自动控制原理第七章 非线性系统的分析
自动控制原理__(13)
江南大学物联网工程学院——自动控制原理
(2)会产生自激振荡 非线性系统即使无外界作用,往往也会产生具有一定振幅 和频率的稳定性振荡,称为自激(自持)振荡。在有的非线性 系统中,还可能产生不止一种振幅和频率的自激振荡。自激振 荡是非线性系统一种特有的运动形式,其振幅和频率由系统本 身特性决定。 说明:
江南大学物联网工程学院——自动控制原理
2. 典型的非线性特性
常见的非线性特性有饱和、死区、间隙(回环)、继电等。 (1)饱和特性 特点:当输入信号超过某一范围后,输出信号不再随输 入信号而变化,将保持某一常数值不变。可将饱和非线性元 件看作为一个变增益的比例环节。
x2 f ( x1 ) tan , x1 <s 如图: x2 f ( x1 ) K x1 x1 0, x1 >s
作用:饱和特性将使系 统等效增益减小,因此可用 来改善系统的稳定性,但会 降低稳态精度。在有些系统 中利用饱和特性起信号限幅 作用。
(a)理想饱和特性
(b)实际饱和特性
图7-2 理想与实际饱和特性
江南大学物联网工程学院——自动控制原理
(2)死区(不灵敏区)特性 特点:是当输入信号在零值附近的某一小范围之内变化 时,没有相应的输出信号,只有当输入信号大于此范围时, 才有信号输出。 常见于测量、放大、变换元件中,执行机构中静摩擦的 影响往往也可用死区来表示。 影响:控制系统中死区特性的存 在,将导致系统稳态误差增大,而测 量元件死区的影响尤为显著。摩擦死 区会造成系统低速运动的不均匀,导 致随动系统不能准确地跟踪目标。
3. 非线性系统的分析方法
目前,对于非线性系统的分析与设计,工程上常用的近似方法有:小 偏差线性化法、分段线性化法、反馈线性化法、描述函数法、相平面法及 计算机仿真等。本章将重点介绍应用较多的相平面法和描述函数法。 (1) 相平面法 相平面法是基于时域的图解分析方法。特点是保留非线性特性,将高 阶的线性部分近似地化为二阶,利用二阶系统的状态方程,绘制由状态变 量所构成的的相轨迹图。可用来分析系统的稳定性及运动特性。 只适用于一、二阶的简单非线性系统分析。
自动控制原理第七章非线性控制系统的分析
这里,M=3,h=1
负倒描述函数为
N 1 X
X
12 1 1 2
X
X 1
X 1, N 1 X , N 1
必有极值
d N 1X 令
0 dX
得 X 2
N 1 2
2
0.523
12
1
1 2
2
6
X: 1 2
-N-1(X): 0.523
2.自振的稳定性分析
在A点,振幅XA,频率A。
扰动:
X : A点 C点 C点被G(j)轨迹包围,不稳定,
振幅 ,工作点由C点向B点运动;
A点一个不稳 定的极限环。
X : A点 D点 D点不被G(j)轨迹包围,稳定,
振幅 ,工作点由D点左移。
在B点,振幅XB,频率B 。 扰动:
X : B点 E点 E点不被G(j) 轨迹包围,稳定,
振幅 ,工作点由E点到B点;
X : B点 F点 F点被G(j)轨迹包围,不稳定,
振幅 ,工作点由F回到B点。
B点呈现稳定的自激振荡:振幅XB ,频率B。
3.闭环系统稳定性判别步骤
1)绘制非线性部分的负倒描述函数曲线和线 性部分的频率特性曲线。
2)若G(j)曲线不包围“-N-1(X)”曲线,则系统稳定。 若G(j)曲线包围“-N-1(X) ”曲线,系统不稳定。 若G(j)曲线与“-N-1(X)”曲线相交,系统出现自振。
3)若G(j )曲线与“-N-1(X)”曲线有交点,做以 下性能分析:
(1)不稳定的极限环
(2)稳定的极限环 计算自振频率和幅值。
例1:非线性系统如图所示,其中非线性特性为 具有死区的继电器,分析系统的稳定性。
0e
自动控制原理_第7章_5
1 这样, 在复平面的坐标便是非线性系统 N ( A0 )
的临界稳定点。 非线性系统的临界稳定点是随着输入信号的振幅
A 的变化而变化的。
1 非线性系统负倒描述函数曲线 是通过临界 N ( A)
稳定点的轨迹。
4
在线性部分为最小相位的前提下,给出Nyquist图 稳定性判据: 中的非线性系统稳定性判据 稳定性判据 (1) 如果线性部分频率特性 G ( jω ) 由 ω )
k =2
试求当开环增益 K = 15 时,自持振荡的振幅 A0 和 角频率 ω0 。 并求出使系统不产生自持振荡的最大 开环增益 K 的值。
22
Im
A
1 N ( A)
a
1
1 2
0
Re
ω
G ( jω )
23
2
死区特性对系统稳定性的影响 死区特性的负倒描述函数为
1 = N ( A)
1
2 2k a a a arcsin + k 1 π A A A
1 N ( A)
b2 b1
A
G( jω )
ω
31
如果线性部分传递函数为
K (τ s + 1) G (s) = 2 s (Ts + 1) 情况如下图所示。
1 k
(τ > T )
Im 0 b3 为稳定交点 代表自持振荡 Re 这类系统无论增益 K 取何值,都不可 避免自持振荡!
