浓缩蛋白工艺设计计算

浓缩蛋白工艺设计计算
浓缩蛋白工艺设计计算

《食品工厂设计》课程设计说明书

题目: 5000吨/年大豆浓缩蛋白艺设计

院系名称:专业班级:

学生姓名:学号:

指导教师:教师职称:

2017年01月11日

摘要

浓缩蛋白质的生产主要是以低温脱脂豆粕为原料,通过不同的加工方法,除去低温粕中的可溶性糖分、灰分以及其他可溶性的微量成分,从而使蛋白质的含量从45%-50%提高到70%左右。所采用的酒精洗涤法工艺原理是:一定浓度的酒精溶液,可使大豆蛋白质变性,失去可溶性。根据这一特性,利用含水酒精对豆粕中的非蛋白质可溶性物质进行浸出、洗涤,剩下的不溶物经脱溶、干燥即可获得浓缩蛋白。醇法大豆浓缩蛋白的特点在于产品的风味、色泽好,蛋白质得率高,生产过程中无污水排放,避免了环境污染,且更有利于对产品进行综合利用。

目次

1. 工艺设计说明 (1)

1.1 国内外现状及发展趋势 (1)

1.2 课题意义 (2)

1.3 设计说明 (3)

2. 设计计算 (6)

2.1 物料衡算 (6)

2.2 热量衡算 (7)

3. 设备明细

致谢.......................................................................................................................... 参考文献..........................................................................................................................

1.工艺设计说明

1.1 国内外现状及发展趋势

大豆蛋白加工是最近10多年来我国大豆加工利用的新方向。其加工工艺和传统大豆加工工艺的区别在于大豆经过浸出法提取油脂后, 豆粕在低温条件下脱除溶剂, 大豆蛋白质基本不变性。利用此低温脱溶豆粕(俗称白豆片)可以进一步生产出大豆蛋白粉、大豆组织蛋白、大豆浓缩蛋白、大豆分离蛋白等大豆蛋白产品。我国现今已有30 余家生产大豆蛋白的企业, 可以生产大豆组织蛋白、大豆浓缩蛋白、大豆分离蛋白。由于美国是大豆的主要产地, 所以其大豆加工业也是规模最大的。根据网上数据统计, 目前在美国就有381家企业涉及大豆的加工。世界上加工大豆蛋白的一些企业如ADM、DuPont Protein Technologist (即以前的保利来蛋白公司, 现被DuPont 公司收购, 该公司已经在我国收购多家企业并开始生产分离蛋白)、Central Soya、International ProteinCorporation 等,其大豆蛋白生产品种基本覆盖了已经成功开发的所有品种, 最为重要的是有些公司的产品已经形成序列化、专一化, 有不同类型的蛋白质产品来满足不同的食品加工需要。据不完全统计, 仅ADM和DuPont公司的蛋白产品就达几十种, 产品的应用范围几乎覆盖所有的日常加工食品, 同时一些产品的针对性强, 有自己的特定使用对象, 而这个问题正是我国大豆蛋白加工所存在的问题。从蛋白质产品生产厂商数目上看, 大豆蛋白的生产以豆奶类、脱脂豆粉、浓缩蛋白、分离蛋白、组织化蛋白的生产较多, 而对水解蛋白的生产较少。它的营养价值与牛乳接近, 并且还存在以下几个优势: 无乳糖、无胆固醇、富含不饱和脂肪酸、富含异黄酮、含纤维素。在注重健康的今天得到美国消费者逐步认可,消费观念发生了改变所致。

在对脱脂豆粉进行加工处理时, 产品的风味质量得到改善, 特有的豆腥味被去, 大豆中含有的所谓“胀气因子”——大豆低聚糖也同时被除去, 产品中蛋白质的含量与原料脱脂豆粉相比明显提高(一般不低于70% ) , 通常1吨脱脂豆粉可以生产出750kg的浓缩蛋白。蛋白产品的性状与处理方法有关。脱脂豆粉热变性后水浸提处理, 产品的溶解性能低、色泽也较深; 醇浸提法生产出的产品溶解度虽然低(NSI为10%~15% ) , 但可以保留大豆蛋白的一些功能性质, 如粘度、

乳化能力等; 酸浸提法可以通过后来中和物料中的酸而提高浓缩蛋白的溶解性能。不同方法生产出的浓缩蛋白均可以形成粉状、粒状的产品形式, 均可以最终用于生产组织化大豆蛋白。用乙醇生产的大豆蛋白蛋白质含量高,色泽好,容易干燥,风味好;现在正越来越多的被生产厂家所接受。

1.2 课题意义

蛋白质是生命的基础,生命的本质在于以蛋白质为中心不断的新陈代谢,若人体长期蛋白质营养不良,必然损害健康,甚至导致疾病。合理营养是身体健康的先决条件,而在诸多营养成分中以蛋白质最为重要,它在蛋白质、脂肪、葡萄糖、维生素人体四大营养要素中列于首位。但根据1997年国务院颁发的《中国营养改善行动计划》,我国人均热能日摄入量目前为974kJ,其中蛋白质为68g,到2000年我国人均热能日供给量应达到10886kJ,蛋白质摄取量应达到72g。按此计算,我国人均日缺少蛋白质4g,全国日缺少蛋白质4800t,年缺少蛋白质175.2万吨。要在短时间内弥补上蛋白质的供应缺口,仅靠动物蛋白质来提供不现实,且不经济合理,开发植物蛋白更为经济合理。另外植物蛋白还有自身特殊的优点,如不会引起心脑血管、肥胖等疾病。在主要的蛋白质资源中,大豆是数量最大的食用和饲用蛋白资源。所以大豆分离蛋白、浓缩蛋白、组织蛋白的生产越来越引起人们的关注。

大豆蛋白制品主要包括大豆粉、大豆浓缩蛋白和大豆分离蛋白。前者价格较低,但功能性较差,使用范围和使用量都受到限制;后者具有较强功能特性和良好感官性能,但价格较贵。大豆浓缩蛋白是一种价格介于大豆粉和大豆分离蛋白之间的大豆制品,大豆浓缩蛋白相对另外两种有自身特点:蛋白质含量大于70%,成本仅是分离蛋白的一半,并且得率高,平均1-6吨白豆片就能生产出1吨浓缩蛋白,并且营养价值仅次于分离蛋白,但要高于组织蛋白等其它大豆蛋白产品。然而由于大豆浓缩蛋白溶解度或分散性较低,导致它的某些功能不如大豆分离蛋白。醇浸出法大豆浓缩蛋白生产过程中几乎无污水排放,避免环境污染,有利于副产品进一步利用,提取液的浓缩物可进一步加工成大豆低聚糖、异黄酮、皂甙等产品。另外醇法SPC 的蛋白质含量为70%,且为优质蛋白,碳水化合物含量为21%,其中90%为不溶性多糖,10%为可溶性糖。过敏原、抗营养因子以及蛋白酶抑制因子等成分在醇浸出时被去除。

目前大豆浓缩蛋白的生产工艺一般有三种,即湿热浸提法、稀酸浸提法和含水乙醇浸提法。此外,国外开始探求用超滤法生产大豆浓缩蛋白。湿热浸提法目前已基本被淘汰,原因是产品风味、色泽和功能性质都极差。稀酸浸提法制得的大豆浓缩蛋白虽然具有较好的功能特性,但蛋白质的得率较低,污水排放造成的环境污染较为严重,经济效益差。超滤法制备的产品功能特性好,蛋白质的率较高,不足之处在于产品无法干燥处理。醇法大豆浓缩蛋白的特点在于产品的风味、色泽好,蛋白质得率高,生产过程中无污水排放,避免了环境污染,且更有利于对产品进行综合利用。

