数学建模实验5-微分方程求解
数学建模实验报告

湖南城市学院数学与计算科学学院《数学建模》实验报告专业:学号:姓名:指导教师:成绩:年月日目录实验一 初等模型........................................................................ 错误!未定义书签。
实验二 优化模型........................................................................ 错误!未定义书签。
实验三 微分方程模型................................................................ 错误!未定义书签。
实验四 稳定性模型.................................................................... 错误!未定义书签。
实验五 差分方程模型................................................................ 错误!未定义书签。
实验六 离散模型........................................................................ 错误!未定义书签。
实验七 数据处理........................................................................ 错误!未定义书签。
实验八 回归分析模型................................................................ 错误!未定义书签。
实验一 初等模型实验目的:掌握数学建模的基本步骤,会用初等数学知识分析和解决实际问题。
实验内容:A 、B 两题选作一题,撰写实验报告,包括问题分析、模型假设、模型构建、模型求解和结果分析与解释五个步骤。
微分方程

习题:蓝鲸的内禀增长率每年估计为5%, 习题:蓝鲸的内禀增长率每年估计为5%,估计蓝鲸 5% 的最大环境载为150,000 150,000条 的最大环境载为150,000条。蓝鲸最喜欢的一种食 物是磷虾。这些极小的虾状动物被大量地吞噬, 物是磷虾。这些极小的虾状动物被大量地吞噬, 为巨大的鲸鱼提供主要的食物来源。 为巨大的鲸鱼提供主要的食物来源。磷虾的最大 500吨 英亩。当缺少捕食者, 饱和种群为 500吨/英亩。当缺少捕食者,环境不 拥挤时,磷虾种群以每年25%的速率增长。 25%的速率增长 拥挤时,磷虾种群以每年25%的速率增长。磷虾 500吨 英亩可以提高蓝鲸2%的年增长率, 2%的年增长率 500吨/英亩可以提高蓝鲸2%的年增长率, 同时 150,000条蓝鲸将减少磷虾10%的年增长率 条蓝鲸将减少磷虾10%的年增长率。 150,000条蓝鲸将减少磷虾10%的年增长率。确定 鲸鱼与磷虾是否可以长期共存。 鲸鱼与磷虾是否可以长期共存。 组建一个蓝鲸和磷虾的动态模型。 (a) 组建一个蓝鲸和磷虾的动态模型。
画出这个模型的向量场。 (b) 画出这个模型的向量场。确定每个平衡态 是否稳定。 是否稳定。 模拟两个种群随时间的变化。 (c) 模拟两个种群随时间的变化。假设初始状 5,000条 磷虾750 英亩。 750吨 态为蓝鲸 5,000条、磷虾750吨/英亩。 (d) 假设捕捞使得鲸鱼只剩下它的平衡态的 5%。而磷虾保持平衡态的数量。 5%。而磷虾保持平衡态的数量。描述一旦 停止捕捞将发生什么情况。 停止捕捞将发生什么情况。鲸鱼恢复需要 多长时间?磷虾群体将发生什么变化? 多长时间?磷虾群体将发生什么变化? 检验(d)的结论对鲸鱼剩余量5%的灵敏度, (d)的结论对鲸鱼剩余量5%的灵敏度 (e) 检验(d)的结论对鲸鱼剩余量5%的灵敏度, 给出鲸鱼种群恢复时间对它所受伤害程度 的依赖关系。 的依赖关系。
数学建模作业、微分方程实验、北京工业大学

2微分方程实验1、微分方程稳定性分析绘出下列自治系统相应的轨线,并标出随 t 增加的运动方向,确定平■衡点, 并按稳定的、渐近稳定的、或不稳定的进行分类:解:(1)由 f (x ) =x=0, f (y ) =y=0;可得平衡点为(0,0),___ 1 0系数矩阵A,求得特征值入1=1,入2=1;0 1p=-(入1+入2)=-2<0 , q=入1入2=1>0;对照稳定性的情况表,可知平■衡点(0, 0) 是不稳定的。
图形如下:(2)如上题可求得平衡点为(0,0 ),特征值入1=-1,入2=2;p=-(入1+入2)=-1<0 , q-入1入2=-2<0;对照稳定性的情况表,可知平■衡点(0, 0) 是不稳定的。
其图形如下:dx⑴dt dtx, y;dxdtdydt dx x, ⑶尸 2y ;晋 dx y, (4) ? 2x;也 dtx+1, 2y.(3) 如上题可求得平■衡点为(0,0 ),特征值入1=0 + 1.4142i,入2=0 -1.4142i; p=-(入1+入2)= 0, q-入1入2=1.4142>0;对照稳定性的情况表,可知平■衡点(0, 0)是不稳定的。
其图形如下:(4) 如上题可求得平衡点为(1,0 ),特征值入1=-1,入2=-2;p=-(入1+入2)= 3>0, q=入1入2=2>0;对照稳定性的情况表,可知平■衡点(1, 0) 是稳定的。
其图形如下:2、种群增长模型一个片子上的一群病菌趋向丁繁殖成一个圆菌落.设病菌的数目为N,单位成员的增长率为r1,则由Malthus生长律有竺r1 N,但是,处丁周界表面的dt那些病菌由丁寒冷而受到损伤,它们死亡的数量与N2成比例,其比例系数为r2, 求N满足的微分方程.不用求解,图示其解族.方程是否有平衡解,如果有,是否为稳定的?解:由题意很容易列出N满足的微分方程:坐r1N r2N; f(N)dt令f(N)=O,可求得方程的两个平■衡点N1=0,N2=「22/r i21 1d2N 1 5 52 (r1 r2N 2) (r1N r2N 2)dt 2进而求得A d2N 令r dt2 2 0可求得N=r2 /4r〔则N=N1 N=N2 N=r22/4r i2可以把第一象限划为三部分,且从下到上三部分中分0,冬dt2.2 2 c dN cdN c dN cdN 0, ;—0, —r 0; —0, ―rdt dt dt dt则可以画出N (t) 的图形,即微分方程的解族,如下图所示:由图形也可以看出,对丁方程的两个平■衡点,其中N1=0是不稳定的;N2=^2 /「;是稳定的o3、有限资源竞争模型1926年Volterra 提出了两个物种为共同的、有限的食物来源而竞争的模型当[b MX h 2X 2)]x dt dX2 电 2(h i X i h 2X 2)]X 2dt假设也 坦,称垣为物种i 对食物不足的敏感度,(1) 证明当x1(t0)>0时,物种2最终要灭亡; (2) 用图形分析方法来说明物种 2最终要灭亡.解:(1)由上述方程组 f (x1) =[b 1〔S' h 2x 2)]x 1=0,f (x2)=电2 (h 1X 1h 2X 2)]X 2=0,可得方程的平■衡点为R (0,0), P 1 (E,0),P 2 (0, M).2 h 2对平衡点P 。
数学建模实验报告

