净跨径为180m的挂篮悬浇拱桥,其2#、3#主墩盖梁上设置扣塔,其中1#、2#、3#节段锚索锚固于1#、4#承台上,再通过预应力岩锚将承台反拉,使承台受力平衡。1#、4#承台半幅采用5根预应力岩锚进行锚固(见下图),全桥共计20束预应力岩锚,单根岩锚锚索采用5Φ15.2预应力低松弛钢绞线,抗拉强度标准值fpk=1860MPa,弹性模量E=195GPa,岩锚锚固端25m,自由端5m,一束岩锚锚索的张拉力为600KN,分三级张拉。张拉锚索时,宜采用同步张拉,分级循环张拉到120%设计张拉力。 2 预应力岩锚施工流程 施工准备工作→预应力岩锚试验→施工放样→岩锚钻孔→预应力钢绞线下料→安装隔离架→安装对中架→安装注浆管→安装导向帽→穿预应力锚索→锚孔注浆→锚索张拉→下一工序 2.1岩锚钻孔 岩锚锚孔位置、角度、大小、深度的准确才能有效提供设计要求的锚固力。在施工前,采用全站仪放样出锚孔的中心,用红油漆在岩面上做好标记,再放样出锚索直线上的另外一点,在钢管支架上做好标记,采用两点确定一条直线的方式确定锚索的方向。 按孔位设计的要求,搭设钻机的固定支架,支架放在平整的木板上,再将横

悬索桥锚碇预应力系统单根可换索钢铰线张拉及注蜡施工工法

悬索桥锚碇单根可换索预应力钢绞线张拉 及注蜡施工工法 1 前言 主缆和锚碇为悬索桥的主要承重受力结构,主缆通过锚碇将拉力传递给地基基础,而预应力锚固系统为主缆与锚碇的连接部件,预应力锚固系统的耐久性决定了大桥的使用寿命。 目前悬索桥工程上常用的锚碇锚固体系为普通预应力钢绞线,钢绞线张拉锚固后,管道内通过压注水泥浆进行防腐,永久锚固在锚体结构混凝土内。但是这种预应力体系压浆质量效果差,容易出现泌水、浆体不饱满、管道内上方空洞等现象,极易造成钢绞线锈蚀,在高应力作用下,钢绞线先是一根锈断,接着就是连锁式损毁,这种预应力筋束损毁后无法更换,当预应力筋破坏达一定的束数后,将很大程度缩短锚碇锚固系统使用寿命,影响到大桥的正常使用。为了克服悬索桥锚碇钢绞线锈蚀过快,锚碇锚固系统使用寿命缩短的问题,近年来,国内外桥梁界提出在悬索桥运营过程中对出现锈蚀的钢绞线进行更换的理念,并且钢绞线进行特殊防腐处理。该种可换索预应力体系,其钢绞线采用环氧树脂充填无粘结(外带PE套),预应力管道内的充填防腐油脂作为密封防腐材料。当锚碇锚体中的预应力钢绞线出现锈蚀以后,把出现锈蚀的钢绞线从预应力管道中退出,重新穿进新的钢绞线,从而保证了锚碇预应力锚固系统的耐久性,确保悬索桥的使用寿命。 可换式预应力锚固体系,钢绞线单靠两端和夹片咬合锚固,中间部位钢绞线与预应力管道是无粘结材料,故锚固夹片与钢绞线的咬合作用尤为关键,对故钢绞线的施工工艺提出了极为严格的要求。 悬索桥锚碇结构预应力管道一般较长,对已经穿束张拉的预应力管道进行压注防腐材料,因此选用的防腐材料的锥入度不能过小,否则无法克服粘滞阻力保证压注的成功,这要求材料必须具有较高的锥入度。但是,国内预应力锚垫板材质通常为铸铁,而预应力管道为普通钢材,锚垫板与预应力管道接头处无法进行理想焊接密封,一般做法是采用环氧树脂之类可塑性材料进行密封。在混凝土浇筑过程中,振捣棒不可避免会碰到预应力管道或者锚垫板,必然会扰动到锚垫板

西坝锚碇锚固系统安装方案

一、编制依据 (1) 二、工程概况 (1) 1、概述 (1) 2、后锚梁与锚杆概况 (2) 3、防腐涂装与隔离概况 (3) 4、定位支架概况 (3) 4、主要工程数量表 (3) 三、总体施工方案 (4) 1、概述 (4) 2、总体工艺流程 (4) 3、施工组织 (5) 四、施工步骤及要求 (7) 1、定位支架安装 (7) 2、锚固系统安装 (9) 3、高强螺栓施工 (17) 五、测量控制与试验检测 (23) 1、测量控制 (23) 2、高强螺栓安装前的试验 (24) 六、质量保证措施 (26) 七、安全保证措施 (26) 八、附件 (29)

、编制依据 ① . 《宜昌市庙嘴长江大桥施工图第二册第一分册(三) :锚固系统》; ② . 《公路桥涵施工技术规范》 (JTG/F50-2011); ③ . 《公路工程质量检验评定标准第一册:土建工程》 (JTG F80/1-2004); ④. 《城市桥梁工程施工与质量验收规范》 (CJJ 2-2008); ⑤ . 《钢结构工程施工质量验收规范》GB50205-2001; ⑥ . 《钢结构高强度螺栓连接技术规程》 (JGJ82-2011); ⑦ . 《国家三、四等水准测量规范》(GB/T12898-2009) 、《工程测量规范》(GB50026-2007); ⑧.《起重吊装常用数据手册》、《起重机械安全规程》(GB6067-2010)、《钢丝绳》(GB 8918-2006)、《起重吊装技术与常用数据速查及机具设备选用计算和安全作业 操作技术规范手册》; ⑨. 《宜昌市庙嘴长江大桥西坝侧锚碇施工组织设计》; ⑩. 中铁大桥局集团企业标准《悬索桥施工》。 二、工程概况 1 、概述 宜昌市庙嘴长江大桥西坝侧锚固系统采用型钢锚固系统,由后锚梁和锚杆组成。后锚梁埋于锚碇混凝土内,锚杆一端连接在后锚梁上,另一端伸出锚体前锚面,与主缆索股相连接。索股拉力通过锚杆传递到后锚梁,再通过后锚梁的承压面传递到锚碇混凝土。 理论前锚面与后锚梁中心面相平行,其与水平面的夹角为45°,间距为15m。 理论散索点IP点到理论前锚面的距离为15.0m,锚杆中心在理论前锚面的横向间距为1.1m,竖向间距为0.65m。 锚固系统构造见图2-1。