32
G ( jω )
∞
ω
G ( jω )
20 lg G ( jω )
∞
-160° °
1 N ( A) A
-120° ° -80° °
13
(3) ) dB
自动控制原理 第七章 非线性系统
实质上是应用谐波线性化的方法,将非线性特性线性化, 然后用频域法的结论来研究非线性系统,它是线性理论 中的频率法在非线性系统中的推广,不受系统阶次的限 制。
(2)相平面法(本质非线性):图解法。通过在相平 面上绘制相轨迹,可以求出微分方程在任何初始条件下 的解。是一种时域分析法,仅适用于一阶和二阶系统。
1
ωt
y1 (t ) B1 sint
由式(7-15)可得饱和特性的描述函数为
B1 2k a a a 2 N ( A) arcsin 1 ( ) A A A A
M sin td ( t )
yMFra bibliotek0 π2π
ωt
所以基波分量为:
y1 ( t )
4M
sin t
故理想继电器特性的描述函数为
Y1 4M N ( A) 1 A A
2.饱和特性
请牢记!
即 N(A)的相位角为零度,幅值是输入正弦信号A的函数.
当输入为x(t)=Asinωt,且A大于线性区宽度a 时, 饱和特性的输出波形如图7-10所示。
7.1.3
非线性系统的分析方法
非线性的数学模型为非线性微分方程,大多数尚无
法直接求解。到目前为止,非线性系统的研究还不成熟, 结论不能像线性系统那样具有普遍意义,一般要针对系 统的结构,输入及初始条件等具体情况进行分析。工程 上常用的方法有以下几种:
(1)描述函数法(本质非线性):是一种频域分析法,
r(t)=0 x
N
y
G(s)
c(t)
图7-8 非线性系统典型结构图
(2)非线性环节的输入输出静特性曲线是奇对称的,即 y(x)=-y(-x),以保证非线性元件在正弦信号作用下的输出不 包含直流分量。 (3)系统的线性部分具有良好的低通滤波特性。能较好的滤 除非线性环节在正弦输入下输出中的高次谐波,于是可以认 为在闭环通道中只有基波分量在流通,此时应用描述函数法 所得的分析结果才是比较准确的。实际系统基本都能满足。
自动控制原理复习资料——卢京潮版第七章
第七章 非线性控制系统分析§7.1 非线性系统概述● 非线性系统运动的规律,其形式多样。
线性系统只是一种近似描述 ● 非线性系统特征—不满足迭加原理1) 稳定性 ⎩⎨⎧平衡点灯可能有多个入有关关,而且与初条件,输不仅与自身结构参数有2) 自由运动形式,与初条件,输入大小有关。
3) 自振,在一定条件下,受初始扰动表现出的频率,振幅稳定的周期运动。
自振是非线性系统特有的运动形式。
4) 正弦响应的复杂性 (1) 跳跃谐振及多值响应 (2) 倍频振荡与分频振荡 (3) 组合振荡(混沌) (4) 频率捕捉 ● 非线性系统研究方法 1) 小扰动线性化处理2) 相平面法-----用于二阶非线性系统运动分析3) 描述函数法-----用于非线性系统的稳定性研究及自振分析。
4) 仿真研究---利用模拟机,数字机进行仿真实验研究。
常见非线性因素对系统运动特性的影响:1. 死区:(如:水表,电表,肌肉电特性等等)死区对系统运动特性的影响:⎪⎩⎪⎨⎧↓↓↑↓动不大时)]此时可能稳定(初始扰[原来不稳定的系统,,振荡性声,提高抗干扰能力差),能滤去小幅值噪跟踪阶跃信号有稳态误等效%(e K ss σ 可见:非线性系统稳定性与自由响应和初始扰动的大小有关。
2. 饱和(如运算放大器,学习效率等等)饱和对系统运动特性的影响:进入饱和后等效K ↓⎪⎩⎪⎨⎧↓↑↓↓,快速性差限制跟踪速度,跟踪误统最多是等幅振荡)(原来不稳,非线性系振荡性统一定稳定)原来系统稳定,此时系(%σ 3. 间隙:(如齿轮,磁性体的磁带特性等)间隙对系统影响:1) 间隙宽度有死区的特点----使ss e ↓2) 相当于一个延迟τ时间的延迟环节,%σ→↑ 振荡性 减小间隙的因素的方法:(1) 提高齿轮精度 ; (2) 采用双片齿轮; (3) 用校正装置补偿。
4. 摩擦(如手指擦纸) 摩擦引起慢爬现象的机理改善慢变化过程平稳性的方法1)2)3)⎧⎪⎨⎪⎩、良好润滑、采用干扰补偿、增加阻尼,减少脉冲,提高平衡性 摩擦对系统运动的影响:影响系统慢速运动的平稳性5. 继电特性:对系统运动的影响:1)K (2K %3)ss e σ⎧⎧⎪⎨⎩⎪⎪⎧↑⎪⎪⎪⎧↓⎨⎨⎪⎨⎪⎪↓⎪⎩⎩⎪⎪⎪⎪⎩一、二阶系统可以稳定、理想继电特性 等效: 一般地,很多情况下非线性系统会自振带死区))、带死区继电特性 等效: 快态影响(死区+饷)的综合效果振荡性、一般继电特性:除3、2中听情况外,多出一个延迟效果(对稳定性不利)§7.2 相平面法基础(适用于二阶系统)1. 相平面相轨迹二阶非线性系统运动方程:()[(),()]xt f x t x t = ――定常非线性运动方程即:[,][,]dxdx f xx dx dtdx f x x dx x⋅==()()xxt x t ⎧⎪⎪⎨⎪⎪⎩以为纵标,x为横标,构成一个平面(二维空间)称之为相平面(状态平面)系统运动时,,以t为参变量在相平面上描绘出的轨迹称为相轨迹(可以描述系统运动) 相平面法是用图解法求解一般二阶非线性控制系统的精确方法。
自动控制原理第七章
条件下的时间响应曲线如图所示。
四、非线性控制系统的特点
3.稳定性 3.稳定性 从曲线及方程中可以看出, 系统有两个平衡状态,即 x=0和 x=1 。 按稳定性的定义对平衡状 态 x=1来说,系统只要有一 个很小的偏离,就再也不会 回到这一平衡状态上来。 因此,x=1的平衡状态是一个不稳定的平衡状态。
第七章 非线性系统的分析
§7
非线性系统的分析
教学内容:
§7-1 非线性控制系统概述 §7-2 描述函数法 §7-3 相平面法
§7-1 非线性控制系统概述
一、引言 二、研究非线性系统的一般方法 三、典型非线性特性 四、非线性控制系统的特点
一、引言