1.3 设计说明

1.3.1 设计原则

a)尽可能采纳当今国内成熟的基本流程和部分规范。

b)国内外先进工艺的应用须通过必需的实验后才能推广。

c)工艺过程连续化属基本要求,同时进可能应用成熟可靠的自动控制仪表,但也不排出必要的简易可行的半连续或间歇式设备的利用。

d)先进性和实用性结合

1.3.2 工艺设计原理

大豆浓缩蛋白是从脱脂豆粉中除去低分子可溶性非蛋白成分,主要可溶性糖、灰分和各种气味成分等,制得的大豆蛋白制品。目前大豆浓缩蛋白的生产工艺一般有三种,即湿热浸提法、稀酸浸提法和含水乙醇浸提法。此外开始探求用超滤法生产大豆浓缩蛋白。湿热浸提法目前已基本被淘汰,原因是产品风味、色泽和功能性质都极差。稀酸浸提法制得的大豆浓缩蛋白虽然具有较好的功能特性,但蛋白质的得率较低,污水排放造成的环境污染较为严重,综合效益差。超滤法制备的产品功能特性好,蛋白质得率较高,不足之处在于产品无法干燥处理。醇法大豆浓缩蛋白的特点在于:产品的风味、色泽好、蛋白质得率高;生产过程中无污水排放,避免了环境污染;且更有利于对产品进行综合利用。但醇法大豆浓缩蛋白由于使用了60 %左右的乙醇溶液,蛋白质变性较为剧烈,功能性较差,且目前醇法大豆浓缩蛋白酒精消耗高达200 kg/ t —300 kg/ t浓缩蛋白(国际上一般为40 kg/ t浓缩蛋白) 。

以低变性脱脂大豆粕为原料,国内生产醇法大豆浓缩蛋白的工厂常采用间歇式浸出,不仅生产量低,而且原料和乙醇水溶液比之大, 每吨醇法大豆浓缩蛋白的乙醇消耗量高达300 kg ,且需蒸馏回收的乙醇量也很大、能耗高。因此,生产成本高、效益差。若采用连续式工艺则可以大幅度降低乙醇消耗量,改善大豆浓缩蛋白的功能性质,降低生产成本。在浸提工序中,影响蛋白质溶出率和蛋白质分散指数的因素,除了乙醇浓度和浸提温度外,还有原料的粒度、固液比、浸提时间、pH值以及搅拌强度等。

浸提时间主要影响蛋白质的溶出率,但在两个指标中均处最后一位,在一定条件下,浸提时间越长,蛋白溶出率越高,蛋白质分散指数也有增加的趋势,但两个指标增加的幅度均很小。较长的浸提时间,在较高的乙醇浓度下,会导致蛋白质的变性程度发生变化,这种变化可能直接影响到大豆浓缩蛋白的蛋白质分散指数,且当达到一定时间后,蛋白质的溶出率也趋于恒定。因此,综合两项指标,浸提时间以30 min为宜。固液比在两个指标中均处于第三位,低浓度溶剂浸出时1∶7 的固液比有利于大豆浓缩蛋白PDI 的提高。高浓度乙醇溶液浸出时1:4的固液比既可以浸出除去豆粕中与蛋白质结合的脂类物质、风味前体及色素类,又经济适用。

浸提温度提高,有利于蛋白质溶出率的增加,但当温度提高时,在较高的乙醇浓度下,蛋白质的变性程度增加,从而使大豆浓缩蛋白的PDI 降低,影响产品的工艺性能。另外高温浸提耗能较多,因而浸提温度建议采用30 ℃。

乙醇浓度在四个因素中处于首位,属主要因素。从目前的实验结果来看,提高乙醇浓度不利于豆粕中小分子有机物如低聚糖、皂甙等的浸出,从而使大豆浓缩蛋白中的蛋白含量降低。如使用95 %的乙醇时,蒸馏回收酒精几乎不产生泡沫,说明皂甙基本上没有被浸出,仍留在大豆浓缩蛋白中。但乙醇浓度的提高,可除去豆粕中与蛋白质结合的脂类物质、风味前体及色素类,使其在醇法大豆浓缩蛋白中的含量明显降低(因为此类物质可溶于乙醇) ,因而醇洗豆粕可去除异味及其色泽变浅,却是很明显的。另外研究发现,乙醇使蛋白质变性的机理不同于热变性,热变性使蛋白质松散、无序,而醇变性则使蛋白质分子重新构造,形成了比天然大豆蛋白更加有序的结构,在熵变驱动下伴随自聚集循环形成了蛋白聚集微粒,蛋白聚集微粒的刚性较大、构象力大、构象更紧密,维持这种紧密构象的作用力是键能较低的次级键。综合实践和理论分析,我们提出稀浓乙醇两次浸出方案:首先

用60 %的乙醇溶液浸提,然后用90 %的乙醇溶液二次浸提(工作时间30 min ,温度50 ℃,固液比分别为1∶7,1:4) ,从而得到具有较好的气味、色泽、蛋白质分散指数和蛋白含量的大豆浓缩蛋白。

1.3.3 工艺流程图

1.3.3.1蛋白工艺流程示意图如下:

1.3.4 操作说明

大豆浓缩蛋白的加工是从脱溶豆粕开始的,首先把豆粕用刮板输送机送到暂存箱里,箱体的大小应该合理,保证生产过程的连续性。料是通过绞龙送入浸出器。由于溶剂的易挥发性,绞龙要严格封闭。料有绞龙送入以后,环形浸出器内开始浸出,浸出时料是静止的,溶剂通过循环泵来连续浸出。浸出器上半段用60﹪的乙醇溶液浸出,固液比为1:7,豆粕大部分中小分子有机物如低聚糖、皂甙等被浸出,为了保证两次进出的浓度梯度,必须在上半段进行沥干,沥干液打入暂存罐,然后由暂存罐打入一效蒸发器,上半段沥干以后进入下半段用90﹪的乙醇溶液提取,固液比为1:4,提取以后用高压泵将混合物料打入胶体磨,胶体磨打磨以后由于其的大的冲力需设一个暂存罐缓冲。然后进入离心分离机分离,分离以后的溶液打入暂存罐,暂存罐里进行调配,调配成60﹪的乙醇溶液再循环利用。分离以后的物料通过输送机进入真空干燥机干燥。干燥以后的物料进入粉碎机粉碎,最后集料包装。环形浸出器上半段的沥出溶剂从暂存罐打入一效蒸发器,通过一效加热分离,二效加热分离,进入冷凝器中冷凝,冷凝以后进入稀乙醇罐,用泵再打入精馏塔,精馏冷却以后打入浓乙醇暂存罐。

1.3.5 平面布置说明

厂房使用的为钢筋混凝土结构,总共4层,其中一、二、三楼长度为30m。一,二、三楼宽度为12米,四楼的宽度约为9米。

根据工艺流程设计的所确定的全部设备,按着工艺生产的要求合理的进行平面布置,以保证生产的顺利进行。

冷凝罐所接管路较复杂且所接管路相同,所以集中摆放。暂存罐大都放在一楼,分离机放在二楼,冷凝器大部分放在二楼,精馏塔冷凝器放在顶楼,胶体磨放在二楼,真空干燥机集中摆放,都放在一楼。

2.设计计算

2.1 物料衡算

2.1.1原料组成

蛋白质56% 脂肪1% 水分8% 粗纤维5% 灰分6% 寡聚糖12% 低聚糖12% NSI ﹥70

按得率50%± 原料A=36t/d=36*1000/24=1500kg/h 2.1.2原料中各组分的含量(单位,kg/h )

蛋白质840 脂肪15 水120 粗纤维75 灰分90 寡聚糖180 低聚糖180

60%浸出洗涤时有95%蛋白、10%灰分、10%脂肪、90%粗纤维、90%寡聚糖、10%低聚糖转移到蛋白液中

蛋白液干物质量 B=95%*840+10%*15+75*90%+90*10%+180*10%+180*90% =789+1.5+67.5+9+180 =1056kg/h

用60%酒精水溶液浸泡后沥干,蛋白含溶70%,且60%酒精水溶液按1:7加入

%70%100*1056

=+x x

x=2464kg/h

x+1056=3520kg/h

进入蒸发器的液体C=7*1500+1500-3520=8480kg/h

3.59120

1500*7%

60*1500*7=+

进入蒸发器的液体浓度 %

2.56%100*8480

%

3.59*)24641500*7(=- 90%酒精水溶液按1:4加入,则进入胶体磨的量D

90%浸出洗涤时,有99%蛋白,90%灰分,90%的脂肪,90%的粗纤维,90%的寡聚糖,90%低聚糖转移到蛋白液中。

a=99%*798+90%*1.5+67.5*90%+9*90%+18*90%+162*99% =1037kg/h

D=1037+1500*4+2464 =9501kg/h

酒精水溶液量E=4*1500+2464+1056-1037 =8483kg/h

离心分离后含湿量70%,进入真空干燥机的量G

%70%100*1037

=+F F

F=2420kg/h

G=2420+1037=3457kg/h

从离心机分出的酒精水溶液H=9501-3457=6044kg/h 从真空干燥机出来成品含水量6.7% i/(I+1037)=6.7% I=74.5kg/h 74.5+1037=1111.5kg/h 成品含酒精量500ppm

h kg J J J /556.01000000

500

5.1111==+

成品量:1111.5+0.556=1112.056kg/h 蛋白得率:

