二次函数的应用 ppt课件

合集下载

二次函数应用PPT教学课件

二次函数应用PPT教学课件
用价值。解决这类实际问题时,首要 的一步就是___求_出__抛_物__线_解_析__式__, 而这一步必须把抛物线建立在特定的 ____直_角_坐__标_系____中才能顺利进行。 否则,将寸步难行!
生也 活是 中抛 有物 许线 多形 桥的
C
D
A
B
实例2、如图:有一座抛物线形的石拱桥,在正常水位时水面AB
——二次函数应用(一)
DJY
某抛物线如图所示: (1)根据图中所给信息,你能
说出它的哪些有关性质?
y D
9
C5
请同学们畅所欲言!
(2)你能求出这条抛物线 的解析式吗?怎样求?
A
2
-1 O
比比谁的方法好而多!
X=2
B X
5



解:
y D
9
抛物线与x轴交于A(-1,0)、 B(5,0)
两点
C5
可设抛物线解析式为y=a(x-5)(x+1)
1m

谢谢大家 再见!
嘉兴市清河中学 初三数学组 制作:陈豪 2005年3月
敬请各位老师指导!
虎丘记
(袁宏道)
一、关于袁宏道和“公安派”:
袁宏道,明代文学家,湖广公安人,万历16年 中举人,万历20年中进士,万历23年任吴县县令, 颇有政绩,不到两年就辞官归隐。后又出仕官场, 官至吏部主事、稽勋郎中。著《袁中郎全集》。 袁宏道在明代文坛上占有重要地位。他与兄长 袁宗道、弟弟袁中道合称“公安三袁”,被称为 “公安派”。“公安派”在文学上反对形式主义和 拟古主义,在思想上反对封建礼教和儒家道统。他 们的作品也能打破传统诗文的陈规陋习,抒发个性, 清新流畅。但由于不适当地强调表现自我表现,忽 视社会现实,因而作品缺乏深厚的社会内容,思想 比较贫乏。

《高三数学二次函数》课件

《高三数学二次函数》课件

3 二次函数的单调性
二次函数的一般形式为$f(x) = ax^2 + bx + c$,其中 $a neq 0$。二次函数的开口方向由系数$a$决定,当 $a > 0$时,开口向上;当$a < 0$时,开口向下。
4 二次函数的极值
二次函数的一般形式为$f(x) = ax^2 + bx + c$,其中 $a neq 0$。二次函数的开口方向由系数$a$决定,当 $a > 0$时,开口向上;当$a < 0$时,开口向下。
已知二次函数$f(x) = ax^2 + bx + c$的图象经过点$(0, 0)$和$(1, -1)$ ,且在区间$( - infty, - frac{b}{2a})$ 上单调递减,求$a$的取值范围。
提高习题2
已知二次函数$f(x) = ax^2 + bx + c$的图象经过点$(0, 1)$和$(1, -1)$ ,且在区间$( - infty, - frac{b}{2a})$ 上单调递增,求$a$的取值范围。
04
下一步学习计划
01
深入学习其他类型的函数,如 三角函数、指数函数等,进一 步拓展数学知识面。
02
加强数学练习,通过大量的习பைடு நூலகம்题训练提高自己的解题能力和 数学思维能力。
03
学习数学中的其他重要概念和 定理,如导数、积分等,为后 续的学习打下坚实的基础。
04
参加数学竞赛或课外活动,与 其他同学一起探讨数学问题, 共同进步。
基础习题2
已知二次函数$f(x) = ax^2 + bx + c$在$x = 2$处取得最小值,求$a$的取值范围。
基础习题3