锚碇系统计算

双壁钢围堰锚碇系统计算 1、定位船: 定位船为钢围堰定位用,一端直接和锚绳相连系固定船位,另一端用缆索和导向船、钢围堰连系。船上设有滑车组可以随时收放缆索来调整钢围堰位置。 定位船设在钢围堰上游。 定位船长30m,宽12m。 2、导向船: 为了钢围堰的下沉,在钢围堰两侧配置了两艘导向船,每艘导向船长30m,宽7m。两艘导向船以贝雷横梁连接。 3、锚碇布置 围堰船组与定位船视为一个整体,布置锚碇设备。整个锚碇系统布置在顺平均水流方向,钢围堰、导向船与定位船联结。 (1)各种计算公式: ①船舶入水部分的水流阻力: R1=fsv2+FΨv2 式中:f:摩擦系数(铁驳为0.17) s:浸水面积,约为L(2T+0.85B) L:船长 B:船宽(m) T:吃水深度 V:流速(m/s)

Ψ阻水系数(方头船舶为10,流线型为5) F:船舶入水部分垂直水流方向的投影面积s(m2) ②围堰入水部分水流阻力: R2=ζγFv2/2g 式中:ζ:挡水形状系数,矩形为1,流线型为0.75 γ:水的容重(1000kg/m3) F:围堰挡水面积(m2) V:水流速度(m/s) g:重力加速度(9.81m/s2) ③围堰及船舶水面以上部分的风阻力: R3=kΩp 式中:k:填充系数,塔吊及联接数值为0.4,实体部分 为1 Ω:受风面积(m2)包括围堰、导向船、各种设备的受风 面积m2 p:单位面积上的风压力,一般0.8KN/m2=81.55kg/m2 (2)吃水深度计算 ①定位船:长30m,宽12m,重量(含船上各种设备)约为 200t, 故吃水深度T定=200000/(30×12×1000)=0.56m ②导向船:长30m,宽7m,重量(含船上各种设备)约为150t 故吃水深度T导=(150000×2)/(30×7×1000×2)=0.72m

隧道式锚碇系统施工工艺

隧道式锚碇系统施工工艺 1刖言 悬索桥主缆锚碇有重力式和隧道式两种形式,其中隧道式锚碇可细分为隧道式预应力岩锚锚碇和隧道式普通混凝土锚碇。隧道式普通混凝土锚碇在前期是我国山区悬索桥的主缆主要锚碇结构,隧道式预应力岩锚作为悬索桥主缆锚碇在我国西藏角笼坝大桥首次采用,由于其改善了锚碇混凝土的受力情况,减少了圬工量,降低了造价等优点,将成为隧道式锚碇的主流。本文重点在隧道式预应力岩锚锚碇。 2适用范围 悬索桥主缆隧道式锚碇作为悬索桥主缆的主要受力结构,通过锚碇自重和锚碇隧道围岩共同承担主缆强大的锚固力,其地形地貌适于隧道的设计和施工,故隧道式锚碇一般适用于山区,又因隧道纵断面形式为喇叭形变截面形式,隧道口断面较小,锚塞体断面很大,要求岩体整体稳定性好,在施工过程中不易坍塌的地质条件采用。如采用隧道式预应力岩锚锚碇,因预应力可分担一部分锚固力,锚塞体相对要小一些,适用范围也就要大一些。 3锚碇结构及作用 3.1洞室结构 锚碇主要作用是平衡主缆拉力,主缆 由锚碇锚固,锚碇由洞室围岩与锚塞体摩 擦力、自重和预应力来锚固。一般洞室结构 为倾斜的倒喇叭形,如图1 (图例为西藏角 笼坝大桥主缆隧道式预应力岩锚洞室结 构)所示。 3.2锚塞体 锚塞体是隧道式式锚 碇锚块,锚塞体为变截面 楔形体,锚塞体尾部设置预应力岩锚,以便 将主缆拉力传入岩体,增加结构 3.3散索鞍基座 散索鞍主要功能是改变主缆索股的方 向,把主缆索股在水平和竖直方向分散开 来,然后把这些索股引入各自的锚固位 置。 的安全度及防止锚塞混凝土的开裂。图1隧道式锚碇构造示意图

图2锚碇施工工艺流程图 工艺流程图是隧道式预应力岩锚施工工艺流程,相对隧道式普通混凝土锚碇施工工艺多了锚索 钻孔,锚索、锚垫板安装及预应力张拉工序。 5隧道式锚碇施工工艺 5.1锚洞开挖 因锚洞纵断面呈倒喇叭形,锚塞底板坡度较大,一般最大坡度达450以上,不利于大型机械作 业,适合小型机械配合人工施工。适合钻爆法施工:按照短开挖、弱爆破”的原则施工,采用风钻打眼, 小药量预裂爆破全断面法开挖,周边孔与锚洞设计开挖轮廓线相距0.5m,剩余部分由人工或机械进 行开挖,以确保周边围岩的整体性。 (1)引爆:炮眼采用7655型手持式风钻进行钻眼作业,周边孔外插角度按锚洞设计坡率进行控 制(与坡率相符)。每次钻眼完成后,由爆破工程技术人员对照钻爆设计逐孔对孔位、孔深进行检查,

钢桁架悬索特大桥锚碇锚固体系压注防护蜡施工方案[优秀工程方案]

湖北沪蓉西16合同段四渡河特大桥 锚碇锚固体系 压注防护蜡施工方案 编制: 复核: 审核: 路桥华南湖北沪蓉西第十六合同段项目经理部

目录 一、概述 ............................................................................................................. - 1 - 二、编制依据..................................................................................................... - 1 - 三、材料及工艺要求......................................................................................... - 2 - 四、施工工艺..................................................................................................... - 3 - 1、准备工作 (3) 2、管道清理与检查 (4) 3、试压注 (4) 4、管路连接 (4) 4、防护蜡压注 (5) 5、检查 (6) 六、灌注采用的主要设备................................................................................. - 7 - 1、SQ45-3螺杆泵: (8) 2、防护蜡加热设备 (9) 3、管路连接设备 (10) 4、通讯设备 (10) 七、施工计划................................................................................................... - 10 - 八、投入的人员计划....................................................................................... - 11 - 1、项目经理部人员分工 (11) (2)现场技术质量控制小组: (11)