=%100*1500成品量%14.74%100*1500

056

.1112= 进入冷凝器的量K=3457-1112.056=2344.944kg/h

进入暂存罐4的量L=6044+K=6044+2344.944=8388.944kg/h

一效蒸发 查《酒精蒸馏技术》 许天开编 中国轻工业出版社 由表:酒精和水的混合物在不同压力下的沸点,得 一效蒸发器的系数80.0kpa (真空度),80℃条件下蒸发 又由表:水-酒精的气相和液相物理参数,得 蒸汽的酒精浓度为78.5%

进一效蒸发器的糖的浓度%8.3%100*8480

1056

1201500=--

出一效蒸发器的糖的浓度为6% 8480*3.8%=M*6% M=5370.67kg/h

出一效蒸发器的酒精水溶液的量 8480-5370.67=3109.33kg/h

出一效蒸发器的酒精水溶液的浓度 8480*56.2%=3109.33*78.5+5370.67*P P=43.2%

出二效蒸发器的糖的浓度为14% 8480*3.8%=Q*14% Q=2301.71kg/h

由表水-酒精的气相和液相物理参数,得出二效蒸发器的酒精浓度为75.5% 出二效蒸发器的酒精水溶液的量:5370.67-2301.71=3068.96kg/h 糖浆中酒精浓度为

%3.0%100*71

.2301%

5.75*9

6.3068%5.78*33.3109%2.56*8480=--

又由表:酒精和水的混合物在不同压力下的沸点,得 二效蒸发器的工作压力73.34kpa (真空度),温度70℃ 进精馏塔的酒精水溶液浓度为

Xf=%7796

.306833.3109%5.75*96.3068%5.78*33.3109=++

2.2 热量衡算

2.2.1一效蒸发器

糖的比热容参考《化工原理》附录十四常用固体材料的密度和比热容得C

=0.9630kj/lg*℃

乙醇的比热容参考《化工原理》附录四某些液体的重要物理性质C

乙醇

=2.39 kj/kg*℃

水的比热容参考《化工原理》附录四某些液体的重要物理性质C

=4.183 kj/kg*℃

糖带入的热量:Q

=m*c*t=324*0.9630*50=15600.6kj/h

乙醇带入的热量Q

乙醇

=m*c*t=(7*1500-2464)*59.3*2.39*50=569459.086kj/h

水带入的热量:Q1

水=m*c*t=[8480-324-(7*1500-2464)*59.3%]*4.183*50

=844684.0658kg/h

糖带出的热量:Q1

ˊ=324*0.9630*80=24960.96kj/h

乙醇带出的热量:Q1

乙醇

ˊ=[(7*1500-2464)*59.3%-3109.33*78.5%]*2.39*80

=(4765.348-2440.82)*2.39*80=444448.98kj/h

Q1乙醇ˊˊ=3109.33*78.5%*2.39*(78.3-50)+3109.33*78.5%*213.3*4.183

=165090.0163+2177785.96=2342875.978kj/h

Q1乙醇ˊˊˊ=444448.98+2342875.978=2787324.958kj/h

水带出的热量:Q1

ˊ=[8480-324-(7*1500-2464)*59.3%-3109.33*(1-78.5%)]*4.183*80

=(8480-324-4765.348*668.51)*4.183*80=910938.95kj/h Q1水ˊˊ=3109.33*(1-78.5%)*550.8*4.183=1540235.302kj/h

Q1水ˊˊˊ=910938.95+1540235.302=2451174.252

带出Q1

总出=Q1糖ˊ+Q1

乙醇

ˊˊˊ+Q1

ˊˊˊ=24960.96+2451174.252+2787324.958

=5263460.17kj/h

带入Q

总入=Q1

糖+Q1乙醇+Q1水=15600.6+569459.086+844684.0658

=1429743.752kj/h

设Q损为加热蒸汽放热量的一个百分数

由于一效绝压为450kpa 水的蒸汽热r=2125.4kj/kg D=(Q-Q总入-0.01D)/2125.4

D=3321.60kj/h

2.2.2二效蒸发:

带入:Q2

糖=Q1糖ˊ=24960.96kj/h

Q2水=Q1水ˊ=910938.95kj/h

Q2乙醇=Q1乙醇ˊ=444448.98kj/h

Q总入=Q2糖+Q2糖+Q2乙醇=1380348.89kj/h

带出:Q2

ˊ=(2301.71-324-2301.71*0.3%)*4.183*70=577071.314kj/h Q2水ˊˊ=3068.96*(1-75.5%)*550.7*4.183=1732049.316kj/h

Q2乙醇ˊ=2301.71*0.3%*2.39*70=1155.23kl/h

Q2乙醇ˊˊ=3068.96*75.5%*2.37*8.3+3068.96*75.5%*213.0*4.183

=45963.61+2064456.078=2110419.69kj/h

Q总出=Q2水ˊ+Q2水ˊˊ+Q2乙醇ˊ+Q2乙醇ˊˊ+Q2糖ˊ

Q2糖ˊ=324*0.9630*70=21840.84kj/h

Q总出=4442536.39kj/h

Q=Q 总出 –Q 总入=3062187.5kj/h 一效蒸汽二次蒸汽汽化热

Q=3109.33*289*4.183=3758828.616kj/h

二次蒸汽利用率η=%5.81%100*616

.37588285

.3062187

3.设备明细表

设备明细表

致谢

在整个设计过程中,我从对工艺的一知半解到独立设计整个工艺,收获了许许多多,其中也见了许多以前从未见过的问题.

这期间我们的指导老师莫重文给了我很多的帮助,从将我领进设计的大门到我走完整条设计之路,某老师一直都陪伴在我们的身边,时时刻刻的纠正我们的各种错误,在整个方案研究合画图的过程中,导师在工作上严格要求,学术上精心辅导,热心帮助,让我少走了许多弯路,最终使方案顺利确定。他严谨求实、一丝不苟的治学态度及高度的敬业精神使我受益匪浅,从而使我的设计以科学合理而顺利完成。在此特向导师致以衷心的感谢和深深的敬意!同时要感谢导师在学习和生活上对我的关心!

本工艺涉及面广,专业知识要求高,资料数据多,由于水平有限,差错和不足之处在所难免,诚请各位老师批评指正,以臻完善。

参考文献

[1] 韩丽华. 油脂工厂设计.北京:中国轻工业出版社,2010.

[2] 姚玉英.化工原理[M],天津:天津大学出版社,1999.

[3] Y.H.Hui主编,徐生庚、裘爱泳主译,贝雷:油脂化学与工艺学(第五版,

第二卷),中国轻工业出版社,2001.

[4] 程能林.溶剂手册(第二版)[M].北京:化学工业出版社,2004.

[5] 毛广卿.粮食输送机械与应用[M] .科学出版社,2003.

[6] 余国琮.化工机械手册(上卷) [M].化学工业出版社,2003.

[7] 贺匡国,化工容器与设备简明设计手册[M].化学工业出版社,1989.

[8] 植物油厂设计与安装编写组.植物油厂设计与安装[M].中国财政经济出版社,1980.