《数学建模实验》实验报告学院名称数学与信息学院专业名称提交日期课程教师实验一:数学规划模型AMPL求解实验内容1. 用AMPL求解下列问题并作灵敏度分析:一奶制品加工厂用牛奶生产A1和A2两种奶制品,1桶牛奶可以在甲类设备上用12小时加工成3公斤A1或者在乙类设备上用8小时加工成4公斤A2,且都能全部售出,且每公斤A1获利24元,每公斤A2获利16元。
先加工厂每天能得到50桶牛奶的供应,每天工人总的劳动时间为480小时,并且甲类设备每天至多加工100公斤A1,乙类设备的加工能力没有限制,试为该厂制定一个计划,使每天的获利最大。
(1)建立模型文件:milk.modset Products ordered;param Time{i in Products }>0;param Quan{i in Products}>0;param Profit{i in Products}>0;var x{i in Products}>=0;maximize profit: sum{i in Products} Profit [i]* Quan [i]*x[i];subject to raw: sum{i in Products}x[i] <=50;subject to time:sum{i in Products}Time[i]*x[i]<=480;subject to capacity: Quan[first(Products)]*x[first(Products)]<=100;(2)建立数据文件milk.datset Products:=A1 A2;param Time:=A1 12 A2 8;param Quan:=A1 3 A2 4;param Profit:=A1 24 A2 16;(3) 建立批处理文件milk.runmodel milk.mod;data milk.dat;option solver cplex;solve;display x;(4)运行运行结果:CPLEX 11.0.0: optimal solution; objective 33602 dual simplex iterations (1 in phase I)x [*] :=A1 20A2 30;(5)灵敏度分析:model milk.mod;data milk.dat;option solver cplex;option cplex_options 'sensitivity';solve;display x;display x.rc, x.down, x.up;display raw, time, capacity;display raw.down, raw.up,raw.current, raw.slack;得到结果:【灵敏度分析】: x.rc x.down x.up:=A1 -3.55271e-15 64 96A2 0 48 72;raw = 48time = 2capacity = 0raw.down = 43.3333raw.up = 60raw.current = 50raw.slack = 0某公司有6个建筑工地,位置坐标为(a i, b i)(单位:公里),水泥日用量d i (单位:吨)1) 现有j j j吨,制定每天的供应计划,即从A, B两料场分别向各工地运送多少吨水泥,使总的吨公里数最小。
微分方程模型的建立与求解

微分方程模型的建立与求解微分方程是自然界中许多现象的数学描述,通过建立微分方程模型可以更好地理解和预测各种现象。
本文将介绍微分方程模型的建立与求解方法。
一、微分方程模型的建立微分方程通常用来描述系统内部的变化规律,要建立微分方程模型,首先需要根据具体问题分析系统的特点,确定影响系统变化的因素,并建立相关的数学表达式。
以一个简单的弹簧振子系统为例,假设弹簧的位移为x(t),弹簧的弹性系数为k,质量为m,外力为f(t),则可以建立微分方程模型:$$ m\\frac{{d^2x}}{{dt^2}} + kx = f(t) $$二、微分方程模型的求解1. 解析解法对于一些简单的微分方程,可以通过解析的方法求解。
例如,对于一阶线性微分方程:$$ \\frac{{dy}}{{dx}} + P(x)y = Q(x) $$可以通过积分因子的方法求解。
2. 数值解法对于复杂的微分方程或无法求得解析解的情况,可以借助数值方法进行求解。
常用的数值解法包括欧拉方法、龙格-库塔法等,通过逐步迭代逼近真实解。
3. 计算机模拟借助计算机编程,可以通过数值方法对微分方程进行求解,这在实际工程和科学研究中非常常见。
利用计算机程序,可以模拟出系统的运行状态,观察系统的响应特性。
三、实例分析以简单的振动系统为例,通过建立微分方程模型并利用数值方法进行求解,可以分析系统的振动特性。
通过调节参数值,可以观察到系统振动的变化规律,为系统设计和控制提供重要参考。
结论微分方程模型的建立与求解是数学建模中的重要一环,通过适当的模型建立和求解方法,可以更好地了解和预测系统的行为。
在实际应用中,需要综合运用解析方法、数值方法和计算机模拟,以全面分析和解决问题。
以上是关于微分方程模型的建立与求解的介绍,希望对读者有所帮助。
(完整word版)数学建模实训报告

目录实训项目一线性规划问题及lingo软件求解 (1)实训项目二lingo中集合的应用…………………………………………。
7实训项目三lingo中派生集合的应用 (9)实训项目四微分方程的数值解法一 (13)实训项目五微分方程的数值解法二……………………………………。
.15实训项目六数据点的插值与拟合 (17)综合实训作品 (18)每次实训课必须带上此本子,以便教师检查预习情况和记录实验原始数据。
实验时必须遵守实验规则.用正确的理论指导实践袁必须人人亲自动手实验,但反对盲目乱动,更不能无故损坏仪器设备。
这是一份重要的不可多得的自我学习资料袁它将记录着你在大学生涯中的学习和学习成果.请你保留下来,若干年后再翻阅仍将感到十分新鲜,记忆犹新.它将推动你在人生奋斗的道路上永往直前!项目一:线性规划问题及lingo软件求解一、实训课程名称数学建模实训二、实训项目名称线性规划问题及lingo软件求解三、实验目的和要求了解线性规划的基本知识,熟悉应用LINGO解决线性规划问题的一般方法四:实验内容和原理内容一:某医院负责人每日至少需要下列数量的护士班次时间最少护士数1 6:00—10:00 602 10:00—14:00 703 14:00—18:00 604 18:00—22:00 505 22:00—02:00 206 02:00—06:00 30每班的护士在值班的开始时向病房报道,连续工作8个小时,医院领导为满足每班所需要的护士数,最少需要多少护士。
内容二:内容三五:主要仪器及耗材计算机与Windows2000/XP系统;LINGO软件六:操作办法与实训步骤内容一:考虑班次的时间安排,是从6时开始第一班,而第一班最少需要护士数为60,故x1>=60 ,又每班护士连续工作八个小时,以此类推,可以看出每个班次的护士可以为下一个班次工作四小时,据此可以建立如下线性规划模型:程序编程过程:min=x1+x2+x3+x4+x5+x6;x1〉=60;x1+x2〉=70;x2+x3>=60;x3+x4〉=50;x4+x5〉=20;x5+x6〉=30;编程结果:Global optimal solution found.Objective value:150.0000 Infeasibilities: 0。
微分方程求解