二次函数的应用课件ppt课件ppt课件ppt

二次函数的应用课件ppt课件ppt课件ppt
要点一
导数在二次函数中的应用
利用导数研究二次函数的单调性、极值和拐点,解决实际 问题。
要点二
定积分在二次函数中的应用
利用定积分计算二次函数的面积,解决与面积相关的实际 问题。
THANKS
感谢观看
详细描述
二次函数是数学中一类重要的函数,其形式由参数$a$、$b$ 和$c$决定。当$a > 0$时,函数图像开口向上;当$a < 0$ 时,函数图像开口向下。
二次函数的图像
总结词
二次函数的图像是一个抛物线, 其形状由参数$a$、$b$和$c$决 定。
详细描述
二次函数的图像是一个抛物线, 其顶点的位置由参数$b$和$c$决 定,而开口的大小和方向则由参 数$a$决定。
在生产和生活中,经常需要解决诸如利润最大化、成本最小化等最优化问题。利 用二次函数开口方向和顶点坐标的性质,可以快速找到最优解,为决策提供依据 。
利用二次函数解决周期性问题
总结词
利用二次函数的对称性和周期性,解 决具有周期性规律的问题。
详细描述
在物理学、工程学和生物学等领域, 许多现象具有周期性规律。通过将实 际问题转化为二次函数模型,可以更 好地理解和预测这些周期性现象。
利用二次函数解决面积问题
总结词
利用二次函数与坐标轴的交点,解决 与面积相关的实际问题。
详细描述
在几何学和实际生活中,经常需要计 算图形的面积。通过将问题转化为求 二次函数与坐标轴围成的面积,可以 简化计算过程,提高解决问题的效率 。
04
如何提高二次函数的应用能力
掌握基本概念和性质
理解二次函数的一般 形式: $y=ax^2+bx+c$, 其中$a neq 0$。

北师大版九年级数学下册课件:二次函数的应用

北师大版九年级数学下册课件:二次函数的应用

2=a b c,
1=4a 2b c,
a 1,
解得
b=2,
c=1.
∴二次函数的表达式为y=-x2+2x+1.
知3-讲
知识点 2 用顶点式确定二次函数表达式
例3 已知抛物线的顶点坐标为(4,-1),与y轴交于点(0, 3)求这条抛物线的解析式.
解:依题意设y=a(x-h)2+k ,将顶点(4,-1)及交点(0,3) 代入得3=a(0-4)2-1,解得a= 1 , ∴这条抛物线的解析
导引:(1)利用交点式得出y=a(x-1)(x-3),进而求出a的值, 再利用配方法求出顶点坐标即可;(2)根据“左加右减,上 加下减”得出抛物线对应的函数表达式,进而得出答案.
知4-讲
解:(1)∵抛物线与x轴交于点A(1,0),B(3,0), ∴可设抛物线对应的函数表达式为y=a(x-1)(x-3). 把点(0,-3)的坐标代入得:3a=-3,解得a=-1, 故抛物线对应的函数表达式为y=-(x-1)(x-3), 即y=-x2+4x-3. ∵y=-x2+4x-3=-(x-2)2+1, ∴顶点坐标为(2,1).
B
N
2.y
xb
x
4 3
x
40
3
4 3
x2
40x3 x 202 ຫໍສະໝຸດ 300.4做一做2
何时窗户通过的光线最多
某建筑物的窗户如图所示,它的上半部是半圆,下
半部是矩形,制造窗框的材料总长(图中所有的黑线
的长度和)为15m.当x等于多少时,窗户通过的光线最
多(结果精确到0.01m)?此时,窗户的面积是多少?
y=ax2+c
y=a(x-h)2
y=a(x-h)2+k
y=ax2+bx+c