包含一个或一个以上非线性元件或环节的系统为非线性系 统。 实际上自动控制系统的各个环节不可避免的带有某种程度 的非线性,线性系统只是非线性系统的近似。 非线性系统程度不严重时,在一定范围内或特定条件下, 可采用微偏法进行线性化,这种非线性称为非本质非线性。 如果系统的非线性具有间断点、折断点,称为本质非线性。 这时采用线性系统分析方法去研究会引起很大的误差甚至导 致错误的结论。
四、非线性控制系统的特点
3.稳定性 3.稳定性
线性系统的稳定性取决于系统的结构与参数,与起始 状态无关。 非线性系统的稳定性不仅仅和系统的结构与参数有关, 还和起始状态有直接关系。 一个非线性系统,他的某些平衡状态可能是稳定的, 某些平衡状态可能是不稳定的。因此对于非线性系统, 不存在系统是否稳定的笼统概念,要研究的是非线性系 统平衡状态的稳定性。
2 n
A +B
2 n
An ϕn = arctan Bn
一 描述函数的基本概念
非线性特性为奇对称,则直流分量 A0= 0; 同时,各谐波分量的幅值与基波相比一般都比较小; 因此,可以忽略式中的高次谐波分量,只考虑基波分量, 这种近似也称为谐波线性化。则
自动控制原理课件:非线性系统的分析
( ) 90 arctan arctan
4
求与负实轴的交点
90 arctan arctan
4
180
5
arctan arctan arctan 4 2 90
4
1
4
2
4
1 2
G ( j )
1
10
称 , 为相变量,它们构成二维平面称为相平面
相变量在相平面上运动的轨迹称为相轨迹, 即在一定
初始条件下满足上述微分方程的解.
相平面模型即 非线性二阶系统的状态空间模型.
x(t )
d x(t ) / dt d x(t ) f ( x(t ), x(t ))
dx(t )
x(t ) dx(t ) / dt
作用的基波分量,近似为“线性系统”。
01
描述函数是非线性特性的一种近似表示,是一种谐波线性化方法,忽略
非线性环节输出中的高次谐波,用基波分量表示其输出。
e(t ) X sin t
c1 (t )
N(X )
表示非线性环节的输出一次谐波分量对正弦输入信号的复数比。
N(X )
使用上常将描述函数表示为的函数.
的初始状态无关。
非线性系统的稳定性和零输入响应的性质不仅取决于系统的结构、参数,而且
与系统的初始状态有关。
2. 系统的自持振荡
线性系统只有两种基本运动形式:发散(不稳定)和收敛(稳定)。
非线性系统除了发散和收敛两种运动形式外,即使无外界作用,也可能会发生
自持振荡。
4
dx(t )
2
x
自动控制原理课件第七章1
A1
1
2
0
x(t) costd (t),
B1
1
2
x(t) sin td (t)
0
X1
A12 B12 ,
1
arctg
A1 B1
③将基波分量代入描述函数定义,即可求得相应的描述函数 N ( A) 。
N ( A) X1 e j1 j A1 B1
A
AA
25
1.理想继电器特性
输入信号 x(t) Asint
y M
a
k
0a
x
M
y M
a ma
0 ma a x
M 31
输入信号大小或初始状态发生改变时,其响应形式 可能会发生变化。
15
4、自激振荡 ➢线性系统:
等幅振荡其实是一种理想状态,现实中不存在, ➢非线性系统:
由于非线性元件作用,可能出现稳定的等幅振荡。
16
5、分谐波振荡 ➢线性系统: 输入正弦信号,输出为同频率正弦信号; ➢非线性系统:输入正弦信号,输出不再是简单的同频信号,
线性系统输出: c(t)=c1 c2 c3
非线性系统不满足上述关系,因此线性系统控制理论原则上不能用
12
2、稳定性
稳定性定义:系统受扰后恢复原来平衡状态的能力 线性系统:只与系统结构和参数有关,与输入、初
始状态(条件)无关! 非线性系统:除了与系统结构有关外,还与
系统输入、初始状态有关。
13
考虑非线性一阶系统
从能量的观点来分析,当主动轮越过间隙时,系统的执行元件不带动负载,因而 不消耗能量,与没有间隙特性的系统相比,相当于蓄能增多,使得主动轮通过间 隙重新带动负载时的总能量增大,因而使系统的震荡加剧。
自动控制原理第七章
自持振荡问题 根据以前的分析可知,线性系统可能会 包含二阶振荡环节,但是,由于信号或功率 在传递过程中必然出现损耗,实际工程中绝 对不存在无阻尼情况。但在非线性系统中, 即使没有外部作用,系统也有可能产生一定 频率和振幅的周期运动。并且当系统受到扰 动后,运动仍能保持原来的频率和振幅,因 此这种周期运动具有稳定性。非线性系统出 现的这种周期运动称为自持振荡。
第七章
非线性控制系统的 分析方法
本章目录
第一节 非线性控制系统概念 第二节 描述函数法 第三节 非线性系统的描述函数法分析 第四节 改善非线性系统性能的方法 第五节 相平面分析法 第六节 非线性系统的相平面分析 本章小结
在自动控制系统中,如有一个或一个以 上的环节具有非线性特性时,该自动控制系 统就称为非线性控制系统。 所谓非线性环节就是指环节的输入和输 出之间的静特性不是线性的。 在本章中,我们将讨论非线性控制系统 的分析方法。
稳定性问题 对于线性系统,若它一个平衡状态是稳 定的,可以推出其所有的平衡状态都有是稳 定的。而对于非线性系统,它的某些平衡状 态可能是稳定的,但另外一些平衡状态却可 能是不稳定的。 线性系统的稳定性只与系统的结构形式 和参数有关,而与外作用及初始条件无关。 非线性系统的稳定性不但与系统的结构形式 和参数有关,还与外作用及初始条件有关。
y B
-c
0 c x
-B
图7-05 间隙非线性
三、非线性控制系统的特殊性
叠加原理不能应用于非线性控制系统 对于线性系统,描述其运动的数学模型 是线性微分方程,因此可以应用叠加原理, 进一步还可引入传递函数、频率特性、根轨 迹等概念。由于线性系统的运动特征与输入 的大小及初始状态无关,通常可在典型输入 函数和零初始条件下对系统进行分析。但对 于非线性系统,则不能应用叠加原理,因此 也就不能应用上述概念和方法对其运行状态 进行分析。
非线性控制系统分析(《自动控制原理》课件)
出发的相轨迹曲线互不相交. 如果在相平面上某些点的
d x/ dx 0/ 0, 即曲线在这一点上的斜率不定, 可有无穷多
条相轨迹通过这一点, 称这一点为系统的平衡点, 或叫奇
点.