求微分方程的解一、 问题背景实际应用问题通过数学建模所归纳而得到的方程,绝大多数都是微分方程,真正能得到代数方程的机会很少.另一方面,能够求解的微分方程也是十分有限的,特别是高阶方程和偏微分方程(组).这就要求我们必须研究微分方程(组)的解法,既要研究微分方程(组)的解析解法(精确解),更要研究微分方程(组)的数值解法(近似解).对微分方程(组)的解析解法(精确解),Matlab 有专门的函数可以用. 这里主要研究微分方程(组)的数值解法(近似解),重点介绍 Euler 折线法.二、相关函数(命令)及简介1.dsolve('equ1','equ2',…):Matlab 求微分方程的解析解.equ1、equ2、…为方程(或条件).写方程(或条件)时用 Dy 表示y 关于自变量的一阶导数,用用 D2y 表示 y 关于自变量的二阶导数,依此类推.2.simplify(s):对表达式 s 使用 maple 的化简规则进行化简. 例如: syms xsimplify(sin(x)^2 + cos(x)^2) ans=13.[r,how]=simple(s):由于 Matlab 提供了多种化简规则,simple 命令就是对表达式 s 用各种规则进行化简,然后用 r 返回最简形式,how 返回形成这种形式所用的规则.例如: syms x[r,how]=simple(cos(x)^2-sin(x)^2) r = cos(2*x) how = combine4.[T,Y] = solver(odefun,tspan,y 0) 求微分方程的数值解. 说明:(1) 其中的 solver 为命令 ode45、ode23、ode113、ode15s 、ode23s 、ode23t 、ode23tb 之一.(2) odefun 是显式常微分方程:⎪⎩⎪⎨⎧==00)(),(y t y y t f dt dy(3) 在积分区间 tspan =],[0f t t 上,从0t 到f t ,用初始条件0y 求解.(4) 要获得问题在其他指定时间点 ,210,,t t t 上的解,则令 tspan = ],,,[,210f t t t t (要求是单调的).(5) 因为没有一种算法可以有效地解决所有的 ODE 问题,为此,Matlab 提供了多种求解器 Solver ,对于不同的ODE 问题,采用不同的Solver .(6) 要特别的是:ode23、ode45 是极其常用的用来求解非刚性的标准形式的一阶常微分方程(组)的初值问题的解的 Matlab 的常用程序,其中:ode23 采用龙格-库塔2 阶算法,用3 阶公式作误差估计来调节步长,具有低等的精度.ode45 则采用龙格-库塔4 阶算法,用5 阶公式作误差估计来调节步长,具有中等的精度.5.ezplot(x,y,[tmin,tmax]):符号函数的作图命令.x,y 为关于参数t 的符号函数,[tmin,tmax] 为 t 的取值范围.6.inline():建立一个内联函数.格式:inline('expr', 'var1', 'var2',…) ,注意括号里的表达式要加引号.例:Q = dblquad(inline('y*sin(x)'), pi, 2*pi, 0, pi)三、实验内容1. 几个可以直接用 Matlab 求微分方程精确解的例子:例1:求解微分方程22x xe xy dxdy-=+,并加以验证.求解本问题的Matlab 程序为:syms x y %line1 y=dsolve('Dy+2*x*y=x*exp(-x^2)','x') %line2 diff(y,x)+2*x*y-x*exp(-x^2) %line3 simplify(diff(y,x)+2*x*y-x*exp(-x^2)) %line4说明:(1) 行line1是用命令定义x,y 为符号变量.这里可以不写,但为确保正确性,建议写上;(2) 行line2是用命令求出的微分方程的解:1/2*exp(-x^2)*x^2+exp(-x^2)*C1(3) 行line3使用所求得的解.这里是将解代入原微分方程,结果应该为0,但这里给出:-x^3*exp(-x^2)-2*x*exp(-x^2)*C1+2*x*(1/2*exp(-x^2)*x^2+exp(-x^2)*C1)(4) 行line4 用 simplify() 函数对上式进行化简,结果为 0, 表明)(x y y =的确是微分方程的解.例2:求微分方程0'=-+x e y xy 在初始条件e y 2)1(=下的特解,并画出解函数的图形.求解本问题的 Matlab 程序为: syms x yy=dsolve('x*Dy+y-exp(x)=0','y(1)=2*exp(1)','x') ezplot(y)微分方程的特解为:y=1/x*exp(x)+1/x* exp (1) (Matlab 格式),即xe e y x+=,解函数的图形如图 1:图1例3:求微分方程组⎪⎪⎩⎪⎪⎨⎧=--=++035y x dtdy e y x dtdx t在初始条件0|,1|00====t t y x 下的特解,并画出解函数的图形.求解本问题的 Matlab 程序为: syms x y t[x,y]=dsolve('Dx+5*x+y=exp(t)','Dy-x-3*y=0','x(0)=1','y(0)=0','t') simple(x); simple(y);ezplot(x,y,[0,1.3]);axis auto微分方程的特解(式子特别长)以及解函数的图形均略. 2. 用ode23、ode45等求解非刚性的标准形式的一阶常微分方程(组)的初值问题的数值解(近似解).例4:求解微分方程初值问题⎪⎩⎪⎨⎧=++-=1)0(2222y xx y dx dy 的数值解,求解范围为区间[0, 0.5].fun=inline('-2*y+2*x^2+2*x','x','y'); [x,y]=ode23(fun,[0,0.5],1); x'; y';plot(x,y,'o-') >> x' ans =0.0000 0.0400 0.0900 0.1400 0.1900 0.2400 0.2900 0.3400 0.3900 0.4400 0.4900 0.5000 >> y' ans =1.0000 0.9247 0.8434 0.7754 0.7199 0.6764 0.6440 0.6222 0.6105 0.6084 0.6154 0.6179 图形结果为图 2.图2例 5:求解描述振荡器的经典的 Ver der Pol 微分方程.7,0)0(',1)0(,0)1(222====+--μμy y y dt dy y dt y d分析:令,,121dt dx x y x ==则.)1(,1221221x x x dtdx x dt dx --==μ 先编写函数文件verderpol.m :function xprime = verderpol(t,x) global mu;xprime = [x(2);mu*(1-x(1)^2)*x(2)-x(1)]; 再编写命令文件vdp1.m : global mu; mu = 7; y0=[1;0][t,x] = ode45('verderpol',[0,40],y0); x1=x(:,1);x2=x(:,2); plot(t,x1)图形结果为图3.图33. 用 Euler 折线法求解前面讲到过,能够求解的微分方程也是十分有限的.下面介绍用 Euler 折线法求微分方程的数值解(近似解)的方法.Euler 折线法求解的基本思想是将微分方程初值问题⎪⎩⎪⎨⎧==00)(),,(y x y y x f dxdy化成一个代数方程,即差分方程,主要步骤是用差商h x y h x y )()(-+替代微商dxdy,于是:⎪⎩⎪⎨⎧==-+)()),(,()()(00x y y x y x f h x y h x y k k k k 记)(,1k k k k x y y h x x =+=+,从而)(1h x y y k k +=+,则有1,,2,1,0).,(,),(1100-=⎪⎩⎪⎨⎧+=+==++n k y x hf y y h x x x y y k k k k k k 例 6:用 Euler 折线法求解微分方程初值问题⎪⎩⎪⎨⎧=+=1)0(,22y y x y dx dy 的数值解(步长h 取0.4),求解范围为区间[0,2].解:本问题的差分方程为1,,2,1,0).2),( ),(,,4.0,1,021100-=⎪⎪⎪⎩⎪⎪⎪⎨⎧+=+=+====++n k y x y y x f y x hf y y h x x h y x k k k k k k (其中: 相应的Matlab 程序见附录 1. 数据结果为:0 1.0000 0.4000 1.4000 0.8000 2.1233 1.2000 3.1145 1.6000 4.4593 2.0000 6.3074图形结果见图4:图4特别说明:本问题可进一步利用四阶 Runge-Kutta 法求解,读者可将两个结果在一个图中显示,并和精确值比较,看看哪个更“精确”?(相应的 Matlab 程序参见附录 2).四、自己动手1. 求微分方程0sin 2')1(2=-+-x xy y x 的通解.2. 求微分方程x e y y y x sin 5'2''=+-的通解.3. 求微分方程组⎪⎪⎩⎪⎪⎨⎧=-+=++00y x dtdy y x dtdx在初始条件0|,1|00====t t y x 下的特解,并画出解函数()y f x =的图形. 4. 分别用 ode23、ode45 求上述第 3 题中的微分方程初值问题的数值解(近似解),求解区间为[0,2]t ∈.利用画图来比较两种求解器之间的差异.5. 用 Euler 折线法求解微分方程初值问题⎪⎩⎪⎨⎧=-=1)0(,12'32y y x y y 的数值解(步长h 取0.1),求解范围为区间[0,2].6. 用四阶 Runge-Kutta 法求解微分方程初值问题⎩⎨⎧=-=1)0(,cos 'y x e y y x 的数值解(步长h 取0.1),求解范围为区间[0,3].四阶 Runge-Kutta 法的迭代公式为(Euler 折线法实为一阶 Runge-Kutta 法):1,,2,1,0),()2,2()2,2(),()22(6,),(342312143211100-=⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧++=++=++==++++=+==++n k hL y h x f L L h y h x f L L h y h x f L y x f L L L L L hy y h x x x y y k k k k k k k k k k k k 相应的 Matlab 程序参见附录 2.试用该方法求解第5题中的初值问题. 7. 用 ode45 方法求上述第 6 题的常微分方程初值问题的数值解(近似解),从而利用画图来比较两者间的差异.五、附录附录1:(fulu1.m)clearf=sym('y+2*x/y^2');a=0;b=2;h=0.4;n=(b-a)/h+1;x=0;y=1;szj=[x,y];for i=1:n-1y=y+h*subs(f,{'x','y'},{x,y});x=x+h;szj=[szj;x,y];endszjplot(szj(:,1),szj(:,2))附录2:(fulu2.m)clearf=sym('y-exp(x)*cos(x)');a=0;b=3;h=0.1;n=(b-a)/h+1;x=0;y=1;szj=[x,y];for i=1:n-1l1=subs(f,{'x','y'},{x,y});l2=subs(f,{'x','y'},{x+h/2,y+l1*h/2});l3=subs(f,{'x','y'},{x+h/2,y+l2*h/2});l4=subs(f,{'x','y'},{x+h,y+l3*h});y=y+h*(l1+2*l2+2*l3+l4)/6;x=x+h;szj=[szj;x,y];endszjplot(szj(:,1),szj(:,2))。
微分方程建模方法