跨海大桥锚碇系统抛锚施工工艺

锚碇系统抛锚施工工艺

一、概述 宁波大桥榭岛跨海公铁两用大桥主墩位于宁波北仑区与大榭岛之间的黄峙江主河槽内。该地区爱海洋潮汐和台风的影响,且1号墩位河床基本无覆盖层,平台基桩入岩浅,为保证施工结构的位置准确和安全,以及满足航道通航要求,本桥1号墩施工平台及靠邦船锚碇系统共布置了17个锚,其中迎落潮向主锚5个(1号~5号),迎涨潮向主锚4个(6号~9号),两侧各布置边锚4个(10号~17号),其布置详见“大榭设--23”《#1墩基础施工锚碇平面布置图》。1号~9号主锚为35t钢筋混凝土锚,锚碇组成为:35t钢筋混凝土锚+80m长φ43~φ67有档锚链+430长φ43钢丝绳;10号~17号边锚为25t钢筋混凝土锚,其锚碇组成为:25t钢筋混凝土锚+110m长φ28有档锚链+120m长φ43~φ67有档锚链。 本桥北仑侧0号墩至1号墩间,为施工方便设置了浮桥,浮桥两侧各布置了两只锚,每只锚上系两条锚链将浮桥加以锚碇。布置详见“大榭岛-039”《#1墩施工浮桥锚碇布置图》。 本桥共抛锚21只,主要材料如表:

现场应将实际配锚情况报桥墩处施工科2份,备案和校核,抛锚完毕后,应出实际竣工图供设计参考,以确定实际锚碇力,请五公司将此项工作办理签证手续。 二、水文、气象 桥址区水域受海洋潮汐影响,为非正规半日浅海潮,每日两涨两落,并有日潮不等现象。 根据距桥位东侧约3.3km的“穿山验潮站”资料:平均涨潮历时5小时42分钟,落潮历时6小时42分钟;年最高潮位2.82m(黄海

高程,下同),年最低潮位-2.13m;实测最大涨潮表在流速2.27m/s,出现在高潮位前1~2小时,实测最大落潮表面流速为3.33m/s,出现在高潮位后3小时左右;经分析计算,涨潮时断面平均流速为1.39m/s,落潮时断面平均流速为2.21m/s。 本桥位于弯道地段,受桥位两侧河道地形及天文影响,涨潮流向与桥轴法线交角14度左右变化,落潮时基本正交,桥位处回流区较多。 根据北仑测波站实测记载:波浪高度月平均0.1m~0.4m,月平均最大波高0.5m~1.7m。桥址区域有金塘岛的屏障作用,外海波浪不易传入,风区长度受到限制,波浪高度不会大于1.2m。 根据镇海气象站资料,累年各月最大风速:1月至5月份为21.7~24.7m/s,6月至9月份为26~34m/s,10月至12月份为24~28m/s。 三、抛锚前的准备 1.锚、锚链、锚绳 抛锚前须对锚、锚链、锚绳进行检查、组装配套、编号挂牌,并填写记录和检查证,经签证认可后才能投入使用。 1)锚 钢筋混凝土锚,须按设计图纸配置钢筋、预埋吊环和锚耳,混凝

桥43-重力式锚碇系统施工工艺

重力式锚碇系统施工工艺 1 前言 锚碇是悬索桥的主要承重结构,要抵抗来自主缆的拉力,并传递给地基基础。锚碇按结构形式可分为重力式锚碇和隧道式锚碇。重力式锚碇依靠其巨大的重力抵抗主缆拉力,隧道式锚碇的锚体嵌入基岩内,借助基岩抵抗主缆拉力。隧道式锚碇只适合在基岩坚实完整的地区,其它情况下大多采用重力式锚碇。 2 重力式锚碇结构 锚碇一般由锚碇基础、锚块、主缆的锚碇架及固定装置、遮棚等部分组成;当主缆需要改变方向时,锚碇中还应包括主缆支架和锚固鞍座(亦称扩展鞍座)。 重力式锚碇根据主缆在锚块中的锚固位置可分为后锚式和前锚式。前锚式就是索股锚头在锚块前锚固,通过锚固系统将缆力作用到锚体。后锚式即将索股直接穿过锚块,锚固于锚块后面,如图1所示,前锚式因具有主缆锚固容易,检修保养方便等优点而广泛运用于大跨悬索桥中。 前锚式锚固系统分为型钢锚固系统和预应力锚固系统两种类型。型钢锚固系统有直接拉杆式(图1)和前锚梁式(图2)。预应力锚固系统按材料不同有粗钢筋锚固形式和钢绞线锚固形式,如图3所示。 1-主缆;2-索股;3-锚块;4-锚支架;5-锚杆;6-锚梁 图1 重力式主缆锚固系统结构图 1-主缆;2-索股;3-前锚梁;4-锚杆;5-锚支架;6后锚梁 图2前锚梁式锚固系统