在相平面的上方(如下图) ,
由于
x
0所以
x总是朝大的
x
A(x0 ,
x0 )
方向变化, 故相轨迹上的点总是按图 中箭头所指从左向右移动. 在相平面
u0
0
u(t) u(t) G(s) c(t)
u0
上图中, 大方框表示一具有理想继电特性的非线性环节, G(s) 表示非线性系统中线性部分的传递函数.
非线性的特性是各种各样的, 教材图及 表给出了一些工程上常见的典型非线性特性.
7-2非线性控制系统的特征
非线性控制系统有如下两个基本特征: (1)非线性控制系统的基本数学模型是非线性微分方程 (2)非线性控制系统的性能不仅与系统本身的结构和参
0
x
的下方,
由于
x
0
所以
x
总是朝小的
方向变化, 故相轨迹上的点总是按图中箭
箭头所指从右向左移动. 在 x 轴上, 由于
x 0, 即 x不变化, 达到最大值或最小值, 故相轨迹曲线
与 x 轴的交点处的切线总垂直于x 轴.
2. 相轨迹作图法
先以线性系统为例, 说明相轨迹曲线的画法.
(1)解析法
数有关, 还与系统的初始状态及输入信号的形式和大小 有关.
由于非线性控制系统的基本数学模型是非线性微分 方程, 而从数学上讲, 非线性微分方程没有一个统一的 解法, 再由于第二个特征, 对非线性控制系统也没有一 个统一的分析和设计的方法, 只能具体问题具体对待.
自动控制原理第七章非线性系统ppt课件
7.1.3 非线性系统的分析方法
非线性的数学模型为非线性微分方程,大多数尚无 法直接求解。到目前为止,非线性系统的研究还不成熟, 结论不能像线性系统那样具有普遍意义,一般要针对系 统的结构,输入及初始条件等具体情况进行分析。工程 上常用的方法有以下几种:
(1)描述函数法(本质非线性):是一种频域分析法,
实质上是应用谐波线性化的方法,将非线性特性线性化, 然后用频域法的结论来研究非线性系统,它是线性理论 中的频率法在非线性系统中的推广,不受系统阶次的限 制。
(2)相平面法(本质非线性):图解法。通过在相平 面上绘制相轨迹,可以求出微分方程在任何初始条件下 的解。是一种时域分析法,仅适用于一阶和二阶系统。
4M
sin t
故理想继电器特性的描述函数为
N ( A)
Y1 A
1
4M
A
请牢记!
即 N(A)的相位角为零度,幅值是输入正弦信号A的函数.
2.饱和特性
当输入为x(t)=Asinωt,且A大于线性区宽度a 时,
饱和特性的输出波形如图7-10所示。
y
x
N
M
k 0a
x
yy
0 ψ1
π
2π
ωt
0 x
ψ1
π
A sin 1
x(t) Asint
则其输出一般为周期性的非正弦信号,可以展成傅氏级 数:
y(t ) A0 ( An cos nt Bn sin nt ) n1
若系统满足上述第二个条件,则有A0=0
An
1
2 y(t ) cos ntd t
0
Bn
1
2 y(t ) sin ntd t
0
由于在傅氏级数中n越大,谐波分量的频率越高,An,Bn
自动控制原理考试试题第七章习题与答案
第七章非线性控制系统分析练习题及答案7-1设一阶非线性系统的微分方程为xx3 x试确定系统有几个平衡状态,分析平衡状态的稳定性,并画出系统的相轨迹。
解令x0得3(21)(1)(1)0xxxxxxx系统平衡状态x e0,1,1其中:x0:稳定的平衡状态;ex1,1:不稳定平衡状态。
e计算列表,画出相轨迹如图解7-1所示。
x-2-11301312x-600.3850-0.38506x112010211图解7-1系统相轨迹可见:当x(0)1时,系统最终收敛到稳定的平衡状态;当x(0)1时,系统发散;x(0)1 时,x(t);x(0)1时,x(t)。
注:系统为一阶,故其相轨迹只有一条,不可能在整个x~x平面上任意分布。
7-2试确定下列方程的奇点及其类型,并用等倾斜线法绘制相平面图。
(1)xxx0(2) x1x2xx122xx12解(1)系统方程为1:xxx0(x0):xxx0(x0)令xx0,得平衡点:x e0。
系统特征方程及特征根:132:ss10,sj(稳定的焦点)1,2222:ss10,s1.618,0.618(鞍点)1,2xf(x,x)xx, d xdxxxxdx dx 1xx,1xxx11I:1(x0)1II:1(x0)计算列表-∞-3-1-1/301/313∞x0:11-1-2/302-∞-4-2-4/3-1x0:11-1-4/3-2-4∞20-2/3-1用等倾斜线法绘制系统相平面图如图解7-2(a)所示。
2图解7-2(a)系统相平面图(2)xxx112①x22xx②12由式①:x2x1x1③式③代入②:(x1x1)2x1(x1x1)即x12x1x10④令x1x10得平衡点:x e0由式④得特征方程及特征根为2.4142ss2101,2(鞍点)0.414画相轨迹,由④式xx 11 d x1dxx12x1x1x 1 x1 2计算列表322.53∞11.52=1/(-2)∞210-1-2∞用等倾斜线法绘制系统相平面图如图解7-2(b)所示。
自动控制原理第七章
基本思想
ɺ x
x
相平面分析法是分析非线性系统性能的一种图 示方法。 示方法。而相轨迹和相平面图的绘制为该分析方法的前提 条件。 条件。
x 1 (t), 2 (t) x