微分方程建模方法微分方程建模是数学建模中的一个重要分支。
它通过建立描述现象的微分方程模型,利用数学工具和方法来研究和解决与该现象相关的问题。
微分方程建模的步骤包括确定问题、建立模型、求解模型和验证模型。
本文将详细介绍微分方程建模的方法。
经验模型法是一种基于已有经验和实验数据的建模方法。
它根据实验数据的分析和总结,通过适当的函数拟合和参数调整,建立与实际问题相吻合的微分方程模型。
经验模型法的优点是简单直观,适用于较为简单和复杂程度较低的问题。
例如,考虑一个物体在空气中的自由下落问题。
经验发现,物体受到的空气阻力与速度成正比,可以建立微分方程模型:$$\frac{{d^2x}}{{dt^2}}=g-\frac{{kv^2}}{{m}}$$其中,$x$为物体的位移,$t$为时间,$m$为物体的质量,$v$为物体的速度,$k$为与物体形状和空气性质有关的常数,$g$为重力加速度。
这个模型可以进一步求解,得到物体的速度和位移随时间的变化规律。
理论模型法是一种基于物理规律和数学原理的建模方法。
它通过对问题的深入理解,运用物理学原理、工程学原理和其他学科的知识,建立与实际问题相对应的微分方程模型。
理论模型法的优点是准确性高,适用于复杂和精密度较高的问题。
例如,考虑一个物体在弹簧中的振动问题。
根据胡克定律,在弹簧恢复力和物体质量、加速度之间建立微分方程模型:$$m\frac{{d^2x}}{{dt^2}}=-kx$$其中,$x$为物体的位移,$t$为时间,$m$为物体的质量,$k$为弹簧的劲度系数。
这个模型可以求解得到物体的振动规律。
解析解法是指通过数学方法求解微分方程模型的解。
对于一些简单和常见的微分方程,可以通过积分、分离变量、变量替换等方法求得其解析解。
解析解法的优点是求解结果准确、精确,可以提供深入理解问题的信息。
但对于复杂和非线性的微分方程,往往难以求得解析解,需要借助数值方法。
数值解法是指通过数学计算机计算求解微分方程模型的解。
微分方程建模(溶液浓度)

Vanmeegren在狱中作的画实在是质量太差,所 找理由都不能使怀疑者满意。直到20年后,1967
年,卡内基梅隆大学的科学家们用微分方程模型
解决了这一问题。
原理
著名物理学家卢瑟夫(Rutherford)指出:
物质的放射性正比于现存物质的原子数。
设 t 时刻的原子数为N (t ) ,则有
dN dt N
测定结果与分析
画名 Emmaus的信徒们 洗足 钋210衰变原子数 镭226衰变原子数
8.5 12.6
0.82 0.26
读乐谱的妇人
弹曼陀林的妇人 做花边的人 欢笑的女孩
10.3
8.2 1.5 5.2
0.3
0.17 1.4 6.0
若第一幅画是真品, t t 0 300
y 0 y (t )e
衰减(放射性/污染物的净化) “边际的”(经济学)
应注意题目的 这些词: 改变/变化/增 加/减少
如何建立微分方程?
根据规律列方程
利用数学、力学、物理、化学等学科中的定理或经过实验检验
的规律等来建立微分方程模型。
微元分析法
利用已知的定理与规律寻找微元之间的关系式,与第一种方法
不同的是对微元而不是直接对函数及其导数应用规律。
d x C 1V 1 d t C 2V 2 d t
dx C 1V 1 C 2V 2 dt x (0) x0
该模型还适用于 讨论气体的混合
以上两个简单例子的启示:
关键是建立一个 yˊ 、y、t 的方程.
可以表示为导数的最常见的量:
速率
增长(生物学/ 人口问题)
从处于放射性平衡状态的矿中提取出来时, Pb210 的绝大多数来源被切断,因而要迅速蜕变,直到 Pb210与少量的镭再度处于放射平衡,这时Pb210 的蜕变正好等于镭蜕变所补足的为止。
05 第五节 数学建模—微分方程的应用举例