二次函数的应用 ppt课件

二次函数的应用 ppt课件

通过对所得函数关系式进行配方,指出商场 要想每天获得最大的销售利润,每件的销售 价定为多少最为合适?最大利润为多少?
ppt课件
19
最值应用题——运动观点
一般地,函数y=f(x)的图象关于x轴对称 的图象的解析式是y=-f(x)
一般地,函数y=f(x)的图象关于y轴对称
的图象的解析式是y=f(-x)
ppt课件
4
显而易见:顶点式
已知函数y=ax2+bx+c的图象是以点(2,3) 为顶点的抛物线,并且这个图象通过点(3, 1),求这个函数的解析式。(要求分别用一 般式和顶点式去完成,对比两种方法)
求这个二次函数的解析式。
当x为何值时,函数有最值?最值是多少?
求函数最值点和最值的若干方法:
直接代入顶点坐标公式
配方成顶点式
借助图象的顶点在对称轴上这一特性,结合
和x轴两个交点坐标求。
ppt课件
9
二次函数的三种式
一般式:y=ax2+bx+c 顶点式:y=a(x-m)2+n 交点式:y=a(x-x1) (x-x2)
经过这三点的二次函数解析式; 在同一坐标系内画出这三个二次函数图象; 分析这三条抛物线的对称关系,并观察它们
的表达式的区别与联p系pt课件,你发现了什么? 3
思维小憩:
用待定系数法求二次函数的解析式,设出 一般式y=ax2+bx+c是绝对通用的办法。
因为有三个待定系数,所以要求有三个已 知点坐标。
已知二次函数y=ax2+bx+c的图象与x轴的 一个交点坐标是(8,0),顶点是(6,12),求这个二次函数的解析式。(分 别用三种办法来求)
ppt课件

30.4二次函数的应用(第2课时)PPT课件(冀教版)

30.4二次函数的应用(第2课时)PPT课件(冀教版)

解:∵
S 24 4x x 4 x2 8x 4 (x 3)2 12
3
3
3
且a= 4 <0,
3
∴当x=3时,S有最大值,且 S 12 . 最大
答:当x=3时,矩形框架ABCD的面积S 最大,最大面积为12 m2.
利用二次函数解决生活实际中最值问题的 一般方法: 1.根据题意找等量关系,列出二次函数的表 达式,求出符合题意的自变量的取值范围. 2.在自变量的取值范围内,求出二次函数的 最大值或最小值.
(教材第44页例3)一工艺师生产的某种产品按质量分为9个档次.第1
档次(最低档次)的产品一天能生产80件,每件可获利润12元.产品每
提高一个档次,每件产品的利润增加2元,但一天产量减少4件.如果只
从生产利润这一角度考虑,他生产哪个档次的产品,可获得最大利润? 思考: 题目涉及哪些变量?哪个量是自变量?哪些量随之产生了变化?
成矩形ABCD的最大面积是 ( C )
A.60 m2
B.63 m2
C.64 m2
D.66 m2
解析:设BC=x m,矩形ABCD的面积为y m2,根据题意得y=(16-x)x=x2+16x=-(x-8)2+64,当x=8时,ymax=64,则所围成矩形ABCD的最大面积是 64 m2.故选C.
2.如图所示,△ABC是直角三角形,∠A=90°, AB=8 cm,AC=6 cm,点P
[知识拓展]
1.求二次函数最值最常用的方法有两种:
(1)配方法:
y ax2 bx c
a
x2
b a
x
c
若a>0,则当x=- b
2a
时,y最小值=
4ac b2 4a

《二次函数的应用》二次函数PPT教学课件(第1课时)

《二次函数的应用》二次函数PPT教学课件(第1课时)
A
1.25米 O
当堂练习
y B
解:建立如图坐标系,设抛物线顶点 为B,水流落水处与x轴交于C点.
A 1.25
由题意可知A( 0,1.25)、
O
Cx
B( 1,2.25 )、C(x0,0).
设抛物线为y=a(x-1)2+2.25 (a≠0),
把点A坐标代入,得a= - 1;
∴抛物线为y=-(x-1)2+2.25.
当堂练习
(2)请你设计一个方案,使获得的设计费最多,并求 出这个费用. (2)S=-x2+6x=-(x-3)2+9; ∴当x=3时,即矩形的一边长为3m时,矩形面积 最大,为9m2.
这时设计费最多,为9×1000=9000(元)
当堂练习
5.公园要建造圆形的喷水池,在水池中央垂直于水面处安装 一个柱子OA,O点恰在水面中心,OA=1.25米,由柱子顶 端A处的喷头向外喷水,水流在各个方向沿形状相同的抛物 线路线落下.为使水流较为漂亮,要求设计成水流在离OA 距离为1米处达到距水面最大高度2.25米.如果不计其他因素, 那么水池的半径至少要多少米,才能使喷出的水流不落到 池外?
∴当x=2时,y取最小值,最小值为-9;
(2)∵a=-1<0,对称轴为x=
-
3 2
,顶点坐标为( -
3 2
,25
4
),
∴当x=
-3 2
时,y取最大值,最大值为
25 4
;
讲授新课
例2 已知二次函数y=ax2+4x+a-1的最小值为2,
则a的值为( C )
A.3
B.-1
C.4
D.4或-1
解析:∵二次函数y=ax2+4x+a-1有最小值2,