a)粗钢筋锚固;b)钢绞线锚固 1-索股;2-螺杆;3-粗钢筋;4-钢绞线 图3 预应力锚固系统 2.1锚碇基础 根据地质、水深和悬索桥结构的规模等,锚碇的基础可以分为直接基础、沉井基础、桩基础、井筒基础、复合基础等。若持力层距地面较浅,适合采用直接基础;当持力层埋置深度大时,采用沉井基础、桩基础等。 2.2 锚块 重力式锚碇的锚块就是重力式锚块,与基础形成整体,以抵抗由主缆拉力产生的锚碇滑动及倾倒。 2.3 主缆的锚固架及固定装置 主缆的锚定架及固定装置将主缆拉力分散传布在锚块内,通常是由前梁、后梁、锚杆、定位构件和支撑结构组成。如图2。 锚杆的数量一般与钢缆的丝束数相同。根据主缆的架设方法,连接束股与锚杆的固定装置分为:用于空中送丝法的钢丝束股支座(或称靴跟)和用于预制钢丝束成缆法的套筒两种。 2.4 遮棚 锚碇的遮棚是覆盖锚块及主缆等并建于锚碇基础上的结构物,一般采用钢筋混凝土或钢结构.如果高程合适,遮棚上面可以构筑路面,内部可以作为输配电,排水等设备的机房。 2.5 主缆支架 当主缆在锚碇处改变方向时,则需设置主缆支架。主缆支架可以独立地分开设置在锚碇之前,也可以设置在锚碇之内,它是主缆的支点。主缆支架顶部设有支承钢缆的鞍座;当主缆支架设在锚碇之内时主缆就从这个鞍座开始分散开成为丝股,这个鞍座就是扩展鞍座或称散索鞍。其主要功能是改变主缆索的方向,并把主缆的钢丝束股在水平和竖直方向分散开来,然后把这些钢丝束股引入各自的锚固位置。 主缆支架主要有三种形式,钢筋混凝土刚性支架、钢制柔性支架和钢制摇杆 支架,如图4所示。当采用刚性主缆支架时,扩展鞍座的底部必须设置辊筒,以适应主缆的伸缩。 锚碇可以看作是一个刚体,承受主缆的拉力,并将其传给地基。主缆作用于锚碇上的力可分为水平分力和竖向分力。锚碇在主缆的水平分力作用下不得产生滑移;而在竖向分力和锚碇自重力等作用下,在锚碇底面任意处的压应力不能超过地基上的容许压应力,否则将会出现地基下沉。当然,

悬索桥施工特点(表)

2.悬索桥施工特点 加劲梁 按吊索和加劲梁形式分类 按加劲梁支承结构分类 按工程部位 分类竖直钢桁架 三角形布置扁平流线形钢箱梁竖直吊索和斜吊索混合型 1>单跨双较 2.三跨两较 3?三跨连续 1.下部匚程:锚碇基础、锚体、塔柱基础上 部匚程:主塔、主缆、加劲梁 流线形钢箱梁 主要工序锚碇施工 基础施丄一塔柱.锚碇施丄一先导索渡海工程一牵引、猫道系统一猫道面层、抗风缆架设一索股架设一索夹、吊索安装一加劲梁架设和桥面铺装施工 1.概述: (1)锚碇是悬索桥主要承重构件,主要抵抗主缆拉力,并传递给地基基础 (2)按受力形武分类: 1)重力式锚:依黑自身重力抵抗主缆拉力 2)隧道锚: a)锚体嵌入地基基岩内,借助基岩抵抗主缆拉力 b)只适用于岩基坚实完整的地区,其他悄况采用重力式锚或自锚式悬索桥 2.锚碇基础: (1)基础形式:直接基础、沉井基础、复合基础、隧道基础 (2)锚碇基础基坑的开挖、支护、加固施工安装基坑的有关规定施丄 3.主缆锚固体系: 根据主缆在锚块中的位置分类: 1)前墙式: 索股锚头锚固在锚块前,通过锚固系统将索力传递到锚体 b)优点:主缆锚固容易、检修保养方便、广泛用于大跨径悬索桥 C)形式:型钢锚固系统、预应力锚固系统 2)后墙式:将索股直接穿过锚块锚固与锚块后面 型钢锚固系统: 1)锚架(主要传力构件):锚杆.拉杆、前锚梁、后锚梁 2)支架(安放锚杆、锚梁,并使之精确定位的支撐构件) 3)1JT: 制作锚杆、锚梁f现场拼装支架(一部分)一安装后锚梁一安装锚杆在支架上f安装前锚梁一精确定位一浇筑锚体碇 (3)预应力锚固系统: 1)结构: a)索股锚头由两根螺杆和锚固连接器相连,对穿过锚块栓的预应力束施加预应力, 使锚固连接器与锚块连接成整体承受索股拉力 b)锚固系统的加工件必须进行超声波和磁粉探伤检査 2)丄序: 基础施丄一安装预应力管道f浇筑锚体栓一穿预应力筋f安装锚固连接器f预应力筋张拉一预应力管道压浆一安装与张拉索股 4.锚碇体施?匚 锚碇属于大体积栓构件 施工阶段水泥产生大量水化热,引起变形及不均匀变形,从而产生温度应力和收缩应 a) (2 ) (1 ) (2 ) 力 (3 ) (4 ) 应力>栓抗拉强度,构件就会产生裂缝,影响?^质量水 化热控制是锚碇|??工的关键 5?锚碇栓施丄的有关规定: (1)胶《材料: (2 ) (3 ) 1)尽量降低水泥用*,掺入粉煤灰和矿粉 2)粉煤灰和矿粉用*a胶凝材料用量X3。%,水泥用量a胶凝材料用量X40% 3)栓按6od强度进行配合比设计 降温措施: 降低栓混合料入仓温度 准备使用的骨料避免日照 冷却水作为拌和水选择夜间温度较低时浇筑绘 1) 2) 3) 4) 冷却水管: 栓结构中布置冷却水管,设计水管流量、管道分布密度栓初凝后, 开始通水冷却,降低内部升温速度及温度峰值进出水温差V100水温 与理内部温差V20C 栓内部温度经过峰值开始降温时,应停止通水,降温速度V29/d 1) 2) 3) 4) 浇筑:

锚固系统施工方案及主要工艺

锚固系统施工方案及主要工艺 1.项目概况 本桥桥跨布置采用(15.5+150+15.5)m 地锚式单跨双铰悬索桥。桥梁宽度4.5m, 桥面净宽3.5m,主桥桥位平面位于直线上,纵断面为双向1%纵坡,设半径为8000m 的竖曲线。 吊索间距采用2.0m,充分考虑了山区横纵梁的吊装与架设,主梁通过竖向支座支承于主塔横梁上,主梁与主塔间竖向设置普通板式橡胶支座,横向设置橡胶减震块。 主塔采用钢筋混凝土结构。塔柱采用矩形截面,顺桥向长度1.5m,横桥向宽度1.2m,为保证主缆与吊索在同一平面内,塔柱采用内缩构造;索塔柱设置上横梁,宽1.5m,高1.2m,下塔柱设置矩形中横梁,宽1.5m,高1.5m,中横梁为主桥和引桥的端支撑。 根据桥位处的地质条件,主塔采用二级扩大基础。 2.基坑开挖 2.1锚碇基坑开挖施工 锚碇基坑采用地面直接开挖方法施工,主要内容包括:场地清理、临时道路工程、基坑开挖、基坑边坡防护、出渣通道施工、基坑截水沟、排水系统施工、垫层砼浇筑等。 2.1.1截、排水施工 开挖之前,首先应沿着开挖线5 米以外修筑挡水墙和截水沟,布置排水系统,以防止地表水汇入基坑。随着锚坑开挖深度的加大,每个作业层按周边高,中部低的原则设置,这样坑中部就自然形成积水点,利用潜水泵抽出,即可排水。