第十节 数学建模—微分方程的应用举例微分方程在几何、力学和物理等实际问题中具有广泛的应用,本节我们将集中讨论微分方程在实际应用中的几个实例. 读者可从中感受到应用数学建模的理论和方法解决实际问题的魅力.分布图示衰变问题★ 例1 ★ 例2 ★ 逻辑斯谛方程★ 环境污染的数学模型 ★ 例3 ★ 自由落体问题内容要点一、 衰变问题二、 逻辑斯谛方程三、 环境污染的数学模型 四、 自由落体问题例题选讲衰变问题例1(E01)镭、铀等放射性元素因不断放射出各种射线而逐渐减少其质量,这种现象称为放射性物质的衰变. 根据实验得知,衰变速度与现存物质的质量成正比,求放射性元素在时刻t 的质量.解 用x 表示该放射性物质在时刻t 的质量,则dtdx表示x 在时刻t 的衰变速度,依题意得.kx dtdx-= (1) 它就是放射性元素衰变的数学模型,其中0>k 是比例常数,称为衰变常数,因元素的不同而异.方程右端的负号表示当时间t 增加时,质量x 减少.易求出方程(1)的通解为.ktCex -=若已知当0t t =时,,0x x =代入通解kt Ce x -=中可得,00kt ex C =则可得到特解,)(00t t k e x x --=它反映了某种放射性元素衰变的规律.注:物理学中,我们称放射性物质从最初的质量到衰变为该质量自身的一半所花费的时间为半衰期,不同物质的半衰期差别极大.如铀的普通同位素)(238U 的半衰期约为50亿年;通常的镭)(226Ra 的半衰期为1600年,而镭的另一同位素Ra 230的半衰期仅为1小时.半衰期是上述放射性物质的特征,然而半衰期却不依赖于该物质的初始质量,一克Ra 226衰变成半克所需要的时间与一吨Ra 226衰变成半吨所需要的时间同样都是1600年,正是这种事实才构成了确定考古发现日期时使用的著名的碳-14测验的基础.例2 (E02) 碳14(C 14)是放射性物质,随时间而衰减,碳12是非放射性物质.活性人体因吸纳食物和空气,恰好补偿碳14衰减损失量而保持碳14和碳12含量不变,因而所含碳14与碳12之比为常数.已测知一古墓中遗体所含碳14的数量为原有碳14数量的80%,试求遗体的死亡年代.解 放射性物质的衰减速度与该物质的含量成比例,它符合指数函数的变化规律.设遗体当初死亡时C 14的含量为0p ,t 时的含量为),(t f p =于是,C 14含量的函数模型为,)(0kt e p t f p ==其中),0(0f p =k 是一常数.常数k 可以这样确定:由化学知识可知,C 14的半衰期为5730年,即C 14经过5730年后其含量衰减一半,故有,2573000k e p p = 即.215730k e =两边取自然对数,得,69315.021ln5730-≈=k 即.0001209.0-≈k 于是,C 14含量的函数模型为.)(0001209.00t e p t f p -==由题设条件可知,遗体中C 14的含量为原含量0p 的80%,故有 ,8.00001209.000t e p p -= 即.8.00001209.0te -=两边取自然对数,得,0001209.08.0ln t -= 于是 .184********.022314.00001209.08.0ln ≈--≈-=t由此可知,遗体大约已死亡1846年.二、 逻辑斯谛方程:逻辑斯谛方程是一种在许多领域有着广泛应用的数学模型, 下面我们借助树的增长来建立该模型.一棵小树刚栽下去的时候长得比较慢, 渐渐地, 小树长高了而且长得越来越快, 几年不见, 绿荫底下已经可乘凉了; 但长到某一高度后, 它的生长速度趋于稳定, 然后再慢慢降下来. 这一现象很具有普遍性. 现在我们来建立这种现象的数学模型.如果假设树的生长速度与它目前的高度成正比, 则显然不符合两头尤其是后期的生长情形, 因为树不可能越长越快; 但如果假设树的生长速度正比于最大高度与目前高度的差, 则又明显不符合中间一段的生长过程. 折衷一下, 我们假定它的生长速度既与目前的高度,又与最大高度与目前高度之差成正比.设树生长的最大高度为H (m), 在t (年)时的高度为h (t ), 则有)]()[()(t h H t kh dtt dh -= (8.2) 其中0>k 是比例常数. 这个方程为Logistic 方程. 它是可分离变量的一阶常数微分方程.下面来求解方程(8.2). 分离变量得,)(kdt h H h dh=-两边积分,)(⎰⎰=-kdt h H h dh得 ,)]ln([ln 11C kt h H h H+=-- 或,21k H t H C k H t e C e hH h==-+ 故所求通解为,11)(22kHtkHt kHt CeH e C He C t h -+=+= 其中的⎪⎪⎭⎫ ⎝⎛>==-0112HC e C C C 是正常数. 函数)(t h 的图象称为Logistic 曲线. 图8-8-1所示的是一条典型的Logistic 曲线, 由于它的形状, 一般也称为S 曲线. 可以看到, 它基本符合我们描述的树的生长情形. 另外还可以算得.)(lim H t h t =+∞→这说明树的生长有一个限制, 因此也称为限制性增长模式.注: Logistic 的中文音译名是“逻辑斯谛”. “逻辑”在字典中的解释是“客观事物发展的规律性”, 因此许多现象本质上都符合这种S 规律. 除了生物种群的繁殖外, 还有信息的传播、新技术的推广、传染病的扩散以及某些商品的销售等. 例如流感的传染、在任其自然发展(例如初期未引起人们注意)的阶段, 可以设想它的速度既正比于得病的人数又正比于未传染到的人数. 开始时患病的人不多因而传染速度较慢; 但随着健康人与患者接触, 受传染的人越来越多, 传染的速度也越来越快; 最后, 传染速度自然而然地渐渐降低, 因为已经没有多少人可被传染了.下面举两个例子说明逻辑斯谛的应用.人口阻滞增长模型 1837年, 荷兰生物学家V erhulst 提出一个人口模型00)(),(y t y by k y dtdy=-= (8.3)其中b k ,的称为生命系数.我们不详细讨论这个模型, 只提应用它预测世界人口数的两个有趣的结果.有生态学家估计k 的自然值是0.029. 利用本世纪60年代世界人口年平均增长率为2%以及1965年人口总数33.4亿这两个数据, 计算得,2=b 从而估计得:(1)世界人口总数将趋于极限107.6亿. (2)到2000年时世界人口总数为59.6亿.后一个数字很接近2000年时的实际人口数, 世界人口在1999年刚进入60亿. 新产品的推广模型 设有某种新产品要推向市场, t 时刻的销量为),(t x 由于产品性能良好, 每个产品都是一个宣传品, 因此, t 时刻产品销售的增长率,dtdx与)(t x 成正比, 同时, 考虑到产品销售存在一定的市场容量N , 统计表明dtdx与尚未购买该产品的潜在顾客的数量)(t x N -也成正比, 于是有)(x N kx dtdx-=(8.4)其中k 为比例系数. 分离变量积分, 可以解得kNtCeNt x -+=1)( (8.5)由,)1()1(,)1(2322222kNt kNt kNt kNt kNt Ce Ce e N Ck dt x d Ce ke CN dt dx -----+-=+= 当N t x <)(*时, 则有,0>dt dx 即销量)(t x 单调增加. 当2)(*N t x =时, ;022=dt x d 当2)(*N t x >时, ;022<dtxd 当2)(*N t x <时, 即当销量达到最大需求量N 的一半时, 产品最为畅销, 当销量不足N 一半时, 销售速度不断增大, 当销量超过一半时, 销售速度逐渐减少.国内外许多经济学家调查表明. 许多产品的销售曲线与公式(8.5)的曲线(逻辑斯谛曲线)十分接近. 根据对曲线性状的分析, 许多分析家认为, 在新产品推出的初期, 应采用小批量生产并加强广告宣传, 而在产品用户达到20%到80%期间, 产品应大批量生产; 在产品用户超过80%时, 应适时转产, 可以达到最大的经济效益.三、环境污染的数学模型随着人类文明的发展,环境污染问题已越来越成为公众所关注的焦点.我们将建立一个模型,来分析一个已受到污染的水域,在不再增加污染的情况下,需要经过多长的时间才能将其污染程度减少到一定标准之内.记()t Q Q =为体积为V 的某一湖泊在时刻t 所含的污染物的总量.假设洁净的水以不变的流速r 流入湖中,并且湖水也以同样的流速流出湖外,同时假设污染物是均匀地分布在整个湖中,并且流入湖中洁净的水立刻就与原来湖中的水相混合.注意到Q 的变化率= — 污染物的流出速度,等式右端的负号表示Q 是减少的,而在时刻t ,污染物的浓度为VQ.于是 污染物的流出速度=污水外流的速度⨯浓度=VQr ⋅.这样,得微分方程 Q Vrdt dQ -= 又设当0=t 时,()00Q Q =,解得该问题的特解为Vrte Q Q -=0.污染量Q 随时间t 的变化如下图t Q 0Q 0(污染量)Q =Q 0e -rt/V例3(E03) 若有一已受污染的湖泊,其体积为6109.4⨯m 3,洁净的水以每年3310158m⨯的流速流入湖中,污水也以同样的流速流出.问经过多长时间,可使湖中的污染物排出90%?若要排出99%,又需要多长时间?解:因为03225.0109.41015833≈⨯⨯=V r t e Q Q 03225.00-=所以,当有90%的污染物被排出时,还有10%的污染物留在湖中, 即01.0Q Q =,代入上式,得 te Q Q 03225.0001.0-=解得 ()7203225.01.0ln ≈-=t (年) 当有99%的污染物被排出时,剩余的001.0Q Q =,于是t e Q Q 03225.00001.0-=,解得()14303225.001.0ln ≈-=t (年).自由落体问题例4(E04)一个离地面很高的物体, 受地球引力的作用由静止开始落向地面. 求它落到地面时的速度和所需的时间(不计空气阻力).解 取连结地球中心与该物体的直线为y 轴,其方向铅直向上,取地球的中心为原点O (如图).设地球的半径为,R 物体的质量为,m 物体开始下落时与地球中心的距离为),(R l l >在时刻t 物体所在位置为),(t y y =于是速度为.)(dtdyt v =由万有引力定律得微分方程 ,222y kmM dt y d m -= 即 ,222y kMdt y d -=其中M 为地球的质量,k 为引力常数.因为当R y =时,g dtyd -=22 (取负号是因此时加速度的方向与y 轴的方向相反).,,22gR kM RkM g ==代入得到,2222ygR dt y d -=初始条件为 ,0l y t ==.00='=t y 先求物体到达地面时的速度.由,v dtdy=得 ,22dydvv dt dy dy dv dt dv dty d =⋅== 代入并分离变量得 dy ygR vdv 22-= .2122C y gR v += 把初始条件代入上式,得 ,221gR C -=于是⎪⎪⎭⎫⎝⎛-=l y gR v 11222 .112⎪⎪⎭⎫ ⎝⎛--=l y g R v 式中令,R y =就得到物体到达地面时得速度为.)(2lR l gR v --= 再求物体落到地面所需的时间.,112⎪⎪⎭⎫ ⎝⎛--==l y g R v dt dy,0l y t == 分离变量得 .21dy yl yg l R dt --=由条件,0l y t ==得.02=C.a r c c o s 212⎪⎪⎭⎫ ⎝⎛+-=l y l y ly g l R t 在上式中令,R y =便得到物体到达地面所需得时间为.arccos 212⎪⎪⎭⎫ ⎝⎛+-=l R l R lR g l R t。
数学建模解偏微分方程