二次函数的应用ppt课件

二次函数的应用ppt课件

②根据题意,得绿化区的宽为
= (x-20)(m),
∴y=100×60-4x(x-20).又 ∵28≤100-2x≤52,∴24≤x≤36. 即 y 与 x 的函数关系式及 x 的取值范围为 y=-4x2+80x+6 000 (24≤x≤36);
-7-
2.4 二次函数的应用
(2)y=-4x2+80x+6 000=-4(x-10)2+6 400. ∵a=-4<0,抛物线的开口向下,对称轴为直线 x= 10. 当 24≤x≤36 时,y 随 x 的增大而减小, ∴ 当 x=24 时,y 最大=5 616,即停车场的面积 y 的最大值为 5 616 m2; (3)设费用为 w. 由题意,得 w=100(-4x2+80x+6 000)+50×4x(x- 20)=-200(x-10)2 +620 000, ∴ 当 w=540 000 时,解得 x1=-10,x2=30. ∵24≤x≤36,∴30≤x≤36,且 x 为整数, ∴ 共有 7 种建造方案. 题型解法:本题是确定函数表达式及利用函数的性质设计工程方案的问题. 解题过程中应理解:(1)工程总造价是绿化区造价和停车场造价两部分的和; (2)根据投资额得出方程,结合图象的性质求出完成工程任务的所有方案.
(1)解决此类问题的关键是建立恰当的平面直角坐标系; 注意事项
(2)根据题目特点,设出最容易求解的函数表达式形式
-9-
2.4 二次函数的应用
典题精析 例 1 赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系, 其函数的关系式为 y=- x2,当水面离桥拱顶的高度 DO 是 4 m 时,水面宽 度 AB 为 ( ) A. -20 m B. 10 m C. 20 m D. -10 m

北师大版九年级数学下册2.4《二次函数的应用》课件(共18张PPT)

北师大版九年级数学下册2.4《二次函数的应用》课件(共18张PPT)

6050 0
60495
60480
6045 5
6042 0
60600 y/个
60500
60400
60300
60200
60100 60000
0 1 2 3 4 5 6 7 8 9 1011 1213 14 x/棵
议一议
何时橙子总产量最大
1.利用函数表达式描述橙子的总产量与增种橙子 树的棵数之间的关系.
(100+x)棵
这时平均每棵树结多少个橙子?
(600-5x)个
(2)如果果园橙子的总产量为y个, 那么请你写出y与x之间的关系式.
想一想
何时橙子总产量最大
果园共有(100+x)棵树,平均每棵树结(600-5x) 个橙子,因此果园橙子的总产量
y=(100+x)(600-5x)=-5x²+100x+60000. 在上述问题中,种多少棵橙子树,可以使果园橙子的总产量 最多?X/棵 1 2 3 4 5 6 7 8 9 10 11 12 13 14
点重合时,等腰△PQR以1cm/s的速度沿直线l向
左方向开始匀速运动,ts后正方形与等腰三角形
重合部分面积为Scm2,解答下列问题:
(1)当t=3s时,求S的值; (2)当t=3s时,求S的值; A
B
(3)当5s≤t≤8s时,求S 与t的函数关系式,并求
MP
S的最大值。
lD Q
C
R
做一做
何时橙子总产量最大
N
2y
xb
x
3
x
30
3
x2
30x
3 x 202
300.
4
4
4
或用公式 :当x