二沉池设计说明书

目录 第一章绪论 一、水资源----------------------------------------------------------------------------2 二、设计背景--------------------------------------------------------------------------2 三、水污染处理技术发展状况-------------------------------------------------------3 四、设计意义和目的-----------------------------------------------------------------5 五、设计内容-------------------------------------------------------------------------6 六、设计要求-------------------------------------------------------------------------6 第二章设计参数选择 -------------------------------------------------------------------------6第三章工艺计算 一、主要尺寸计算-------------------------------------------------------------------7 二、进水系统计算-----------------------------------------------------------------10 三、出水部分计算-----------------------------------------------------------------11 四、排泥部分计算----------------------------------------------------------------14 五、设计工艺分析及讨论---------------------------------------------------------15 六、设计感想------------------------------------------------------------------------17

工艺设计计算公式定稿版

工艺设计计算公式精编 W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

A/O工艺设计参数 ①水力停留时间:硝化不小于5~6h;反硝化不大于2h,A段:O段=1:3 ②污泥回流比:50~100% ③混合液回流比:300~400% ④反硝化段碳/氮比:BOD5/TN>4,理论BOD消耗量为1.72gBOD/gNOx--N ⑤硝化段的TKN/MLSS负荷率(单位活性污泥浓度单位时间内所能硝化的凯氏氮): <0.05KgTKN/KgMLSS·d ⑥硝化段污泥负荷率:BOD/MLSS<0.18KgBOD5/KgMLSS·d ⑦混合液浓度x=3000~4000mg/L(MLSS) ⑧溶解氧:A段DO<0.2~0.5mg/L

O段DO>2~4mg/L ⑨pH值:A段pH =6.5~7.5 O段pH =7.0~8.0 ⑩水温:硝化20~30℃ 反硝化20~30℃ ⑾ 碱度:硝化反应氧化1gNH4+-N需氧4.57g,消耗碱度7.1g(以CaCO3计)。 反硝化反应还原1gNO3--N将放出2.6g氧,生成3.75g碱度(以CaCO3计) ⑿需氧量Ro——单位时间内曝气池活性污泥微生物代谢所需的氧量称为需氧量(KgO2/h)。微生物分解有机物需消耗溶解氧,而微生物自身代谢也需消耗溶解氧,所以Ro应包括这三部分。 Ro=a’QSr+b’VX+4.6Nr a’─平均转化1Kg的BOD的需氧量KgO2/KgBOD b’─微生物(以VSS计)自身氧化(代谢)所需氧量KgO2/KgVSS·d。 上式也可变换为: Ro/VX=a’·QSr/VX+b’ 或Ro/QSr=a’+b’·VX/QSr Sr─所去除BOD的量(Kg)

城市污水处理中的沉淀池工艺设计

水污染工程课程设计 设计说明书 一. 基本情况 设计规模:日处理城镇污水10 万m3 处理工艺:污水处理采用氧化沟工艺设计内容:针对进出水要求,提出合理可行的污水处理工艺;针对工艺中的沉淀池进行设计计算;针对工艺中的沉淀池进行工艺设计 设计结果:设计说明书,CAC设计图纸2张(包括:(1)处理工艺流程图(2)构筑物工艺图) 根据设计任务书提供的进出水水质指标情况,特别是对氮、磷的去除,在初步讨论阶段,通过对A2/O 工艺和氧化沟在实际运行条件下的运行状况进行了详细的比较论证,最终确定选用氧化沟作为污水处理主体工艺,用于脱氮除磷并去除COD Cr、BOD5。 二. 污水水质及污水处理程度 进水水质:pH值6-8 ;BOD= 180mg/L ;COD=250 mg/L; SS=300 mg/L; NH-N=30 mg/L;T=25 C 出水水质:pH值6-8 ; BOI5<30mg/L; COD<100mg/L; SS<30mg/L NH3-N<3 mg/L;T=20 C 三. 污水处理工艺流程设计进行 (1 )污水处理后必须达到排放标准。 (2)要尽量采用成熟的、先进的、可靠的、效率高的处理技术。城市污水处理成熟的处理路线一般为:预处理、一级处理、二级处理、三级处理和污泥处理,其中核心部分二级处理要求比较高,不仅要求去除有机污染物,而且要求能够脱N除P,主要技术有A-B法,A2/0法,SBR法,氧化沟法等。 (3)防止处理污染物过程中产生二次污染或污染转移。要避免和抑制污染物无组织排放,特别是剩余污泥的处理。设置溢流、事故排除口应慎重合理。 (4)要充分利用和回收能源。污水处理高程安排应尽量考虑利用自然地势。 (5)处理量较大时宜选择连续处理工艺。 (6)处理量较小时宜选用间歇处理工艺。 (7)尽可能回收利用有用物质。 四. 污水处理工艺选择 (1)此废水具有如下特点: (a)BOD5/COD Cr=150/250=0.6 ,说明废水可生化性很好;

工艺设计计算参考

A1/O 生物脱氮工艺 一、设计资料 设计处理能力为日处理废水量为 30000m3 废水水质如下: PH 值 7.0~7.5 水温14~25°C BOD5=160mg/L VSS=126mg/L(VSS/TSS=0.7) TN=40mg/L NH3-N=30mg/L 根据要求:出水水质如下: BOD5=20mg/L TSS=20mg/L TN 15mg/L NH3-N 8mg/L 根据环保部门要求,废水处理站投产运行后排废水应达到国家标准《污水综合排放标准》 GB8978-1996中规定的“二级现有”标准,即 COD 120mg/l BOD 30 mg/l NH -N<20 mg/l PH=6-9 SS<30 mg/l 二、污水处理工艺方案的确定 城市污水用沉淀法处理一般只能去除约 25~30 %的BOD5,污水中的胶体和溶解性有机物不 能利用沉淀方法去除,化学方法由于药剂费用很高而且化学混凝去除溶解性有机物的效果 不好而不宜采用。采用生物处理法是去除废水中有机物的最经济最有效的选择。 废水中的氮一般以有机氮、氨氮、亚硝酸盐氮和硝酸盐氮等四种形态存在。生活污水中氮 的主要存在形态是有机氮和氨氮。其中有机氮占生活污水含氮量的40%~60%,氨氮占50%~60%,亚硝酸盐氮和硝酸盐氮仅占 0%~5%。废水生物脱氮的基本原理是在传统二级生物处理中,将有机氮转化为氨氮的基础上,通过硝化和反硝化菌的作用,将氨氮通过硝化转化为亚硝态

氮、硝态氮,再通过反硝化作用将硝态氮转化为氮气,而达到从废水中脱氮的目的。 废水的生物脱氮处理过程,实际上是将氮在自然界中循环的基本原理应用与废水生物处理,并借助于不同微生物的共同协调作用以及合理的认为运用控制,并将生物去碳过程中转化而产生及原废水中存在的氨氮转化为氮气而从废水中脱除的过程。在废水的生物脱氮处理过程中,首先在好氧(oxic)条件下,通过好氧硝化的作用,将废水中的氨氮氧化为亚硝酸盐氮;然后在缺氧(Anoxic)条件下,利用反硝化菌(脱氮菌)将亚硝酸盐和硝酸盐还原为氮气(N2)而从废水中逸出。因而,废水的生物脱氮通常包括氨氮的硝化和亚硝酸盐氮及硝酸盐氮的反硝化两个阶段,只有当废水中的氨以亚硝酸盐氮和硝酸盐的形态存在时,仅需反硝化(脱氮)一个阶段 . ?与传统的生物脱氮工艺相比,A/O脱氮工艺则有流程简短、工程造价低的优点。 该工艺与传统生物脱氮工艺相比的主要特点如下: ①流程简单,构筑物少,大大节省了基建费用; ②在原污水 C/N 较高(大于 4)时,不需外加碳源,以原污水中的有机物为碳源,保证了充分的反硝化,降低了运行费用; ③好养池设在缺养之后,可使反硝化残留的有机物得到进一步去除,提高出水水质; ④缺养池在好养池之前,一方面由于反硝化消耗了一部分碳源有机物,可减轻好养池的有机负荷,另一方面,也可以起到生物选择器的作用,有利于控制污泥膨胀;同时,反硝化 过程产生的碱度也可以补偿部分硝化过程对碱度的消耗; ⑤该工艺在低污泥负荷、长泥龄条件下运行,因此系统剩余污泥量少,有一定稳定性;

二沉池设计说明

课程设计 题目某城市11×104m3/d污水处理厂 设计——二沉池设计 学院资源与环境学院 专业环境工程 姓名吴运鹏 学号 指导教师卫静许伟颖 二O一五年七月二十日

学院资源与环境学院专业环境工程 吴运鹏学号 题目某城市11×104m3/d污水处理厂设计——二沉池设计 一、课程设计的容 (1)污水处理厂的工艺流程比选,并对工艺构筑物选型做说明; (2)主要处理设施二沉池的工艺计算; (3)确定污水处理厂平面和高程布置; (4)绘制主要构筑物图纸。 二、课程设计应完成的工作 (1)确定合理的污水处理厂的工艺流程,并对所选择工艺构筑物选型做适当说明; (2)确定主要处理构筑物二沉池的尺寸,完成设计计算说明书; (3)绘制主要处理构筑物二沉池的设计图纸。