数学建模解偏微分方程
摘要:
1.数学建模简介
2.偏微分方程的基本概念
3.解偏微分方程的方法
4.数学建模在实际应用中的案例
5.总结与展望
正文:
数学建模是一种用数学方法解决实际问题的过程,它涉及到多个领域,如物理学、生物学、经济学等。
在这个过程中,偏微分方程是一类非常重要的数学模型,用于描述各种自然现象和工程问题。
本文将简要介绍数学建模解偏微分方程的相关知识。
首先,我们需要了解偏微分方程的基本概念。
偏微分方程是一种包含多个变量的微分方程,可以用来描述各种物理现象,如波动、热传导、电磁场等。
根据偏微分方程的性质,可以将其分为多种类型,如线性偏微分方程、非线性偏微分方程、椭圆型偏微分方程、双曲型偏微分方程等。
解偏微分方程是数学建模的关键步骤之一。
根据偏微分方程的类型和问题的具体条件,可以采用不同的方法求解。
常用的方法有分离变量法、矩方法、有限元法、有限差分法等。
这些方法各有优缺点,需要根据实际情况进行选择。
数学建模在实际应用中具有广泛的应用。
例如,在天气预报中,可以通过
数学模型预测未来的天气状况;在生物医学领域,可以通过数学模型研究病毒传播、药物代谢等问题;在经济学中,可以通过数学模型分析市场供求、价格波动等现象。
这些实际问题都可以转化为偏微分方程或相关数学模型进行求解。
总之,数学建模解偏微分方程是一种重要的数学方法,可以用来解决实际问题。
了解偏微分方程的基本概念和解法,以及数学建模在实际应用中的案例,有助于我们更好地应用数学知识解决实际问题。
数学建模微分方程模型