二次函数的应用ppt课件

二次函数的应用ppt课件

∴Q的坐标为(4,0);∠GCF=90°不存在,
综上所述,点Q的坐标为(4,0)或(9,0).
2.4
二次函数的应用(2)
北师大版 九年级数学下册


00 名师导学
01 基础巩固
02 能力提升
C O N TA N T S
数学
返回目录
◆ 名师导学 ◆
知识点 最大利润问题
(一)这类问题反映的是销售额与单价、销售量以及利润与每
(3)存在.∵y= x +2x+1= (x+3) -2,∴P(-3,-2),
3
3
∴PF=yF-yP=3,CF=xF-xC=3,
∴PF=CF,∴∠PCF=45°.
同理,可得∠EAF=45°,∴∠PCF=∠EAF,
∴在直线AC上存在满足条件的点Q.
设Q(t,1)且AB=9 2,AC=6,CP=3 2.
∵以C,P,Q为顶点的三角形与△ABC相似,
数学
返回目录
①当△CPQ∽△ABC时,
+6 3 2
∴ = ,∴ = ,∴t=-4,∴Q(-4,1);

6
9 2
②当△CQP∽△ABC时,
+6 3 2
∴ = ,∴ = ,∴t=3,∴Q(3,1).
9 2
6
综上所述,在直线AC上存在点Q,使得以C,P,Q为顶点的三角形
数学
返回目录
◆ 基础巩固◆
一、选择题
1.在一个边长为1的正方形中挖去一个边长为 x(0<x<1)的小
正方形,如果设剩余部分的面积为y,那么y关于x的函数表达式
B

(
)
2
2

生活中二次函数(篮球问题)PPT课件

生活中二次函数(篮球问题)PPT课件

未来展望与研究方向
跨学科研究
未来可以将数学与其他学科结合 起来,如物理学、生物学等,从 更广泛的视角研究体育运动的规
律和技巧。
高科技应用
随着科技的发展,未来可以利用更 多的传感器和数据分析技术来研究 体育运动的细节和技巧,进一步提 高运动水平。
普及教育和推广
加强数学和体育的普及教育,让更 多的人了解和掌握数学在体育运动 中的应用,促进体育事业的发展。
数学与体育的紧密联系
运动规律描述
数学中的函数和方程可以 用来描述各种运动规律, 如篮球运动中的轨迹、速 度和加速度等。
数据分析和预测
通过数学方法对体育比赛 数据进行处理和分析,可 以预测比赛结果和球员表 现,为决策提供依据。
技术创新和发展
数学在体育技术创新和发 展中发挥了重要作用,如 运动装备的优化、训练方 法的改进等。
球员更好地实现个人和团队的目标。
04 篮球运动中的其他数学问 题
角度与弧度的应用
总结词
在篮球运动中,角度和弧度的概念非常重要,它们涉及到投篮、传球、防守等 各个环节。
详细描述
角度在篮球中主要用于描述投篮的角度、传球的角度等,弧度则用于描述球的 轨迹和旋转程度。通过数学模型和公式,可以计算出最佳的投篮角度和弧度, 从而提高投篮的准确性和效率。
05 结论
二次函数在篮球运动中的重要性
01
02
03
投篮轨迹分析
通过二次函数,可以描述 篮球的投篮轨迹,帮助球 员和教练更好地理解和预 测球的落点。
最佳出手点
利用二次函数的极值性质, 可以找到最佳的投篮出手 点,提高投篮命中率。
训练和比赛策略
基于二次函数的分析,可 以制定更加科学的训练和 比赛策略,提高球队的整 体水平。

二次函数的应用经典ppt课件

二次函数的应用经典ppt课件
轴两个交点坐标求。
“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。
二次函数的交点式
已知二次函数的图象与x轴交于(-2,0)和 (1,0)两点,又通过点(3,-5), 求这个二次函数的解析式。 当x为何值时,函数有最值?最值是多少?
“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。
专题一: 待定系数法确定二次函数
“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。
“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。
最值应用题——运动观点
在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发, 沿AB边向点B以1cm/秒的速度移动,同时,点Q从点B
的表达式的区别与联系,你发现了什么?
“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。

中考数学专题复习 第十三讲二次函数的应用(共69张PPT)