相平面定义:由两个线性无关的状态变量 作为坐标的平面称 为相平面。通常采用位移和位移的变化率作为状态变量用于描述一、二 阶系统的运动特性。
ɺɺ = -f(x, x ) ɺ x ⇒ ɺ ɺɺ = d x x = − f(x, x ) ɺ ɺ x dx ⇒ ɺ ɺ dx f(x, x ) = − ɺ dx x
ɺ x
x
相轨迹的绘制方法
解析法
消除变量法 直接积分法
等倾线法绘制相轨迹思 ɺɺ + f(x,ɺ ) = 0 x x 令: ⇒ 路: ɺ dx f(x,ɺ ) x =− ɺ x dx
E 0
Im
∞
Re
死区继电器的负倒描述函数曲线
Im
N(E) N(E)
4M = πE = 0
Δ2 1− E 2 (E ≤ Δ )
(E
≥ Δ)
∆ ∞
E Re
−
1 N(E)
= − 4M
πE
Δ2 1− E 2
(E
≥ Δ)
拐点参数:
E = 2 Δ 1 − N(E) E =
Y ϕ 非线性环节的描述函数 :N = 1 e j 1 = E
2 2 − A 1 + B 1 jtg 1 B 1 B A = 1+j 1 e E E E
A1
描述函数的自变量为输入正弦信号的幅值
求取描述函数应用举例
自动控制原理(第三版)第7章非线性控制系统(1)
自动控制原理
4)当非线性输入的信号为正弦作用时,由 于非线性其输出将不再是正弦信号,而包 含有各种谐波分量,发生非线性畸变。
大连民族学院机电信息工程学院
自动控制原理
5)混沌
大连民族学院机电信息工程学院
自动控制原理
非线性系统运动的特殊性
• 不满足叠加原理 — 线性系统理论原则上不能运用 (区别) • 稳定性问题 — 不仅与自身结构参数,且与输入, 初条件有关,平衡点可能不惟一,可以稳定且可以 在多个平衡点稳定,可能不稳定—发散、衰减等 nonlinear • 自振运动— 非线性系统特有的运动形式,产生自 持振荡 • 发生频率激变—频率响应的复杂性 — 跳频响应, 倍/分频响应,组合振荡
大连民族学院机电信息工程学院
自动控制原理
3、滞环(非单值特性)
) x 0 , 且y 0 k ( x a sgn x y =0 y x2 m sgn x
滞环特性会 使系统的相 角裕度减小, 动态性能恶 化,甚至产生 自持振荡。
x2
x2m
x2
x2m
a
0
x1
a
x2m
7.3 描述函数法 7.4 相平面法
7.5 Matlab 在本章中的应用
大连民族学院机电信息工程学院
自动控制原理
7.1 非线性控制系统概述
如果一个控制系统包含一个或一个以上具有非 线性特性的元件或环节,则此系统即为非线性系统。
• 前面研究的线性系统满足叠加性和齐次性; • 严格地说,由于控制元件或多或少地带有非线性特 性,所以实际的自动控制系统都是非线性系统; • 一些系统作为线性系统来分析: ①系统的非线性 不明显,可近似为线性系统。②某些系统的非线性 特性虽然较明显,但在某些条件下,可进行线性化 处理; • 但当系统的非线性特征明显且不能进行线性化处理 时,就必须采用非线性系统理论来分析。这类非线 大连民族学院机电信息工程学院 性称为本质非线性。
自动控制原理第七章
饱和特性可以由放大器失去放大能力的饱和现象 来说明,其输入输出关系如图所示。 来说明,其输入输出关系如图所示。
饱和特性
它的数学描述为
+ M , e > +e0 f (e ) = ke,−e0 ≤ e ≤ +e0 − M ,e < 0
在放大器的线性工作区内,叠加原理是适用的。 在放大器的线性工作区内,叠加原理是适用的。但 是输入信号正反向过大时, 是输入信号正反向过大时,放大器的工作进入饱和 工作区,就不满足叠加原理了。从图上可以看到, 工作区,就不满足叠加原理了。从图上可以看到, 在饱和点上,信号虽然是连续的,但是导数不存在。 在饱和点上,信号虽然是连续的,但是导数不存在。 饱和特性在控制系统中普遍地存在。 饱和特性在控制系统中普遍地存在。调节器一般都 是电子器件组成的,输出信号不可能再大时, 是电子器件组成的,输出信号不可能再大时,就形 成饱和输出。有时饱和特性是在执行单元形成的, 成饱和输出。有时饱和特性是在执行单元形成的, 如阀门开度不能再大、电磁关系中的磁路饱和等。 如阀门开度不能再大、电磁关系中的磁路饱和等。
滞环特性
一起, 滞环特性表现为正向行程与反向行程不是重叠 一起,在 输入输出曲线上出现闭合环路因此而得名。 输入输出曲线上出现闭合环路因此而得名。滞环特性又 可以称为换向不灵敏特性。滞环特性与死区特性一样, 可以称为换向不灵敏特性。滞环特性与死区特性一样, 通常也是叠加在其它传输关系上的附加特性, 通常也是叠加在其它传输关系上的附加特性,其输入输 出关系如图所示。 出关系如图所示。
摩擦特性
死区特性
死区又称不灵敏区,在不灵敏区内, 死区又称不灵敏区,在不灵敏区内,控制单元的输入端虽 然有输入信号但是其输出为零。 然有输入信号但是其输出为零。死区特性通常是叠加在其 它传输关系上的附加特性,其输入输出关系如图所示。 它传输关系上的附加特性,其输入输出关系如图所示。
自动控制原理第七章非线性系统分析
7-2 常见非线性因素对系统 运动特性的影响
一.不灵敏区
不灵敏区又叫 死区,系统中
的死区是由测量元件的死区、 放大器的死区以及执行机构的 死区所造成的。
x