2.1.2出渣通道 锚碇开挖土石方总量较大,工期紧,开挖前认真察看地形条件和施工实际情况,确定出渣速度快、经济效益高的施工方法。现拟采用运输通道出渣方法。出渣通道开挖采用机械开挖、人工开挖和爆破相结合,反铲挖掘机挖运,自卸汽车运输出渣。出渣通道从基坑内一直延伸到地面,再与施工道路相连至指定的弃土场。随着开挖工作的不断进行,基坑深度逐渐增加,出渣通道也需进行相应的开挖,其坡度也随着发生变化。 2.1.3基坑开挖 根据设计和边坡防护要求,为保证施工安全,在开挖的同时进行边坡防护,且分层开挖基坑。每大层开挖时,可根据实际情况,分为若干小层,每小层层厚2.5m,以方便开挖,同时还应注意边坡岩质不均匀或地质突变的影响。在开挖过程中,如发现异常情况,立即停止施工并报工程师,采取应急措施。基坑开挖时,对不同深度不同风化程度的岩石选择适当的开挖方式。基坑开挖采用爆破作业时,只许采用小药量爆破,以防止扰动基岩岩体及锚区周围岩体。 表层土体开挖:基坑开挖前应先清理开挖区范围内场地,树木、植被等均应按相关规定处理。采用机械和人工挖掘方式进行作业,当基岩强度较大时,也可根据实际情况采取小药量爆破开挖。表层土体开挖坡度按1:0.5考虑,开挖后,应同时进行边坡防护作业。 下层土体开挖:该层土体主要为白云质灰岩、泥质灰岩,开挖采用机械和爆破为主的方式进行。施工时,该层可分成2.5m一层的若干小层。在开挖时,需要通过出渣通道出渣。随着基坑的不断开挖,

悬索桥复合式隧道锚碇施工工法[详细]

悬索桥复合式隧道锚碇施工工法 1.前言 悬索桥是特大跨径桥梁中最主要的桥梁型式,一般来说其经济跨径为500m以上,适用于宽阔的海湾、水深流急的江河和大跨度的山区山谷、峡谷等。 锚碇是悬索桥的主要承重结构,要抵抗来自主缆的拉力,并传递给地基基础。锚碇按结构形式可分为重力式锚碇和隧道式锚碇。重力式锚碇依靠其巨大自重来抵抗主缆的垂直拉力,一般要求地基具有较大的承载力,水平分力则由锚碇与地基间的摩擦力或嵌固力来抵抗;隧道式锚碇则是将主缆中的拉力直接传递给周围的基岩,只适合在基岩坚实完整的地区。为了在地质条件较差的桥位处也能采用隧道式锚碇,近年来在我国悬索桥设计中,出现了一种在隧道式锚碇的锚体后方增加一定数量岩锚的隧道式锚碇,这些附加的岩锚进一步将主缆的拉力传递给更深层的基岩,分担了主缆部分拉力,从而提高了在地质条件较差的桥位处隧道式锚碇的锚固能力,扩大了隧道式锚碇的应用范围。这种在锚体后方增加岩锚的隧道式锚碇,称之为复合式隧道锚碇。复合式隧道锚碇是一种新型的悬索桥锚固方式,由于其结构型式的变化,使这种锚碇的施工过程更加复杂化,出现了许多新的施工工艺、技术和方法。 《一种隧道式锚碇洞室的开挖爆破方法》获国家发明专利、《悬索桥复合式隧道锚碇施工技术》获20__年度XX省XX市科学技术进步二等奖及XX省科技三等奖、中国路桥集团科技进步二等奖、20__年第三届西安丝绸之路国际科技论坛优秀论文,《减少斜式隧道锚超挖》获20__年全国“金圣杯”QC成果发表赛二等奖、《确保锚塞体混凝土不产生裂缝》获20__年全国“玉柴杯”QC成果发表赛一等奖及20__年“全国优秀质量管理小组”奖、《提高悬索桥预应力锚固系统形成精度》获20__年“全国工程建设优秀质量管理小组”奖、万州二桥获20__年度国家优质工程银质奖。 2.工法特点 2.1工法使用功能简介 隧道式锚碇相对于重力式锚碇有巨大的经济效益,主要适用于地质情况良好的地方。复合式隧道锚由于岩锚存在分担了主缆部分拉力,能适用于基岩情况较差的地

3-8特殊梁型(斜拉桥、拱桥、悬索桥)全解

特殊梁型施工技术试题 (斜拉桥、拱桥、悬索桥) (含选择题45道,填空题12道,简答题5道) 一.选择题:(共45题) 1. 分段拼装梁的接头混凝土或砂浆,其强度不应低于构件的设计强度。不承受内力的构件的接缝砂浆,其强度不应低于(A)。 A. M10 B. M20 C. M30 2. 跨径大于或等于(B)的拱圈或拱肋,应沿拱跨方向分段浇筑。 A、15 m B、16 m C、18m 3. 装配式拱桥构件在脱模、移运、堆放、吊装时,混凝土的强度不应低于设计所要求的强度,一般不得低于设计强度的(A)。 A、60% B、75% C、80% 4. 转体合龙时,应严格控制桥体高程和轴线,误差符合要求,合龙接口允许相对偏差为(C)。 A、±5mm B、±8mm C、±10mm 5.钢管混凝土拱桥所用钢管直径超过(B)mm的应采用卷制焊接管,卷制钢管宜在工厂进行。在有条件的情况下,优先选用符合国家标准系列的成品焊接管。 A、300 B、600 C、800 6.下列不属于拱桥的优点的是:(B) A、耐久性好 B、自重小 C、构造简单 7. 箱形拱桥拱圈横截面由几个箱室组成。截面挖空率大,可达全截面的(B),较实体板拱桥可减少圬工用料与自重,适用于大跨度拱桥。