学院资源与环境学院专业环境工程 吴运鹏学号 题目某城市11×104m3/d污水处理厂设计——二沉池设计指导小组或指导教师评语: 评定成绩 2015年7月31日指导教师

目录 1总论 (2) 1.1设计简介 (2) 1.2设计任务和容 (2) 1.3基本资料 (2) 1.3.1处理水量及水质 (2) 1.3.2 处理要求 (2) 1.3.3 处理工艺流程 (2) 1.3.4 气象与水文资料 (3) 1.3.5 厂区地形 (3) 2污水处理工艺流程的确定 (4) 3 处理构筑物设计 (5) 3.1设计要求及参数 (5) 3.2设计计算 (5) 3.2.1二沉池主要尺寸的计算..............…………………………….…..…….. .5 3.2.2贮泥容积的计算 (7) 3.3进出水设计 (8) 3.3.1二沉池进水设计 (8) 3.3.2二沉池出水设计 (9) 结论 (11) 参考文献 (12)

周进周出辐流式二沉池工艺设计

周进周出辐流式二沉池的工艺设计 4.1 配水系统的设计 配水系统的设计是周边进水周边出水辐流式二沉池的关键所在。周进式辐流式二沉池的只有沿圆周各点的进出水量一至,布水均匀,才能发挥其优点。而常用的配水系统为配水槽和布水孔。 4.1.1 配水槽的设计 目前的配水槽大多采用环状和同心圆状如图,也有牛角配水槽如图。布水孔的形状分为圆形和方形。布水孔间距有等距,也有不等距。 图3.3 环状配水槽图3.4 牛角配水槽由于配水槽是混凝土施工,宽度曲线的施工精度不容易保证,牛角配水槽不易实现,因此本次设计选用环形平底配水槽,布水孔孔径和孔距不变的配水系统。孔径为800mm,孔距为1040mm,并在槽底设短管,且短管长度为50~100mm。配水槽宽600mm。 根据结构设计分析,配水槽底厚一般为壁厚度的2倍,分别为0.3m和0.15m。配水槽和集水槽总宽为(从沉淀池池壁边计算)δ2 B(δ为配水槽壁和集水 + +b 槽堰壁厚度)。 4.1.2 进水区挡水裙板的设计 挡水裙板延伸至水面下1.5m处,以保证良好的澄清絮凝效果。与池壁的距离

与配水槽的宽度相等。 4.2 出水装置的设计 出水装置由集水槽和挡板组成。 4.2.1 二沉池集水槽的设计 二沉池集水槽是污水沉淀过程中泥水、固液分离的最后一道环节和工序, 在实际的工程设计中, 常见有3 种布置形式: 置双侧堰式、置单侧堰式、外置单侧堰式, 见图3.5。置单侧堰式、外置单侧堰式均为单侧堰进水, 设计堰上负荷基本一致, 从构造和水力条件来看, 两者没有明显的优劣之分。置双侧堰式的集水槽因堰上负荷小、出水水质好而应用较多。但在最近几年的工程设计与应用中发现双侧堰进水集水槽主要存在2个现象[27]: (1) 集水槽两侧水质检测时, 侧水质优于外侧。 (2) 因集水槽平衡孔开孔过大使三角堰均匀集水作用降低。 置双侧堰式置单侧堰式外置单侧堰式 图3.5 二沉池集水槽布置形式 在实际运行中, 可常观察到一种现象:靠近池壁的出水溢流堰一侧, 挟带较多的活性污泥絮体杂质, 而侧出水溢流堰的絮体杂质相对较少。侧溢流堰的出水优于外侧溢流堰,因此本设计采用置单侧堰进水。 集水槽设自由溢流堰,溢流堰严格水平,即可保证水流均匀,又可控制沉淀

一级水处理设计计算

第一章 污水的一级处理构筑物设计计算 1.1格栅 格栅是由一组平行的金属栅条或筛网制成,安装在污水渠道、泵房集水井的进口处或污水处理厂的端部,用以截留较大的悬浮物或漂浮物,如纤维、碎皮、毛发、果皮、蔬菜、塑料制品等,以便减轻后续处理构筑物的处理负荷,并使之正常进行。被截留的物质称为栅渣。 设计中格栅的选择主要是决定栅条断面、栅条间隙、栅渣清除方式等。 格栅断面有圆形、矩形、正方形、半圆形等。圆形水力条件好,但刚度差,故一般多采用矩形断面。格栅按照栅条形式分为直棒式格栅、弧形格栅、辐流式格栅、转筒式格栅、活动格栅等;按照格栅栅条间距分为粗格栅和细格栅(1.5~10mm );按照格栅除渣方式分为人工除渣格栅和机械除渣格栅,目前,污水处理厂大多都采用机械格栅;按照安装方式分为单独设置的格栅和与水泵池合建一处 的格栅。 1.1.1格栅的设计 城市的排水系统采用分流制排水系统,城市污水主干管由西北方向流入污水处理厂厂区,主干管进水水量为s L Q 63.1504 ,污水进入污水处理厂处的管径为1250mm ,管道水面标高为80.0m 。 本设计中采用矩形断面并设置两道格栅(中格栅一道和细格栅一道),采用机械清渣。其中,中格栅设在污水泵站前,细格栅设在污水泵站后。中细两道格栅都设置三组即N=3组,每组的设计流量为0.502s m 3。 1.1.2设计参数 1、格栅栅条间隙宽度,应符合下列要求: 1) 粗格栅:机械清除时宜为16~25mm ;人工清除时宜为25~40mm 。特殊情况下,最大间隙可为100mm 。 2) 细格栅:宜为1.5~10mm 。 3) 水泵前,应根据水泵要求确定。 2、 污水过栅流速宜采用0.6~1.Om /s 。除转鼓式格栅除污机外,机械清除格栅的安装角度宜为60~90°。人工清除格栅的安装角度宜为30°~60°。 3、当格栅间隙为16~25mm 时,栅渣量取0.10~0.0533310m m 污水;当格栅间隙为30~50mm 时,栅渣量取0.03~0.0133310m m 污水。 4、格栅除污机,底部前端距井壁尺寸,钢丝绳牵引除污机或移动悬吊葫芦

三种沉淀池设计计算设计参数

平流式沉淀池的基本要求有哪些 平流式沉淀池表面形状一般为长方形,水流在进水区经过消能和整流进入沉淀区后,缓慢水平流动,水中可沉悬浮物逐渐沉向池底,沉淀区出水溢过堰口,通过出水槽排出池外。 平流式沉淀池基本要求如下: (1)平流式沉淀池的长度多为30~50m,池宽多为5~10m,沉淀区有效水深一般不超过3m,多为2.5~3.0m。为保证水流在池内的均匀分布,一般长宽比不小于4:1,长深比为8~12。 (2)采用机械刮泥时,在沉淀池的进水端设有污泥斗,池底的纵向污泥斗坡度不能小于0.01,一般为0.01~0.02。刮泥机的行进速度不能大于1.2m/min,一般为0.6~0.9m/min。 (3)平流式沉淀池作为初沉池时,表面负荷为1~3m3/(m·h),最大水平流速为7mm/s;作为二沉池时,最大水平流速为5mm/s。 (4)人口要有整流措施,常用的人流方式有溢流堰一穿孔整流墙(板)式、底孑L人流一挡板组合式、淹没孔人流一挡板组合式和淹没孔人流一穿孔整流墙(板)组合式等四种。使用穿孔整流墙(板)式时,整流墙上的开孔总面积为过水断面的6%~20%,孔口处流速为0.15~0.2m/s,孔口应当做成渐扩形状。 (5)在进出口处均应设置挡板,高出水面0.1~0.15m。进口处挡板淹没深度不应小于0.25m,一般为0.5~1.0m;出口处挡板淹没深度一般为0.3~0.4m。进口处挡板距进水口0.5~1.0m,出口处挡板距出水堰板0.25~0.5m。 (6)平流式沉淀池容积较小时,可使用穿孔管排泥。穿孔管大多布置在集泥斗内,也可布置在水平池底上。沉淀池采用多斗排泥时,泥斗平面呈方形或近于方形的矩形,排数一般不能超过两排。大型平流式沉淀池一般都设置刮泥机,将池底污泥从出水端刮向进水端的污泥斗,同时将浮渣刮向出水端的集渣槽。 (7)平流式沉淀池非机械排泥时缓冲层高度为0.5m,使用机械排泥时缓冲层上缘宜高出刮泥板0.3m。 例:某城市污水处理厂的最大设计流量Q=0.2m3/s,设计人数N=10万人,沉淀时