中考数学专题复习 第十三讲二次函数的应用(共69张PPT)

t01 2 3 4 5 6 7…
h08
1 4
1 8
2 0
2 0
1 8
1 4

下列结论:①足球距离地面的最大高度为20m;②足球
飞行路线的对称轴是直线t= 9 ;③足球被踢出9s时落
2
地;④足球被踢出1.5s时,距离地面的高度是11m.其中
正确结论的个数是 ( )
A.1
B.2
C.3
D.4
【解析】选B.由表格可知抛物线过点(0,0),(1,8), (2,14),设该抛物线的解析式为h=at2+bt,将点(1,8), (2,14)分别代入,得:a+b=8,4a+2b=14, 即 a4ab2b8解,1得4. :a=-1,b=9.
3
3
(2)由(1)知抛物线解析式为y=- 2 (x-1)2+ 8
3
3
(0≤x≤3).
当x=1时,y=8 .
3
所以抛物线水柱的最大高度为 8 米.
3
【答题关键指导】 利用二次函数解决实际问题的步骤 (1)根据题意,列出抛物线表达式,或建立恰当的坐标 系,设出抛物线的表达式,将实际问题转化为数学模型. (2)列出函数表达式后,要标明自变量的取值范围.
5
考点二 利用二次函数解决最优化问题 【示范题2】(2017·济宁中考)某商店经销一种学生 用双肩包,已知这种双肩包的成本价为每个30元.市场 调查发现,这种双肩包每天的销售量y(个)与销售单价 x(元)有如下关系:y=-x+60(30≤x≤60).设这种双肩 包每天的销售利润为w元.
(1)求w与x之间的函数关系式. (2)这种双肩包销售单价定为多少元时,每天的销售利 润最大?最大利润是多少元? (3)如பைடு நூலகம்物价部门规定这种双肩包的销售单价不高于 42元,该商店销售这种双肩包每天要获得200元的销售 利润,销售单价应定为多少元?

《二次函数的应用》数学教学PPT课件(5篇)

《二次函数的应用》数学教学PPT课件(5篇)

A(1.5,3.05),篮球在最大高度时的位置为点B(0,
3.5).以点C表示运动员投篮球的出手处.
设以y轴(直线x=0)为对称轴的抛物线为y=a(x-0)2+k,
即y=ax2+k,而点A,B在这条抛物线上,所以有
解得
2.25a k 3.05, k 3.5.
a 0.2, k 3.5.
(1) 请用长20米的篱笆设计一个矩形的菜园.
解:设AM的长为x(m),则BM的长为(2-x)m,以AM和MB为边的两块正方形面积之
和为y.依题意得y与x之间的函数解析式为
D
2m
C
y=x2+(2-x)2
=2x2-4x+4
=2(x2-2x)+4
=2(x2-2x+1-1)+4 =2(x-1)2+2
A Xm M
B
∵a=2>0∴当x=1时,y有最小值,最小值为2.
因为两条直线相交于点(2,3),
{X=2
所以原方程组的解是
交流思考
如何运用二次函数求实际问题中的最大值或最小值?
➢ 首先应当求出函数解析式和自变量的取值范围, ➢然后通过配方变形,或利用公式求它的最大值或最 小值。
注意:由此求得的最大值或最小值对应的
。 自变量的值必须在自变量的取值范围内
例2:如图,ABCD是一块边长为2 m的正方形铁板,在边AB上选取 一点M,分别以AM和MB为边截取两块相邻的正方形板料。当 AM的长为何值时,截取的板料面积最小?
何时窗户通过的光线最多
用长为6m的铝合金型材做一个形状如图26.2.5所示的 矩形窗框.窗框的高与宽各为多少时,它的透光面积 最大?最大透光面积是多少?(铝合金型材宽度不计)