A、30%-50% B、50%-70% C、70%-90% 8.拱桥拱箱横隔板的主要作用是(A)。 A、提高抗扭能力 B、提高抗弯能力 C、便于分节施工 9. 当桥梁的建筑高度受到严格限制时,可采用(C )满足桥下建筑高度。 A、上承式拱 B、中承式拱桥 C、下承式拱桥 10.在不等跨的多孔连续拱桥中,为了平衡左右桥墩的水平推力,将较大跨径一孔的失跨比加大,做成(B),可以减小大跨的水平推力。 A、上承式拱 B、中承式拱桥 C、下承式拱桥 11.在平坦地形的河流上,不易选用(A),有利于改善桥梁两端引道的工程数量。 A、上承式拱 B、中承式拱桥 C、下承式拱桥 12. 转体合龙时,应控制合龙温度。当合龙温度与设计要求偏差3℃或影响高程差±10mm时,应计算温度影响,修正合龙高程。合龙时应选择当日(B)进行。 A、最高温度 B、最低温度 C、平均气温 13. 转体合龙时,宜先采用钢楔刹尖等瞬时合龙措施。再施焊接头钢筋,浇筑接头混凝土,封固转盘。在混凝土达到设计强度的(C)后,再分批、分级松扣,拆除扣、锚索。 A、75% B、70% C、80% 14.封拱合龙温度应符合设计要求,如设计无规定时,宜在接近当地年平均温度或(A)时进行,封拱合龙前用千斤顶施加压力的方法调整拱圈应力时,拱圈(包括已浇间隔槽)的混凝土强度应达到设计强度。 A、5-15℃ B、10-20℃ C、15-25℃ 15.钢管拱肋(桁架)安装,采用斜拉扣索悬拼法施工时,扣索与钢管拱肋的连接件

锚碇系统的施工

锚碇系统的施工 1.施工测量: 由于抛锚区靠近光缆区域和主航道,经与有关航道管理部门的协商,已经划分出明确的施工区和抛锚区,(见附图01)固抛锚时必须按预定的位置抛设。 测量定位在大桥测量控制网的基础上建立测量基线,并设置一些临时控制点,在岸上布置两台全站仪,采用前交会法定位。 各锚块的坐标已计算出来,由于水深较深,11月中旬抛锚水深约20米左右,锚块在下沉过程中由于水流的冲击会使锚块向下游移动一段距离,故锚块抛设位置应比设计位置向上游抢一定距离,各锚点的抢位情况如下:导向船尾八字锚10#,11#向上游抢10米,其余锚块均向上游抢20米。抢位后的坐标见附图02。 2.抛锚施工: (1)施工准备: 抛锚施工应座好以下工作: a.锚块起吊钢丝绳准备就位; b.锚块放到送锚船上; c.锚块与锚链用配套卸扣联起来; d.锚块整体摆放在送锚船上,以便于下放; e.拉缆钢丝绳与锚链用相应夹子联结好; f.准备足够数量配套的夹子,扳手以及短扣等起重常用工具; g.对所有锚链、锚缆、卸扣和卷扬机及其联结情况进行全面检 查; h.各项工作指定专人负责,由总指挥协调调动。 (2)抛锚: 作好充分准备工作后开始抛锚。 用拖轮将120吨浮吊拖至锚位处,送锚船靠近起重船,起重船吊起锚块,注意用钢丝绳将锚链打住,防止锚链随锚块入水成堆。慢慢调整锚块位置,测量进行观测,达到锚位施工坐标后,拖轮稳住起重船,开始下放锚块,锚链也跟着慢慢下放。锚块到达泥面后,取下起重绳,拖轮拖住起重船向定位船移动,边移边下放锚链,锚链逐节下江,防止在江底成堆。锚链放完后放锚缆,直到带缆到定位船。 (3)定位船定位,理顺边缆,调直。

桥43-重力式锚碇系统施工工艺

重力式锚碇系统施工工艺 1前言 锚碇是悬索桥的主要承重结构,要抵抗来自主缆的拉力,并传递给地基基础。锚碇按结构形式可分为重力式锚碇和隧道式锚碇。重力式锚碇依靠其巨大的重力抵抗主缆拉力,隧道式锚碇的锚体嵌入基岩内,借助基岩抵抗主缆拉力。隧道式锚碇只适合在基岩坚实完整的地区,其它情况下大多采用重力式锚碇。 2重力式锚碇结构 锚碇一般由锚碇基础、锚块、主缆的锚碇架及固定装置、遮棚等部分组成;当主缆需要改变方向时,锚碇中还应包括主缆支架和锚固鞍座(亦称扩展鞍座) 重力式锚碇根据主缆在锚块中的锚固位置可分为后锚式和前锚式。前锚式就是索股锚头在锚块前锚固,通过锚固系统将缆力作用到锚体。后锚式即将索股直接穿过锚块,锚固于锚块后面,如图1所示,前锚式因具有主缆锚固容易,检修保养方便等优点而广泛运用于大跨悬索桥中。 前锚式锚固系统分为型钢锚固系统和预应力锚固系统两种类型。型钢锚固系统有直接拉杆式(图 1)和前锚梁式(图2)o预应力锚固系统按材料不同有粗钢筋锚固形式和钢绞线锚固形式,如图所示。 1-主缆;2-索股;3-锚块;4-锚支架;5-锚杆;6-锚梁 图1重力式主缆锚固系统结构图 图2 前锚梁式锚固系统 4-锚杆;5-锚支架;6后锚梁