数学建模微分方程模型在数学建模的旅程中,微分方程模型扮演了至关重要的角色。
它们在描述和解决各种实际问题中,从物理学到社会科学,都起到了关键的作用。
在本章中,我们将探讨微分方程模型的基本概念、类型和应用。
微分方程是一种方程,它包含未知函数的导数。
这种方程在描述变化率时非常有用,例如,描述物体的速度或加速度。
在形式上,微分方程可以表示为 y'(x) = f(x, y),其中 y'表示 y的导数,f是一个给定的函数。
根据方程的特点,微分方程可以划分为多种类型,如线性微分方程、非线性微分方程、常微分方程、偏微分方程等。
每种类型的方程都有其特定的求解方法和应用领域。
微分方程在众多领域中都有应用,如物理学、工程学、经济学等。
例如,牛顿第二定律就是一个微分方程,它描述了物体的加速度如何由作用力决定。
人口增长模型、传染病模型等也都依赖于微分方程。
建立微分方程模型通常需要以下步骤:确定模型的目标和变量;然后,根据问题背景和物理规律建立数学模型;通过数值计算或解析解法得出结果。
求解微分方程的方法主要有两种:数值方法和解析方法。
数值方法是通过计算机程序或软件进行数值计算得到近似解,而解析方法是通过求解方程得到精确解。
对于某些类型的微分方程,可能需要结合使用这两种方法。
建立微分方程模型后,我们需要对模型进行评估和检验,以确保其有效性和准确性。
这通常包括对模型的假设进行检验、对模型的预测结果进行验证以及对模型的参数进行估计和调整等。
随着科学技术的发展,微分方程模型的应用前景越来越广阔。
例如,在生物学中,微分方程被用来描述疾病的传播动态;在经济学中,微分方程被用来分析市场供需关系的变化;在工程学中,微分方程被用来模拟复杂系统的行为等。
未来,随着大数据和人工智能等技术的发展,微分方程模型将在更多领域得到应用和发展。
微分方程模型是数学建模中一个极其重要的部分。
通过学习和掌握微分方程的基本概念、类型、应用以及求解方法等,我们可以更好地理解和解决现实生活中的各种问题。
数学建模中的微分方程及其应用研究

数学建模中的微分方程及其应用研究随着科技的不断发展,数学建模已经成为了一个不可或缺的工具。
数学建模是指将现实问题抽象为数学模型,通过数学方法来预测和解决问题。
微分方程是数学建模中的关键工具之一。
在本文中,我将介绍微分方程在数学建模中的重要性以及其应用研究。
一、微分方程的定义和分类微分方程是描述一个或多个未知函数及其导数之间关系的方程,通常用来描述自然现象。
微分方程可以分为常微分方程和偏微分方程两种。
常微分方程是指只涉及一个自变量的导数的方程,例如:$\frac{dy}{dx}= f(x,y)$偏微分方程是指涉及多个自变量的导数的方程,例如:$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}=0$二、微分方程在数学建模中的重要性微分方程在数学建模中有着广泛的应用。
它可以用来研究自然现象中的变化关系,例如物理学中的运动规律、化学中的反应过程,甚至是医学中的疾病治疗。
通过微分方程的求解,我们可以得到有关系统的重要信息,比如系统的稳定性、解的性质、系统的动态行为等等。
三、常微分方程在数学建模中的应用常微分方程是数学建模中最常见的工具之一。
在数学建模中,解决一个常微分方程通常需要以下步骤:1. 根据问题描述建立数学模型。
2. 对模型中的常微分方程进行求解。
3. 通过解析解或数值解来得到所需的结果。
以下是常微分方程在数学建模中的一些应用:1. 表示天体运动的牛顿运动定律。
牛顿运动定律可以用一个常微分方程来描述:$m\frac{d^2x}{dt^2}= -G\frac{Mm}{r^2}$其中,$m$ 是天体的质量,$M$ 是太阳的质量,$r$ 是天体和太阳之间的距离,$G$ 是万有引力常数,$x$ 是天体相对太阳的位置。
通过求解这个方程,我们可以得到天体的运动轨迹。
2. 描述弹簧振动的简谐运动。
弹簧振动可以用一个常微分方程来描述:$m\frac{d^2x}{dt^2}= -kx$其中,$m$ 是弹簧质量,$k$ 是弹簧的弹性系数,$x$ 是弹簧相对平衡位置的偏移量。
数学建模中的微分方程求解

数学建模中的微分方程求解数学建模是将真实世界中的问题抽象成数学模型,利用数学方法求解并得出结论的过程。
微分方程作为数学建模中最常用的数学工具之一,广泛应用于物理、生物、工程等领域,成为数学建模不可或缺的一部分。
本文将着重介绍微分方程在数学建模中的求解方法以及常见的数学模型。
一、常见的微分方程求解方法(一) 分离变量法分离变量法是最基本的微分方程求解方法之一。
对于形如$ \frac{dy}{dx} = f(x)g(y) $的一阶微分方程,我们可以将其分离为$ \frac{dy}{g(y)} = f(x) dx $,进而求解出$ y $的解析解。
例如,对于简单的一阶线性微分方程$ \frac{dy}{dx} + p(x)y = q(x) $,我们可以将其写成$ \frac{dy}{dx} = -p(x)y + q(x) $,然后将$ y $和$ x $分隔开来,即$ \frac{dy}{-p(x)y+q(x)} = dx $,最后将分子和分母积分得到$ y $的解析解。
但是,在实际问题中的微分方程很难一步到位地完成分离变量,需要结合其他的方法。
(二) 特解法特解法是一种特殊的微分方程求解方法,它适用于某些特殊的微分方程。
特解法的思想是先猜出通解的一部分,然后再根据该猜测解答出剩余的部分,得到最终的通解。
例如,对于形如$ y'' + ay' + by = f(x) $的二阶非齐次微分方程,我们可以先猜测一个特解$ y_p $,然后再求出方程的通解$ y = y_c + y_p $,其中$ y_c $是齐次方程的通解。
特解法在实际问题中应用广泛,但对特定问题的适用性并不一定好。
(三) 变量代换法变量代换法是另一种常见的微分方程求解方法,它常用于解决高阶微分方程或无法通过分离变量法解决的微分方程。
变量代换法的思想是将微分方程通过变量代换转化为可分离变量或一阶线性微分方程的形式。
例如,对于形如$ y'' + py' + qy = 0 $的二阶齐次微分方程,我们可以通过变量代换$ z = y' $,将其转化为一阶线性微分方程。
数学建模公选课:第五讲-微分方程模型