13、二次函数的综合与应用PPT课件

13、二次函数的综合与应用PPT课件
(3)已知-6≤k≤6,若平移后抛物线的对称 轴与x轴交于点Ak,以AkPk为边向右作正方形 AkPkBkCk,判断正方形的顶点Bk是否恰好是其 他的“整数系列抛物线”上的点,若恰好 是,求出该整数k的值;若不存在,说明理 由.
中考新突破 · 数学(江西)
知识要点 · 归纳
三年中考 · 讲练
202X权威 · 预测
第一部分 教材同步复习
9
②依题意得,∠AkBkBk+1=∠AmBmBm+1=90°, 有两种情况:i)当 Rt△AkBkBk+1∽Rt△AmBmBm+1 时, AAmkBBkm=BBmkBBkm++11,121222mk--33=1212mk ,(12)2k-2m=(12)k-m, 所以,k=m(舍去), ii)当 Rt△AkBkBk+1∽Rt△Bm+1BmAm 时, BmA+kB1kBm=BBkBmkA+m1,12212k-m 3=12212m-k 3,(12)2k-3-m=(12)k-2m+3,∴k+m=6,
中考新突破 · 数学(江西)
知识要点 · 归纳
三年中考 · 讲练
202X权威 · 预测
第一部分 教材同步复习
7
【思路点拨】 本题考查二次函数综合题.(1)直接把点 A1 的坐标代入 y=ax2 求出 a 的值;(2)由题意可知:A1B1 是点 A1 的纵坐标:则 A1B1=2×12=2;A2B2 是点 A2 的纵坐标:则 A2B2=2×(12)2=12;…则 AnBn=2x2=2×[( 12)n-1]2=(12)2n-3;B1B2 =1-12=12,B2B3=12-(12)2=14=(12)2,…,BnBn+1=(12)n;(3)①当 AnBn=BnBn+1 时, Rt△AnBnBn+1 是等腰三角形; ②因为 Rt△AkBkBk+1 与 Rt△AmBmBm+1 是直角 三角形,所以分两种情况讨论:根据(2)的结论代入所得的对应边的比例式,计算求 出 k 与 m 的关系,并与 1≤k<m≤n(k,m 均为正整数)相结合,得出两种符合条件 的值,分别代入两相似直角三角形计算相似比.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


-2
-1
y
6 5 4 3 2 1

0
1
2020/11/24
2x
想到……
近似解 图象解
其它解法?
18
Байду номын сангаас
f x x 2 = g x =
抛出地的水平距离为 30m 时,达到最大高10m。 ⑴ 求球运动路线的函数解析式和自变量的取值范围;
⑵ 求球被抛出多远;
⑶ 当球的高度为5m时,球离抛出地面的水平距离
是多少m?
y
提出问题远比解
决问题更有价值
2020/11/24
15 10 5
10 20 30 40 50
x 17

已知一元二次方程X²+X-1= 0 .
A
2、探究活动:
已知有一张边长为10cm的正三角形纸板,若要从
中剪一个面积最大的矩形纸板,应怎样剪?最大面
积为多少?
B
C
A
2020/11/24
D
E
BK
FC
9
例:用长6m的铝合金条制成如图形状的矩形窗框,问 宽和高各是多少m时,窗户的透光面积最大?最大面积 是多少?
解:设窗框的宽为 x m, 则高为
6
例1:用8 m长的铝合金型材做一个形状如图所示的矩形窗框.
应做成长、宽各为多少时,才能使做成的窗框的透光面积最大? 最大透光面积是 多少?
解:设矩形窗框的面积 为y,由题意得,
y
83x
•x
3
2
x2
4x
(0
x
8) 3
2
3(x4)2 8
2 33
当窗框的宽x 4 m,窗框的长为7 m时,
3
4
2020/11/24
运用二次函数求实际问题中的最大值或 最小值解题的一般步骤是怎样的?
首先应当求出函数解析式和自变更量的取值范围。
然后通过配方变形,或利用公式求它的最大值或最小值。
注意:有此求得的最
大值或最小值对应的自 变量的值必须在自变量
的取值范围内。
2020/11/24
5
在日常生活和生产实际中,二次函数的性质有着许多应用。 例如:
窗框的透光面积最大。最大面积为8 m2, 7 3
变式:图中窗户边框的上半部分是由四个全等
扇形组成的半圆,下部分是矩形。如果制作 一个窗户边框的材料总长为6米,那么如何 设计这个窗户边框的尺寸, 使透光面积最大(结果精确到0.01m2)?
x
2020/11/24
8
1、.已知直角三角形的两直角边的和为2。求斜边长可能达到的最小 值,以及当斜边长达到最小值时两条直角边的长分别为多少?
例如在建造温室问题中,为了使温室种植的面积最大, 应怎样确定边长x的值?
y=(x-2)(56-x) =-x2+58x-112 =-(x-29)2+729
(2<x<56)
如果温室外围是一个矩形,周长为120m , 室内通道的尺寸如图,设一条边长为 x (cm), 种植面积为 y (m2)。
2020/11/24
m
因为 x>0 , 且 6-3x>0,所以 0<x<2.
x
设 透光面积为 y m2,则
x