(7-14)
(1)无阻尼运动 ( 0)
由方程(7-14),相轨迹方程为:
x2
(t)
x2 (t)
n2
A2
其中
A
x02
x02
2 n
(7-16)
相轨迹如图7-24所示,在相平面上是为一族同心 的椭圆。 每个椭圆相当于一个简谐振动。
图7-24 系统无阻尼运动时的相轨迹
相轨迹的方向如 图7-24中箭头所示。 相轨迹垂直穿过 横轴。 坐标原点处相轨 迹的斜率不能由该 点的坐标唯一地确 定,这种点叫做奇 点。
第7章 非线性系统分析
基本要求 7-1 非线性问题概述 7-2 常见非线性因素对系统运动特性的影响 7-3 相平面法基础 7-4 非线性系统相轨迹分析 7-5 描述函数 7-6 用描述函数分析非线性系统
返回主目录
基本要求
① 明确非线性系统动态过程的本质特征。掌握系 统中非线性部分、线性部分结构归化的方法。
若继电系统的方框图如图7—41 所示
图7-41
• 研究图中继电特性为图7-40(b) 的情况
e c时
KM c h
Tc(t)
c(t)
0
| c | h
KM c h
• 很明显,相平面以直线c h为界被分成
三个不同的区域,在每个区域里,系统的 相轨迹完全由一个线性微分方程所确定
自动控制原理第七章非线性系统分析
02
非线性系统的分析方法
相平面法
相平面法是一种通过绘制系统的 相图来分析非线性系统的动态行
为的方法。
它通过将系统的状态变量绘制在 二维平面上,显示系统的平衡状 态、周期运动和混沌运动等不同
状态。
相平面法可以用于分析非线性系 统的稳定性、分岔和混沌等现象。
描述函数法
描述函数法是一种通过引入描 述函数来分析非线性系统的频 率特性的方法。
滑模控制是一种变结构控制方法,通过设计滑模面和滑模控制器,使 得系统状态在滑模面上滑动,以达到控制系统的目的。
非线性系统的设计方法
相平面法
通过分析非线性系统的相轨迹,了解系统的动态行为,并 设计适当的控制器来控制系统状态。
描述函数法
通过分析非线性系统的频率特性,了解系统的动态行为, 并设计适当的控制器来控制系统状态。
它通过将非线性系统近似为线 性系统,并利用频率响应函数 来描述系统的频率特性。
描述函数法可以用于分析非线 性系统的谐振、倍周期分岔等 现象。
逆系统法
逆系统法是一种通过构建逆系统来补偿非线性系 统的非线性特性的方法。
它通过设计一个逆系统来抵消原系统的非线性, 从而将非线性系统转化为线性系统进行处理。
根轨迹法
根轨迹法是通过绘制系统的根轨迹图来分析系统的稳定性,根轨迹是指系统的极点随参数变化而变化 的轨迹。
劳斯稳定判据
劳斯稳定判据是判断线性系统稳定性的重要方法之一,其基本思想是通过 计算系统的极点,判断极点是否位于复平面的左半部分。
劳斯稳定判据的优点是简单易行,适用于多变量系统,可以同时考虑系统 的所有极点。
03
非线性系统的稳定性分析
定义与特点
定义
非线性系统的稳定性是指系统在受到 扰动后,能否恢复到原来的平衡状态 。
夏德钤《自动控制原理》(第4版)章节题库-第7章 非线性系统的分析【圣才出品】
第7章 非线性系统的分析1.试计算并绘制下列各微分方程的相平面图。
解:(1)求得运用积分法解得相轨迹方程为其相轨迹如图7-1所示。
(2)求得运用积分法解得相轨迹方程为其相轨迹如图7-2所示。
图7-1 系统的相轨迹 图7-2 系统的相轨迹(3)求得令切线斜率,则可得等倾线方程为,即可见等倾线为一簇水平线。
①当α=0时,,则该等倾线亦为一条相轨迹,因相轨迹互不相交,故其他相轨迹均以此线为渐近线。
②当α→∞时,,表明相轨迹垂直穿过x轴。
③当α→-1/T时,,说明相平面上下无穷远处的相轨迹斜率为-1/T。
最后根据等倾线作图法可得其概略相轨迹如图7-3所示。
图7-3 系统的概略相轨迹(4)求得令切线斜率,则可得等倾线方程为,即可见等倾线为一簇水平线。
①当α=0时,x=M,则该等倾线亦为一条相轨迹,因相轨迹互不相交,故其他相轨迹均以此线为渐近线。
②当α→∞时,,表明相轨迹垂直穿过x轴。
③当α→-1/T时,,说明相平面上下无穷远处的相轨迹斜率为-1/T。
最后根据等倾线作图法可得其概略相轨迹,如图7-4所示。
图7-4 系统的概略相轨迹(5)求得运用积分法可解得相轨迹方程为为一抛物线,其概略相轨迹如图7-5所示。
图7-5 系统的概略相轨迹(6)运用积分法可解得相轨迹方程为其中c为一常数,其相轨迹如图7-6所示。
图7-6 系统的相轨迹2.非线性控制系统结构图如图7-7所示,M =1。
要使系统产生振幅A=4,频率ω=1的自振运动,试确定参数K ,τ的值。
图7-7 系统结构图解:画出和G (jω)曲线如图8.7所示,当K 改变时,只影响自振振幅A ,不改变自振频率ω;而当τ≠0时,会使自振频率降低,幅值增加。
因此可以调节K ,τ大小实现要求的自振运动。
由自振条件N (A )G (jω)=-1即将ω=1代入上式可解得K =9.93,τ=0.322图7-8 和G (jω)曲线3.设继电型控制系统结构如图7-9所示,输入r (t )=R·1(t ),c (0)=0。
王建辉《自动控制原理》(章节题库 非线性系统分析)【圣才出品】
A 0, 1/N ( A) 0.5 A , 1/N ( A)
0.5
作图如图 7-2 所示,两者有交点(-1,j0)。