a)粗钢筋锚固; b)钢绞线锚固 1-索股;2-螺杆;3-粗钢筋;4-钢绞线 图3预应力锚固系统 锚碇基础 根据地质、水深和悬索桥结构的规模等,锚碇的基础可以分为直接基础、沉井基础、桩基础、井筒基础、复合基础等。若持力层距地面较浅,适合采用直接基础;当持力层埋置深度大时,采用沉井基础、桩基础等。 锚块 重力式锚碇的锚块就是重力式锚块,与基础形成整体,以抵抗由主缆拉力产生的锚碇滑动及倾倒。 主缆的锚固架及固定装置 主缆的锚定架及固定装置将主缆拉力分散传布在锚块内,通常是由前梁、后梁、锚杆、定位构 件和支撑结构组成。如图 锚杆的数量一般与钢缆的丝束数相同。根据主缆的架设方法,连接束股与锚杆的固定装置分为: 用于空中送丝法的钢丝束股支座(或称靴跟)和用于预制钢丝束成缆法的套筒两种。 遮棚 锚碇的遮棚是覆盖锚块及主缆等并建于锚碇基础上的结构物,一般采用钢筋混凝土或钢结构.如 果高程合适,遮棚上面可以构筑路面,内部可以作为输配电,排水等设备的机房。 主缆支架 当主缆在锚碇处改变方向时,则需设置主缆支架。主缆支架可以独立地分开设置在锚碇之前,也可 以设置在锚碇之内,它是主缆的支点。主缆支架顶部设有支承钢缆的鞍座;当主缆支架设在锚碇之内时主缆就从这个鞍座开始分散开成为丝股,这个鞍座就是扩展鞍座或称散索鞍。其主要功能是改变主缆索的方向,并把主缆的钢丝束股在水平和竖直方向分散开来,然后把这些钢丝束股引入各自的锚固位置。 主缆支架主要有三种形式,钢筋混凝土刚性支架、钢制柔性支架和钢制摇杆 支架,如图4所示。当采用刚性主缆支架时,扩展鞍座的底部必须设置辊筒,以适应主缆的伸缩。 锚碇可以看作是一个刚体,承受主缆的拉力,并将其传给地基。主缆作用于锚碇上的力可分为水平分力和竖向分力。锚碇在主缆的水平分力作用下不得产生滑移;而在竖向分力和锚碇自重力等作用下,在锚碇底面任意处的压应力不能超过地基上的容许压应力,否则将会出现地基下沉。当然,

锚碇基础介绍.

第5章锚碇基础 5.1悬索桥及其锚碇 悬索桥,是指以悬索为主要承重结构的桥,由主缆、主塔、加劲梁、锚碇、吊索、桥面、等部分组成,如图5-1所示,是跨越能力最强的桥型,目前跨度1000m以上的桥几乎都采用了这种形式。 图5-1 悬索桥结构示意图 悬索桥的主缆是柔性结构,为对其两端进行约束,可采用两种方式:一是将两端锚于悬索桥的加劲梁上,成为自锚式,这种方式适用于跨度较小的桥。另一种是地锚式,即通过锚碇将主缆固定于桥头岸边的岩石或土层中,这也是目前应用最为广泛的形式。因此,锚碇也是悬索桥的主要承载结构之一。 锚碇的形式与桥位区的地形及地质条件密切相关。 当桥头的岸边有坚固的岩层时,主缆可通过隧道式锚碇或岩锚的方式锚固在岩石中。图5-2所示为乔治华盛顿大桥新泽西侧的隧道式锚碇。 图5-2隧道式锚碇(乔治华盛顿大桥新泽西侧)

如果岸边没有合适的锚固岩层,则可采用重力式锚碇,其主要组成部分包括锚体、散索鞍支墩、锚室和基础等。 其中,基础可采用沉井、桩、地下连续墙等形式。这将在下节详细介绍。 根据上述介绍,锚碇的锚固形式可归纳为: 无论采用何种锚固形式,都需通过散索鞍座或喇叭形散索套将原来捆紧的钢丝索股分开,然后逐股锚固。 图5-4为散索鞍座示意图,一般置于主缆锚固体之前,除可将主缆分散为索股外,还能使分散后的主缆转角。 图5-4 散索鞍分散主缆示意图 若主缆分散后不需要转角,则可采用喇叭形散索套,如图5-5所示。喇叭形散索套的内表面适应主缆从捆紧状态逐渐变化到分散状态,其本身依靠置于散索套小口端的摩擦套箍固定位置。

图5-5 喇叭形散索套分散主缆示意图 展开后的索股通过一定的方式将其所受拉力传给锚体或锚塞体。如图5-6所示,其主要传递方式有5种: 图中(a)所示是早期采用的方式(20世纪前半叶)。索股的拉力通过数节眼杆形成的眼杆链传至锚固块后方的后锚梁。眼杆链与锚固块之间的是分离的,以保证拉力全部传至后锚梁。这种方式施工工艺繁杂且不经济,现已很少使用。 (b)是采用上端有螺纹的钢杆代替眼杆传递索股力。当钢杆过长过重时,会给施工带来困难。 上述两种传递方式的主要目的是保证传至锚体的索股力不在锚体中产生拉应力。当引入预应力技术后,使得索股力的传递可采用更为灵活方便的方式: 如(c)中所示,锚固块中施加预应力后,其钢杆的长度只要保证他与锚体混凝土之间有足够的黏结力传递索股力即可,其长度可较(b)中的长度大大减小。 (d)中在混凝土在前锚面通过基板将连接索股的螺杆直接与预应力筋相连,将索股力传至锚体。 在(e)中,索股穿过锚固在锚体中的锚管后,固定在后锚面。

芜湖长江大桥双壁钢围堰锚碇系统设计与施工(精)

芜湖长江大桥双壁钢围堰锚碇系统设计与施工 1.概述 芜湖长江大桥9-12号墩位于长江主河槽内。水深流急,其基础均采用圆形双壁钢围堰施工,其中10、11号墩钢围堰外径30.5m,内径27.7m,壁厚1.4m,10#墩钢围堰总高度52m,总重862t,11#墩钢围堰总高度43.2m,总重727t,9#、12#墩钢围堰外径22.8m,内径20.0m,壁厚1.4m,9#墩钢围堰总高度52m,总重648t,12#墩钢围堰总高度36.2m,总重454t。 如此大型的钢围堰在国内公铁两用桥中尚首次使用,在其它桥梁中也很少见。为了克服水流阻力和 2.4 边锚 边锚布置于定位船和导向船两侧,主要作用是调节和控制定位船、导向船在垂直水流方向的位置,承受侧向水流阻力和风力。 2.5 尾锚 尾锚顺水流方向分别布置在导向船和后定位船尾部,主要作用是抵御潮水影响,保证钢围堰锚碇系统在水流方向上的稳定。 2.6 柔性支撑 柔性支撑是连接钢围堰与导向船的可调钢丝绳,其作用是固定钢围堰的位置,保证钢围堰与导向船间留有一定的空隙,防止导向船撞击钢围堰,其允许钢围堰与导向船上下相对运动。并通过调节钢丝绳