x

, b=3, c=0

,

,x=1 属于0<x<2的范围内,
∴当x=1时,y最大值= 1.5
此时,窗框的高为
答:20当20/1窗1/2框4 的宽为1m,高为1.5m时,窗户的透光面积最大,为110.5m2.
15

一个球从地面上竖直向上弹起时的速度为10m/s,经 过t(s)时球的高度为h(m)。已知物体竖直上抛运动 中,h=v0t- ½ gt²(v0表示物体运动上弹开始时的速度, g表示重力系数,取g=10m/s²)。
问题?
2020/11/24
地面 16
课内练习
1.一球从地面抛出的运动路线呈抛物线,如图,当球离
练习1 如图,用长20的篱笆,
一面靠墙围成 一个长方形的园 子,怎样围才能使园子的面积最 x
x
大?最大面积是多少?
解:设矩形垂直于墙的边长为x,则另一边位(20-2 x), 因为 x>0,且 20-2 x>0,所以0< x<10
设矩形的面积为 y, 则 y= x(20-2 x)=-2 x2+ 20x (0< x<10 )
日均销售量(瓶) 480 440 400 360 320 280 240
①若记销售单价比每瓶进价多X元,日均毛利润 (毛利润=售价-进价-固定成本)为y元,求Y 关于 X的函数解析式和自变量的取值范围;
②若要使日均毛利润达到最大,销售单价应定为多
少元(精确到0.1元)?最大日均毛利润为多少
元?
2020/11/24
➢ ①设经过t时后,A、B两 船分别到达A/、B/(如图), A’ 则两船的距离S应为多少 ?
➢ ②如何求出S的最小值??
A
B’ B
2020/11/24
14
例:
某饮料经营部每天的固定成本为200元,其销 售的饮料每瓶进价为5元。销售单价与日均销售量 的关系如下:
销售单价(元) 6
7
8
9
10
11
12
2020/11/24
1
2020/11/24
2
精品资料
• 你怎么称呼老师?
• 如果老师最后没有总结一节课的重点的难点,你 是否会认为老师的教学方法需要改进?
• 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭
• “不怕太阳晒,也不怕那风雨狂,只怕先生骂我 笨,没有学问无颜见爹娘 ……”
• “太阳当空照,花儿对我笑,小鸟说早早早……”
12
复习思考
如何运用二次函数求实际问题中的最大值或最小值?
➢ 首先应当求出函数解析式和自变量的取值范 围,然后通过配方变形,或利用公式求它的最大值 或最小值。
➢注意:有此求得的最大值或最小值对应的
。 字变量的值必须在自变量的取值范围内
2020/11/24
13
例:
如图,B船位于A船正东26KM处,现在A,B 两船同时出发,A船以12KM/H的速度朝正北方向行 驶,B船以5KM/H的速度朝正西方向行驶,何时两船 相距最近?最近距离是多少?
即 y= -2 x2+20x = -2 (x2-10x) =-2(x-5)2+50
∵a=-2<0 , x=5 属于0<x<10 的范围内
∴当 x=5时, y最大值=50 此时另一边长为 20- 2 x=20-2×5=10
答:与墙垂直的边取5,另一边取10时,围成的
2020/11面/24积最大,最大面积为50
11
思考与推广:将60cm长的木条做成图(一)的装饰 品,为使它的面积最大,最大矩形的相邻两边长应 取多长? 一面靠地如图(二)时,最大矩形的相邻 两边长是多少?
图(一) 相邻两边各取 10cm, 最大面积100cm2
2020/11/24
图(二) 长边取30cm, 短边取7.5cm, 最大面积225cm2
相关文档
最新文档