图 7-2 (2)用描述函数法知,在交点(-1,j0)处, 1 沿 A 增大方向,由 G( j) 曲
N ( A)
1 / 27
圣才电子书
十万种考研考证电子书、题库视频学习平
e e&
2 2
由 e& 0.5t c1 ,可得:
2 0.5t t 4 s
3 / 27
圣才电子书
(2)当 t 4 时,有:
十万种考研考证电子书、题库视频学习平 e台 2,, e& 2 e& e 0 t 4
代入 e& 0.5t c3 和 e&2 e c4 ,得: c3 4,c4 2 ,
及非线性部分的负倒描述函数曲线;(2)用描述函数法判断系统是否有稳定的自持振荡,
若有,确定其频率与振幅。
图 7-1
解:(1)线性部分频率特性:
G( j)
j(0.1j
K 1)(0.2 j
1)
K j[0.02( j)2 0.3j
1]
K[0.3 j(1 0.022 )] [1 0.052 0.00044 ]
在开关线上有:
e& e 0 e&2 e 0
e e&
0 0
由 e& 0.5t c1 ,可得: 0 0.5t 6 t 12 s 。
因此经过 26s 后,系统达到稳定状态 e 0 和 e&0 0 。
6.非线性系统如图 7-7、图 7-8 所示。试确定其稳定性。若产生稳定的自振荡,试确
0
2rad/s ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ⅰ区
绘制相轨迹如图所示,(设r=3)
根据系统的相轨迹,可对 系统的性能分析如下:
e
1、系统的相轨迹收敛于A 点,是稳定的,奇点为稳定 焦点。e是单调衰减的。
2、相轨迹最后没有到达原
Ⅲ区
Ⅱ区 2 1
e
A
Ⅰ区
点,即
lim
t
e(t ) 0 ,说明
e
1 2 3
-1 -1 -2
系统在阶跃信号输入下,存 在稳态误差,引起稳态误差 的原因是死区继电器特性。 系统线性部分的传递函数表 明,系统是Ⅰ型系统,对阶 跃响应的稳态误差应为0,可 见死区继电器非线性对稳态 精度的影响。
第七章 非线性系统的分析
7.1 基本概念
系统的非线性程度比较严重,无法用小范围线性化方法化为 线性系统,称为非线性系统。有两种情况 (1)系统中存在 非线性元件;(2)为了某种控制目的,人为引进的非线性。
一 、非线性系统的特点
1、线性系统的稳定性和零输入响应的性质只取决于系统的 结构、参数,而和系统的初始状态无关。
1 N(X )
Im
a
0
G ( j )
图示系统在a点产生稳定的自 持振荡。由交点可确定自持 振荡的频率和幅值。
Re
x a
b
例:
r 0
+
1 -1
y
10 S ( S 1)( S 2)
C
1 X ,是与负实轴重合的直线。 N(X ) 4
Im
1 N(X )
x
1、无阻尼运动 ( 0) 二阶系统的极点分布和相平面图如下
jω
x
λ1 ×
0
0
x
λ2 ×
无阻尼运动时,二阶系统的相平面图是一族同心椭圆,每个 椭圆代表一个简谐运动。这样的奇点称为中心点。
2、欠阻尼运动 (0 1)
jω
x
λ1 ×
0
x
λ2
×
系统的自由运动是衰减振荡。相轨迹是对数螺旋线,收敛于 原点。奇点称为稳定焦点。
jω
x
×
×
λ1 λ2
x
系统的运动是非周期发散运动。相轨迹是由原点出发的发散 型抛物线。原点处的奇点称为不稳定节点。
6、
,
1
2
是对称于原点的实轴
jω
x
×
×
λ1
0
λ2
x
系统的自由运动是发散运动,原点处的奇点称为鞍点。 以上6种奇点,类似的奇点在非线性系统中也常见到。
二、非线性系统的相平面分析
根据上述关系,可将 e e 平面分为二个区域。分别绘制初 始状态分别为 e(0) 0.5, e(0) 0 和 e(0) 0.1, e(0) 0 的两 条相轨迹。
从图知,无论从哪一组初始条件出发,相轨迹均收敛于极限 环,这是一个稳定的极限环,意味着系统产生自持振荡。 一般不希望系统有自持振荡。当振荡难以消除时,应尽量 将振荡限制在一个较小的、可以接收的范围内。实际上,对 于此系统,通过减少继电器回环的宽度a,可减小振荡。
1 不被G ( j )包围 N(X )
1 N(X )
Im
x a
1 N(X )
0
Re
G ( j )
Im
二、非线性系统不稳定
x a
G ( j )
1 被G ( j )包围 N(X )
0Leabharlann Re1 N(X )
三、非线性系统产生自持振荡
1 与G ( j )相交 N(X )
A0 ( An cos nt Bn sin nt )
n 1
A0 Y n sin(nt n)
n 1
式中
An y (t ) cos nt d (t )
0
1 1
2
B n y (t ) sin nt d (t )
0
2
Yn
k 0 a x
-a
常见于齿轮传动机构、铁磁 元件的磁滞现象。可使系统 的稳态误差增大,也使系统 的动态特性变差。
4、继电器特性
y b -a -ma 0 ma -b a x
继电器特性中包含了死区、 回环和饱和特性,因此对系 统的稳态性能、暂态性能和 稳定性都有不利影响。
三、非线性系统的分析方法
1、相平面法 2、描述函数法 时域方法 频域方法
继电器的输入-输出关系为
y f (e)
1, 0, 1,
e 1; 1 e 1; e 1 .