工艺设计计算公式

A/O工艺设计参数 ①水力停留时间:硝化不小于5~6h;反硝化不大于2h,A段:O段=1:3 ②污泥回流比:50~100% ③混合液回流比:300~400% ④反硝化段碳/氮比:BOD /TN>4,理论BOD消耗量为1.72gBOD/gNOx--N 5 ⑤硝化段的TKN/MLSS负荷率(单位活性污泥浓度单位时间内所能硝化的凯氏氮): <0.05KgTKN/KgMLSS·d /KgMLSS·d ⑥硝化段污泥负荷率:BOD/MLSS<0.18KgBOD 5 ⑦混合液浓度x=3000~4000mg/L(MLSS) ⑧溶解氧:A段DO<0.2~0.5mg/L O段DO>2~4mg/L ⑨pH值:A段pH =6.5~7.5

O段pH =7.0~8.0⑩水温:硝化20~30℃ 反硝化20~30℃ ⑾ 碱度:硝化反应氧化1gNH 4+-N需氧4.57g,消耗碱度7.1g(以CaCO 3 计)。 反硝化反应还原1gNO 3 --N将放出2.6g氧,生成3.75g 碱度(以CaCO 3 计) ⑿需氧量Ro——单位时间内曝气池活性污泥微生物代谢所需的氧量称为需氧量(KgO 2 /h)。 微生物分解有机物需消耗溶解氧,而微生物自身代谢也需消耗溶解氧,所以Ro应包括这三部分。 Ro=a’QSr+b’VX+4.6Nr a’─平均转化1Kg的BOD的 需氧量KgO 2 /KgBOD b’─微生物(以VSS计)自身 氧化(代谢)所需氧量KgO 2 /Kg VSS·d。 上式也可变换为: Ro/VX=a’·QSr/VX+b’ 或 Ro/QSr=a’+b’·VX/QSr Sr─所去除BOD的量(Kg)

水处理常用计算公式汇总

水处理常用计算公式汇总 水处理公式是我们在工作中经常要使用到的东西,在这里我总结了几个常常用到的计算公式,按顺序分别为格栅、污泥池、风机、MBR、AAO进出水系统以及芬顿的计算,大家可有目的性的观看。 格栅的设计计算 一、格栅设计一般规定 1、栅隙 (1)水泵前格栅栅条间隙应根据水泵要求确定。 (2)废水处理系统前格栅栅条间隙,应符合下列要求:最大间隙40mm,其中人工清除 25~40mm,机械清除16~25mm。废水处理厂亦可设置粗、细两道格栅,粗格栅栅条间隙 50~100mm。 (3)大型废水处理厂可设置粗、中、细三道格栅。 (4)如泵前格栅间隙不大于25mm,废水处理系统前可不再设置格栅。 2、栅渣 (1)栅渣量与多种因素有关,在无当地运行资料时,可以采用以下资料。 格栅间隙16~25mm;0.10~0.05m3/103m3(栅渣/废水)。 格栅间隙30~50mm;0.03~0.01m3/103m3(栅渣/废水)。 (2)栅渣的含水率一般为80%,容重约为960kg/m3。 (3)在大型废水处理厂或泵站前的大型格栅(每日栅渣量大于0.2m3),一般应采用机械清渣。3、其他参数 (1)过栅流速一般采用0.6~1.0m/s。 (2)格栅前渠道内水流速度一般采用0.4~0.9m/s。 (3)格栅倾角一般采用45°~75°,小角度较省力,但占地面积大。 (4)机械格栅的动力装置一般宜设在室内,或采取其他保护设备的措施。 (5)设置格栅装置的构筑物,必须考虑设有良好的通风设施。 (6)大中型格栅间内应安装吊运设备,以进行设备的检修和栅渣的日常清除。 二、格栅的设计计算 1、平面格栅设计计算 (1)栅槽宽度B 式中,S 为栅条宽度,m;n 为栅条间隙数,个; b 为栅条间隙,m;为最大设计流量, m3/s;a 为格栅倾角,(°);h为栅前水深,m,不能高于来水管(渠)水深;v 为过栅流速, m/s。 (2)过栅水头损失如

周进周出二沉池设计之探讨

周进周出二沉池设计之探讨 沉淀池是水处理工程中常用的构筑物,为提高水处理能力、稳定出水水质、降低运行成本和控制基建投资,各种类型的沉淀池都有了较大的改进和革新。笔者在某污水处理厂工程的设计中,针对出水水质要求高、用地面积少的情况,二沉池选用了圆形周边进水周边出水幅流式沉淀池。该工程总设计规模17×104m3/d,近期实施10 ×104m3/d。4座周进周出的沉淀池作二沉池,单池处理能力Qd=3.25×104m3/d。下文对周进周出沉淀池的选择及配水系统的设计谈一些具体做法。 1 周进周出与中进周出沉淀池的比较 1.1 沉淀区的流态二次沉淀池进水为活性污泥混合液,悬浮物固体MLSS的质量浓度在3000-4000mg/L之间,远高于池内的澄清水。由于二者间的密度差、温度差而存在二次流和异重流现象。中进周出和周进周出两种不同池型内的混合液流态各不相同,详见图1与图2:

在中进式沉淀池中,活性污泥混合液从池中心进水管以相对较高的流速进入池内,形成涡流,经布水筒逐渐下降到污泥层上,再沿沉淀区中部向池壁方向流动并壅起环流。分离出的澄清水部分溢流入出水槽,部分在上面从池边向池中心回流;密度大的混合液则在下面从池边向池中心流动,形成了反向流动的环流。这种环流不利于沉淀,限制了池子的水力负荷。 而在周边进水周边出水的沉淀池中,密度流的方向与中心进水式相反。混合液经进水槽配水孔管流入导流区后经孔管挡板折流,下降到池底污泥面上并沿泥面向中心流动,汇集后呈一个平面上升,在向池中心汇流和上升过程中分离出澄清水,并反向流到池边的出水槽,形成大环形密度流,污泥则沉降到池底部。因此,周进周出沉淀池的异重流流态改变了沉淀区的流态,有利于固液分离。 1.2 容积利用率 异重流现象在中进式沉淀池中会形成短流,部分容积没有得到有效利用,池子的实际负荷比设计负荷大得多。而周进式由于大环形密度流的形成,容积利用率要高得多。 对应进。出水槽位置的不同,中心进水与周边进水沉淀池的容积利用率各不相同,详见表1。 表1 幅流式沉淀池容积利用率[1]

二沉池计算

运行方式和处理效果。 二沉池是以沉淀、去除生物处理过程中产生的污泥获得澄清的处理水为其主要 目的。二沉池有别于其它沉淀池,其作用一是泥水分离(沉淀)、二是污泥浓缩, 并因水量、水质的时常变化还要暂时贮存活性污泥。 热门通常处理系统的建设费用是和系统处理构筑物的容积大小成正比的,所以二沉 池的设计计算是否合理,直接影响到整个生物处理系统的运行处理效果和建设费用 的大小。 一般二沉池有辐流式、平流式、竖流式三种形式,池型有圆形、方形。在过去 多年中,对沉淀池的研究较为欠缺,不同的国家,不同的设计单位(水处理公司) 都有自己的标准或方法,这些技术并不总是有明确的理论论证,常常也会发生矛盾。 目前世界范围内都要求在经济负荷下,提高出水质量标准,由此对沉淀池的作 用进行了重新研究,并对过去已经承认了的参数产生了疑问。 1影响二沉池运行设计的几个主要因素 二沉池运行过程中的影响因素很多,其中有些因素甚至是相互矛盾的。在沉淀 过程中的影响因素有:(1)污水:流量、水温;(2)沉淀池:表面积和出流量、