长度使钢围堰与导向船间相对位置比较稳定。 2.7 拉缆 前后定位船与导向船之间均设有拉缆,其作用是将钢围堰与导向船体系所受外力传给主锚和尾锚,起到固定钢围堰位置的作用。 3、锚碇系统的计算方法(以10号墩为例) 锚碇系统的计算主要依据铁路工程施工技术手册《桥涵》锚碇布置计算部分进行,并根据其它相关资料进行了必要补充。 3.1 计算基本资料 3.1.1 地质情况:10#墩河床面标高为-16.90m (黄海高程,下同),岩面标高为-42.40m ,覆盖为粗砂、中砂、粉细砂,岩层为角岩。 3.1.2 水文情况 ①5—10月间施工设防水位+10.50m ,相当于1983年实测最高水位,相应流量为77200m3/s ,流速为2.5m/s 。 ②11—4月间施工设防水位+6.0m ,相应流量为30000m3/s ,流速为1.6m/s 。 ③冲刷:一般冲刷线按冲刷至标高-24.4m 考虑。局部冲刷按标高-42.4m 考虑。 3.1.3 基本风压 基本风压按ω0=500Pa 计算 3.1.4 锚碇设施 ①导向船:800t 工程铁驳,载重800t ,自重216t ,重载吃水1.8m ,外型尺寸:49m ×11.952m ×3m 。 ②定位船:400t 铁驳。400t 铁驳:载重400t ,自重132t ,重载吃水1.5m ,外型尺寸:40m ×9.2m ×2.4m 。 3.2 计算原则 ①按钢围堰下沉至即将着床状态(仍为悬浮体系)锚碇系统受力最大进行计算。 ②边锚、尾锚按主锚受力的50%进行计算。 3.3 计算步骤及方法 3.3.1 钢围堰水阻力R1: R1=K A g rV 22 式中:k 为水流阻力系数,取k=0.75;r 为水的容积r=10KN/m 3 ;v 为水流速度(m/s );A 为围堰入 水部分在垂直于水流方向的投影面积(m 2);g 为重力加速度g=9.81m/ s 2 ; 3.3.2 钢围堰风阻力R2 R2=F w K K K K *****04321 式中:K1为设计风速频率换算系数K1=1.0;K2为风载体型系数K2=0.8;K3为风压高度变化系数 K3=1.0 ;K4为地形、地埋条件系数K4=1.0;ω0为基本风压值ω0=500Pa ;F 为挡风面积(m 2 ) 3.3.3 导向船组水阻力R3 R3=2210)(-?**+*n V A s f φ 式中:f 为铁驳摩阻系数f=0.17;s 为船舶浸水面积(m 2 );s=L (2T+0.85B );L 为船长,T 为吃水 深度,B 为船宽;φ为阻力系数,方头船只取10;A1为船舶入水部分垂直于水流方向的投影面积(m 2 );n 为导向船只数n=2。 3.3.4 导向船组风阻力R4 R4=F w K K K K *****04321

锚碇开挖及防护施工方案

南宁市英华大桥工程 锚碇基坑开挖及防护 施工方案 项目总工: 项目经理: 中铁四局集团有限公司 南宁英华大桥项目经理部 二〇一二年十二月

南宁市英华大桥工程 锚碇基坑开挖及支护 施工方案 文件编号:NNYHDQ-ZTSJ-MDJKKWJZHSGFG-1版本号: A版 修改状态: O 发放编号: 编制: 复核: 审核: 批准: 有效状态: 中铁四局集团有限公司 南宁英华大桥项目经理部 二〇一二年十二月

目录 1编制说明..................................... 错误!未定义书签。 1.1编制依据 (3) 1.2编制原则................................ 错误!未定义书签。2工程概况.. (3) 2.1工程简介 (3) 2.2工程地质 (3) 2.3水文地质 (4) 2.4气象 (4) 2.5地震动参数 (5) 2.6主要工程数量 (5) 2.7工程特点、重点、难点 (5) 3项目目标管理 (7) 3.1工期目标 (7) 3.2质量目标 (7) 3.3安全目标 (7) 3.4文明施工目标 (7) 4组织机构及施工部署 (7) 4.1施工管理机构 (7) 4.2施工部署 (8) 5施工准备 (8) 5.1施工协调 (8) 5.2施工技术准备 (8) 5.3人员准备 (9) 5.4机械设备准备 (10) 5.5材料准备 (10) 6西岸锚碇基坑施工方案 (11) 6.1总体开挖方案 (11) 6.2西岸锚碇开挖及支护施工流程 (11) 6.3锚碇开挖 (12)

6.4西岸锚碇基坑边坡支护 (13) 7东岸锚碇基坑施工方案 (19) 7.1总体开挖方案 (20) 7.2东岸锚碇开挖及支护施工流程 (20) 7.3东岸锚碇开挖 (20) 8基坑监测 (21) 8.1基坑测点布置 (21) 8.2变形观测要求 (21) 8.3监测频率 (21) 8.4注意事项 (22) 8.5质量问题的处理 (22) 9质量保证措施 (22) 9.1质量保证体 (22) 9.2检查与验收标准 (23) 9.3质量保证措施 (23) 10 安全保证体系及措施 (25) 10.1安全管理目标 (25) 10.2安全生产管理体系 (25) 10.3组织机构 (26) 10.4安全生产管理制度 (27) 10.5安全技术措施 (29) 10.6应急预案 (30) 10.7突发事件应急预案 (32) 10.8紧急救援的一般原则 (33) 11文明施工与环境保护 (33) 11.1文明施工 (33) 11.2环境保护 (35) 附件1:土钉墙检算书 (36) 附件2:基坑开挖与支护设计图 (36)

相关文档
最新文档