Ⅲ区 Ⅱ区 2 1 A -1 -1 -2 1 2 3
在 e e 平面,根据继电器的 非线性特性,可分为三个区域,
设初始状态 e(0) 3,(0) 0 , e
e
2 2 n x n x 0 x
相平面图是在 x x 平面中,绘制 x , x 随时间t 变化的轨迹, 称为相轨迹。相轨迹的起点是 。 ( x(0), x(0)) dx 0 奇点是指 的点。根据奇点附近相轨迹的特征,奇点 dx 0 有不同名称,据此可判断系统运动的性质。
7.3
描述函数
描述函数是非线性特性的一种近似表示,是一种谐波线性 化方法,忽略非线性环节输出中的高次谐波,用基波分量表 示其输出。
r
+
e
G1 ( S )
x
y
N
G2 (S )
C
C
设非线性环节的输入为
x x sin t
其输出的稳定分量y是与x同周期的非正弦周期信号,可用傅氏 级数表示
y
G ( j )
-1.66
0
Re
1 G ( j )与 交点的坐标是 1.66。 N(X ) 1 交点处G ( j )的频率= 2, 的 N(X ) 幅值X 2.1
结论:该非线性系统存在自持振荡,振荡频率为 幅为2.1。
2 ,振
为描述函数的负倒幅特性。
如果满足上式,表示 G( j ) 与 有交点,此时非线性系 统将出现自持振荡,这相当于线性系统的极坐标图 G( j ) 在复平面中穿过(-1,j 0)点。
将非线性的负倒幅特性和线性部分的极坐标图绘制在一个复 平面中,根据二者的相对位置可分析非线性系统的稳定性。 一、非线性系统稳定
A
2 n
B2 n
arctg An n
Bn
由于y的高次谐波幅值 小于基波幅值,且系 统的线性部分 G1(s),G2 (s) 都具有低通滤波性质, 可以假设只有基波分 量起作用,而将高次 谐波忽略不计。
一、描述函数的定义
设非线性特性为对称型,则傅氏级数中的直流分量 A0 0 y的基波为
y1 A1 cost B1 sint Y 1 sin(t 1)
y k 0 a x
-a k
a a B1 kx[1 (arcsin Y1 x x
2
a 1 )] x
2
1 0
X a 0 N( X) 2 a a (arcsin k [1 x x 2 a 1 )] x X a
二、典型非线性系统及对系统性能的影响
1、死区非线性
y k 0 a x
-a k
常见于测量、放大元件中。死区 非线性特性导致系统产生稳态误 差,且用提高增量的方法也无法 消除。
2、饱和非线性
y k -a 0 a x
常见于放大器中,在大信号作 用下,放大倍数小,因而降低 了稳态精度。
3、间隙非线性 y
3、过阻尼运动 ( 1)
jω
x
×
×
λ2
λ1
0
x
系统的自由运动是非周期地趋向于原点。相轨迹是趋于原点 的抛物线,原点是奇点,称为稳定节点。
4、(-1 0)
jω
× 0 ×
x
x
系统的自由运动是发散振荡。相轨迹是以原点出发的螺旋线, 原点处的奇点称为不稳定焦点。
5、 (-1 )
非线性系统的稳定性和零输入响应的性质不仅取决于系统的 结构、参数,而且与系统的初始状态无关。
2、线性系统只有两种基本运动形式:发散(不稳定)和收 敛(稳定)。 非线性系统除了发散和收敛两种运动形式外,即使无外 界作用,也可能会发生自持振荡。 3、在正弦输入下,线性系统的输出是同频率正弦信号。 非线性系统在正弦输入下,输出是周期和输入相同、含 有高次谐波的非正弦信号。 4、线性系统分析可用迭加原理,在典型输入信号下系统分 析的结果也适用于其它情况。 非线性系统不能应用迭加原理,没有一种通用的方法来 处理各种非线性问题。 对非线性系统分析研究的重点是:(1)系统是否稳定; (2)有无自持振荡;(3)若存在自持振荡,确定自持 振荡的频率和振幅;(4)研究消除或减弱自持振荡的方 法。
例2:非线性系统框图如下
r 常数
+
e
a -M
M a
y
2 S ( S 1)
C
其中继电器回环特性的参数M=0.2,a=0.2。 系统的线性部分是欠阻尼情况,奇点是稳定焦点。非线性环节 的输入-输出关系为 e a, e 0 M 或 e a, e 0 y= -M
或
e a, e 0 e a, e 0
2、理想继电器非线性的描述函数
y 1 0 -1 x
4 N(X ) X
7.4 非线性系统的谐波平衡法分析
和相平面法不同,谐波平衡法对非线性环节进行谐波 线性化处理,允许线性部分是任意阶次。
r
+
e
N()
n
G (S )