池高度、溢流堰长度地点和负荷、进水形式、池型、污泥收集系统、水力条件、水波和自然风影响;(3)污泥:负荷、区域沉淀速度、污泥体积指数、硝化程度;(4)生物处理情况:活性污泥模式、BOD负荷; 在浓缩过程中的影响因素有:(1)污水:混合液流量;(2)池体:池表面积、池高、污泥收集系统;(3)污泥:沉速(ZSV)、SVI、混合液浓度和负荷、回流比、污泥槽高度。 欲获得满意的二沉池运行效果,就必须适当的满足二沉池运行的诸多的条件,就目前研究的情况,设计中主要考虑因素有如下几点: 活性污泥的沉降性能 在生物处理系统中,活性污泥的特性,特别是污泥的沉降性能,直接影响着二沉池的工艺设计与运行。 衡量活性污泥沉降性能的参数有二个:一是污泥指数SVI(mL/g);二是污泥沉降比:SV%。 SVI的物理意义是:曝气池出口混合液经30min静沉后,每克干污泥所形成的沉淀污泥所占的容积(mL)。 SV%又称30分钟沉降比,混合液在量筒内静置30 分钟后所形成的沉淀污泥的容积占原混合液容积的百分率。 SVI、SV%与混合液污泥浓度MLSS(g/L)之间有下列关系:

CASS工艺设计计算

沈阳化工大学 水污染控制工程 三级项目 题目:小区生活污水回用处理设计 院系:环境与安全工程学院 专业:环境工程 提交日期: 2020 年 5 月 26 日

摘要 本文主要介绍了小区生活污水回用处理设计的过程,其中包括工艺流程、以及流程中各个构筑物的设计计算、高程和平面布置。循环式活性污泥法(CASS)是序批式活性污泥法工艺(SBR)的一种变形。它综合了活性污泥法和SBR工艺特点,与生物选择器原理结合在一起,具有抗冲击负荷和脱氮除磷的功能。本次设计采用了CASS工艺进行设计计算。其中包括池体的计算和格栅等辅助物尺寸计算,处理后水质达到一级B标准。 关键词:小区生活污水回用循环式活性污泥法设计计算 Abstract This paper mainly introduces the design process of residential sew age reuse treatment, including the process flow, as well as the design of e ach structure in the process, elevation and plane layout. Circulating activa ted sludge process (CASS) is a variation of sequential batch activated slu dge process (SBR). It integrates the characteristics of activated sludge pro cess and SBR process, combines with the principle of biological selector, and has the functions of impact load resistance and denitrification and de phosphorization. This design adopts CASS technology to design and calc ulate. It includes the calculation of the pool body and the size calculation of the grid and other auxiliary objects. After treatment, the water quality r eaches the standard of grade a B.

污水处理设计常用计算公式

污水处理设计公式 竖流沉淀池[3] 中心管面积: f=q/vo=0.02/0.03=0.67m2 中心管直径: do=√4f/∏ =√4*0.67/3.14=0.92 中心管喇叭口与反射板之间的缝隙高度: h3=q/v1∏d1=0.02/0.03*3.14*0.92*1.35 沉淀部分有效端面积: A=q/v=0.02/0.0005=40m2 沉淀池直径: D=/4(A+f)/∏ =/4*(40+0.67)/3.14=7.2m 沉淀部分有效水深: h2=vt*3600=0.0005*1.5*3600=2.7m 沉淀部分所需容积: V=SNT/1000=0.5*1000*7/1000=3.5m3 圆截锥部分容积: h5=(D/2-d`/2)tga=(7.2/2-0.3/2)tg45=3.45m 沉淀池总高度: H=h1=h2=h3=h4=h5=0.3+2.7+0.18+0+3.45=6.63m 符号说明: q——每池最大设计流量,m3/s vo——中心管内流速,m/s v1 ——污水由中心管喇叭口与反射板之间的缝隙流出速度,m/s d1 ——喇叭口直径,m v——污水在沉淀池中的流速,m/s t——沉淀时间,h S——每人每日污水量,L/(人?d),一般采用0.3~0.8L/(人?d)N——设计人口数,人 h1——超高,m

h4——缓冲层高,m h3——污泥室圆截锥部分的高度,m R——圆锥上部半径,m r——圆锥下部半径,m 污水处理中ABR厌氧和SBR的设计参数 1)进水时间TF 根据每一系列的反应池数、总进水量、最大变化系数和反应池的有效容积等因素确定。 2)曝气时间TA 根据MLSS浓度、BOD-SS负荷、排出比、进水BOD浓度来确定。由于: 式中:Qs-污水进水量(m3/d) Ce-进水平均BOD(mg/l) V-反应池容积(m3) e-曝气时间比:e=n×TA/24 n-周期数 TA-1个周期的曝气时间 又由于: 1/m-排出比 则: 将e=n×TA/24代人,则: 3)沉淀时间Ts 根据活性污泥界面的沉降速度、排出比确定。 活性污泥界面的沉降速度和MLSS浓度有关。由经验公式得出: 当MLSS≤3000mg/l时 Vmax=7.4×104×t×MLSS-1.7 当MLSS>3000mg/l时 Vmax=4.6×104×MLSS-1.26 式中Vmax-活性污泥界面的沉降速度(m/h) t-水温℃ MLSS-开始沉降时的MLSS浓度(mg/l) 沉淀时间Ts=H×(1/m)+ε/Vmax 式中:H-反应池水深(m) 1/m-排出比

二沉池设计

课程设计报告 设计课题: 某经济开发区污水处理二沉池的设计 学生姓名:陈培农学号: 010302122 专业班级:环工101 指导教师:黄建辉 环境与生命工程学院制 2013年 11 月

目录 一、设计原始资料................................................. . (3) 二、设计原则................................................. .. (3) 三、设计依据................................................. .. (4) 四、二沉池的设计计算................................................. .. (4) 1 二沉池的主要设计................................................. (4)

2 二沉池的进水设计.......................................... ...... ..6 3 二沉池的出水设计................................................. (7) 4 污泥部分计算................................................. .. (8) 五、设计总结或结论................................................. . (9) 参考文献................................................. .. (9)

二沉池设计

课程设计

姓名吴运鹏 _________________________ 学号186 __________________ 题目某城市11 x 104m3/d污水处理厂设计一一二沉池设计____________ 一、课程设计的内容 (1)污水处理厂的工艺流程比选,并对工艺构筑物选型做说明; (2)主要处理设施二沉池的工艺计算; (3)确定污水处理厂平面和高程布置; (4)绘制主要构筑物图纸。 二、课程设计应完成的工作 (1)确定合理的污水处理厂的工艺流程,并对所选择工艺构筑物选型做适当说明; (2)确定主要处理构筑物二沉池的尺寸,完成设计计算说明书; (3)绘制主要处理构筑物二沉池的设计图纸。

姓名吴运鹏 ____________________ 学号二86 ______________________ 题目某城市11 X 104m3/d污水处理厂设计一一二沉池设计____________ 指导小组或指导教师评语:

评定成绩 2015年7月31日指导教师

目录 1 总论 ..... ..................... 设计简介.............. ........... 设计任务和内容.................. …基本资料.............. ........... 处理水量及水质............... ?…… 处理要求 .............. 艺流程…………………………… 气象与水文资料............ ………………厂区地形.............. …………… 2污水处理工艺流程的确定 .......... 3处理构筑物设计 ............. … 设计要求及参数.............. .................... .. (2) ............ …. ...... (2) ............ …. ...... :. ... ...“... ............... :......:......2...处理工 (2) ..... .... ... . (3) ???????????????? Y ■ ■ ■ ■ ■?■■■■:…....................... :4 ?…????????????

AO工艺设计计算

A 2 /O 工艺生化池设计 一、 设计最大流量 Q max=73500m 3/d= m 3/h= m 3/s 二、 进出水水质要求 表1 进出水水质指标及处理程度 三、 设计参数计算 ①. BOD 5污泥负荷 N=(kgMLSS ·d) ②. 回流污泥浓度 X R =10 000mg/L ③. 污泥回流比 R=50% ④. 混合液悬浮固体浓度(污泥浓度) ⑤. TN 去除率 ⑥. 内回流倍数 四、 A 2/O 曝气池计算 ①. 反应池容积 ②. 反应水力总停留时间 ③. 各段水力停留时间和容积 厌氧:缺氧:好氧=1:1:4 厌氧池停留时间h t 33.21461=?= ,池容37.70874252661 m V =?=; 缺氧池停留时间h t 33.21461=?= ,池容37.70874252661 m V =?=; 好氧池停留时间h t 34.91464=?= ,池容36.283504252664 m V =?=。 ④. 校核氮磷负荷

好氧段TN 负荷为: ()d kgMLSS kgTN N ?=??=??/024.06.8350233339 .3073500V X T Q 30 厌氧段TP 负荷为: ()d kgMLSS kgTN P ?=??=??/017.07 .708733334 .573500V X T Q 10 ① 剩余污泥量:X ?,(kg/d) 式中: 取污泥增值系数Y=,污泥自身氧化率05.0=d K ,代入公式得: =5395kg/d 则: 湿污泥量:设污泥含水率P=% 则剩余污泥量为: ⑤. 反应池主要尺寸 反应池总容积:V=425263m 设反应池2组,单组池容积:V = 3212632 m V = 有效水深5m ,则: S=V/5=2m 取超高为,则反应池总高m H 0.60.10.5=+= 生化池廊道设置: 设厌氧池1廊道,缺氧池1廊道,好氧池4廊道,共6条廊道。廊道宽10m 。则每条廊道长度为 m bn S L 88.706 106 .4252=?== ,取71m 尺寸校核 1.71071==b L ,25 10 ==h b 查《污水生物处理新技术》,长比宽在5~10间,宽比高在1~2间 可见长、宽、深皆符合要求 五、 反应池进、出水系统计算 1) 进水管 单组反应池进水管设计流量s m Q Q /425.02 85 .023max 1===

污水处理基本计算公式

污水处理基本计算公式 水处理公式是我们在工作中经常要使用到的东西,在这里我总结了几个常常用到的计算公式,按顺序分别为格栅、污泥池、风机、MBR、AAO进出水系统以及芬顿、碳源、除磷、反渗透、水泵和隔油池计算公式,由于篇幅较长,大家可选择有目的性的观看。 格栅的设计计算 一、格栅设计一般规定 1、栅隙 (1)水泵前格栅栅条间隙应根据水泵要求确定。 (2) 废水处理系统前格栅栅条间隙,应符合下列要求:最大间隙40mm,其中人工清除25~40mm,机械清除16~25mm。废水处理厂亦可设置粗、细两道格栅,粗格栅栅条间隙50~100mm。 (3) 大型废水处理厂可设置粗、中、细三道格栅。 (4) 如泵前格栅间隙不大于25mm,废水处理系统前可不再设置格栅。 2、栅渣 (1) 栅渣量与多种因素有关,在无当地运行资料时,可以采用以下资料。 格栅间隙16~25mm;0.10~0.05m3/103m3 (栅渣/废水)。 格栅间隙30~50mm;0.03~0.01m3/103m3 (栅渣/废水)。

(2) 栅渣的含水率一般为80%,容重约为960kg/m3。 (3) 在大型废水处理厂或泵站前的大型格栅(每日栅渣量大于0.2m3),一般应采用机械清渣。 3、其他参数 (1) 过栅流速一般采用0.6~1.0m/s。 (2) 格栅前渠道水流速度一般采用0.4~0.9m/s。 (3) 格栅倾角一般采用45°~75°,小角度较省力,但占地面积大。 (4) 机械格栅的动力装置一般宜设在室,或采取其他保护设备的措施。 (5) 设置格栅装置的构筑物,必须考虑设有良好的通风设施。 (6) 大中型格栅间应安装吊运设备,以进行设备的检修和栅渣的日常清除。 二、格栅的设计计算 1、平面格栅设计计算 (1) 栅槽宽度B

三级水处理厂工艺流程设计_平流式沉淀池、

总论 本次课程设计主要任务是对某城市50000m3/d污水处理厂三级处理工艺及部分构筑物进行设计。本设计所处理的原水,属于市政污水经过二级生物处理后的出水(中水),水的浊度、CODcr、SS等,均符合国家污水排放标准。但是作为景观用水和部分工业补充用水,其浊度和卫生指标偏高,需要进行进一步的深度处理,本次课程设计的目的就是以活性污泥法处理后的出水作为原水,采用混凝—沉淀工艺进一步处理,达到景观和部分工业用水的要求。 本次课程设计的目的在于加深理解所学专业知识,培养学生运用所学专业知识,进一步培养其独立分析问题和解决问题的能力,培养学生综合运用所学知识的能力,在设计、计算、绘图方面得到锻炼。 三级处理又称高级处理、深度处理。其目的是进一步去除二级处理未能脱除的污染物质,包括残留的微细颗粒物、溶解性有机物、无机盐类(如氮、磷、重金属等)、色素、细菌、病毒等。三级处理根据出水的不同回用要求而采用不同的方法,如混凝沉淀法、砂滤法、生物除磷脱氮法、活性炭吸附、离子交换和电渗析、反渗透等。三级处理后出水水质进一步提高可除去大部分氮和磷。三级处理出水具有更高的回用价值,如回用作电厂锅炉补给水的原水、循环冷却水等,且不受限制的农业回用和安全排入水体进入给水管网等。三级处理投资和运行费用明显较高,即使在发达国家应用也不是很多,是一种对处理水质要求高和成本高的处理工艺。 第一节设计任务和内容 一、设计任务 1、本次课程设计为初步工艺设计及部分构筑物设计计算,设计要求如下: (1)工艺设计:给出污水混凝—沉淀处理工艺流程图,并说明理由;给出设计高程图,要求为一次提升,自然流动。 (2)给出所要求单个构筑物结构设计,并设计计算,给出设计图。包括平面图、A- A、B- B、高程图以及工艺流程图。 2、处理工艺流程 来自于二级生物处理的污水,经格栅截留大颗粒有机物和漂浮物后,通过剂量槽后,

二沉池的设计计算讲解

二沉池设计计算 本设计采用机械吸泥的向心式圆形辐流沉淀池,进水采用中心进水周边出水。 1?沉淀时间1.5?4.0h,表面水力负荷0.6?1.5m3/(m2?h),每人每日污泥量12?32g/人d,污泥含水率99.2?99.6%,固体负荷 < 150kg/(m2 *d) 2.沉淀池超高不应小于0.3m 3.沉淀池有效水深宜采用2.0? 4.0m 4.当采用污泥斗排泥时,每个污泥斗均应设单独闸阀和排泥管,污泥斗的斜壁与水平面倾角,方斗宜为60°圆斗宜为55° 5.活性污泥法处理后的二次沉淀池污泥区容积宜按不大于2h的污泥量计算,并应有连续排泥措施 6.排泥管的直径不应小于200mm 7.当采用静水压力排泥时,二次沉淀池的静水头,生物膜法处理后不应小于1.2m,活性污泥法处理池后不应小于0.9m。 &二次沉淀池的出水堰最大负荷不宜大于 1.7L / (sm)。 9、沉淀池应设置浮渣的撇除、输送和处置设施。 10、水池直径(或正方形的一边)与有效水深之比宜为6?12,水池直径不宜大于50m。 11、宜采用机械排泥,排泥机械旋转速度宜为1?3r/h,刮泥板的外缘线速度不宜大于3m/ min。当水池直径(或正方形的一边)较小时也可米用多斗排

泥。

12、 缓冲层高度,非机械排泥时宜为0.5m ;机械排泥时,应根据 刮泥板高度确定,且缓冲层上缘宜高出刮泥板 0.3m 。 13、 坡向泥斗的底坡不宜小于0.05。 2.2设计计算 设计中选择2组辐流沉淀池,每组设计流量为 0.325m 3 s 1、沉淀池表面积 _基=0.65 3600 = 780m 2 nq 2汉 1.5 式中 Q ——污水最大时流量,m [;s ; q' --- 表面负荷,取1.5m 3 m 2 h ; n ――沉淀池个数,取2组 池子直径: 2、实际水面面积 D 2 二竺=804.25m 2 4 4Q max 4 0.65 3600 3 2 头际负何q ma x 2 1.45m 3/(m 2 ? h),符合要求 wD 2 2兀汉 322 3、沉淀池有效水深 I m = qt 式中t ——沉淀时间,取2h 。 h^ 1.5 2 = 3.0m 二 31.52m 取 32 m 。 4 780 ,3.14

相关文档
最新文档