详细描述
龙格-库塔方法具有较高的精度和稳定性,适用于求解各种复杂的一阶和二阶常微分方程。
04
微分方程模型的应用实例
人口增长模型
总结词
描述人口随时间变化的规律
详细描述
人口增长模型通常使用微分方程来描述人口随时间变化的规律。该模型基于假设,如人口增长率与当 前人口数量成正比,来建立微分方程。通过求解该微分方程,可以预测未来人口数量。
模型建立
如何根据实际问题建立合适的微分方 程模型是一个挑战。
02
高维问题
对于高维微分方程,如何求解是一个 难题。
01
03
非线性问题
非线性微分方程的求解更加复杂和困 难。
未来展望
随着科学技术的发展,微分方程模型 的应用领域将更加广泛,求解技术也 将更加成熟和多样化。
05
04
多尺度问题
如何处理不同时间尺度的微分方程是 一个挑战。
数学建模公选课:第五讲 -微分方程模型
• 微分方程模型简介 • 微分方程模型的建立 • 微分方程模型的求解方法 • 微分方程模型的应用实例 • 微分方程模型的发展趋势与展望
01
微分方程模型简介
微分方程的基本概念
微分方程是描述数学模型中变量随时间变化的数学表达式,通常表示为包含未知函 数及其导数的等式。
05
微分方程模型的发展趋势与展望
微分方程模型在各领域的应用前景
物理领域
描述物体的运动规律,如牛顿 第二定律、波动方程等。
经济领域
分析市场供需关系和预测经济 趋势。
工程领域
预测和控制系统的动态行为, 如电路、机械系统等。
生物医学领域
数学建模实验答案_微分方程模型

数学建模实验答案_微分⽅程模型实验07 微分⽅程模型(2学时)(第5章微分⽅程模型)1.(验证)传染病模型2(SI 模型)p136~138传染病模型2(SI 模型):0(1),(0)dik i i i i dt=-= 其中,i (t )是第t 天病⼈在总⼈数中所占的⽐例。
k 是每个病⼈每天有效接触的平均⼈数(⽇接触率)。
i 0是初始时刻(t =0)病⼈的⽐例。
1.1 画~dii dt曲线图p136~138取k =0.1,画出i dt di ~的曲线图,求i 为何值时dtdi达到最⼤值,并在曲线图上标注。
提⽰:fplot, fminbnd, plot, text, title, xlabel 1)画曲线图⽤fplot 函数,调⽤格式如下: fplot(fun,lims)fun 必须为⼀个M ⽂件的函数名或对变量x 的可执⾏字符串。
若lims取[xmin xmax],则x轴被限制在此区间上。
若lims取[xmin xmax ymin ymax],则y轴也被限制。
本题可⽤fplot('0.1*x*(1-x)',[0 1.1 0 0.03]);2)求最⼤值⽤求解边界约束条件下的⾮线性最⼩化函数fminbnd,调⽤格式如下:x=fminbnd('fun',x1,x2)fun必须为⼀个M⽂件的函数名或对变量x的可执⾏字符串。
返回⾃变量x在区间x1本题可⽤x=fminbnd('-0.1*x*(1-x)',0,1)y=0.1*x*(1-x)3)指⽰最⼤值坐标⽤线性绘图函数plot,调⽤格式如下:plot(x1,y1, '颜⾊线型数据点图标', x2,y2, '颜⾊线型数据点图标',…)本题可⽤hold on; %在上⾯的同⼀张图上画线(同坐标系)plot([0,x],[y,y],':',[x,x],[0,y],':');4)图形的标注使⽤⽂本标注函数text,调⽤格式如下:格式1text(x,y,⽂本标识内容, 'HorizontalAlignment', '字符串1')x,y给定标注⽂本在图中添加的位置。
微分方程(2)

1) 向前欧拉公式: (y’= f (x, y) ) y (xn+1) y(xn) + h f(xn, y(xn)) (迭代式) yn+1 yn + h f(xn, yn) (近似式) 特点:f(x,y)取值于区间[xn, xn+1]的左端点.
2) 向后欧拉公式 yn+1 yn + h f(xn +1, yn +1)
= yn + (h/2)* [(-yn + xn+ 1) -(yn+ h*(-yn + xn+ 1) )+xn +1+1] = yn + (h/2)* [ (1-h)*xn + xn+1 + 2-h + (h-2)*yn] died1.m
结果
x 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
变量组
注意:① y '
‘t’。
② 自变量名可以省略,默认变量名
例①
dy 1 y2, dx
y ( 0) 1
输入:y=dsolve ('Dy=1+y^2') y1=dsolve('Dy=1+y^2','y(0)=1','x') 输出:y= tan(t-C1) (通解,一簇曲线) y1= tan(x+1/4*pi)(特解,一条曲线)
① 分离变量法;如 dy/dx = x*y; ② 齐次方程的变换法; 如 dy/dx = f (y/x) ③ 线性方程的常数变易法或公式法. ……
MATLAB软件实现
解析解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[x,y]=ode23('zhuiji',[500 1],[0 0]);
y1=y(:,1);
plot(x,y1)
结果如图
五、实验心得(质疑、建议):
plot(T,Y(:,1),'-',T,Y(:,2),'*',T,Y(:,3),'+')
结果如图
(3)
解:令y1=x,y2=y1’
则微分方程变为一阶微分方程组:
建立M文件
function dy=vdp1000(t,y)
dy=zeros(2,1);
dy(1)=y(2);
dy(2)=1000*(1-y(1)^2)*y(2)-y(1)
湖南第一师范学院数学系实验报告
姓名:
学号:
专业:
数学与应用数学
班级:
课程名称:
线性规划与数学建模
实验名称:
微分方程(组)的Matlab求解
实验类型:
基础实验
实验室名称:
数学建模实验室
实验地点:
实A302
实验时间:
2016年6月14日
指导教师:
成绩评定:
一、实验目的与要求:
1、掌握微分方程(组)的解析解法。
取t0=0,tf=3000,输入命令:
[T,Y]=ode15s('vdp1000',[0 3000],[2 0]);
plot(T,Y(:,1),'-')
结果如图
4.
建立如下微分方程模型:
其中,
转化为一阶微分方程组:
得
建立M文件:
function f=zhuiji(x,y)
f=[y(2);0.75*sqrt(1-y(2)^2)/x];
(1) ( )
(2) ( )
(3)求方程 ( )
4、(追击路线问题)一艘缉私舰雷达发现距c km处有一艘走私船正以匀速a沿直线行驶。缉私舰立即以最大的速度b追赶,若用雷达进行跟踪,保持船的瞬时速度方向始终指向走私船,试求缉私舰追逐路线和追上的时间。建立数学模型并用matlab编程求解。(假设:缉私舰发现敌艇时的相距:c =500公里;走私船逃跑速度:a =60公里/小时;缉私舰追击速度:b =80公里/小时)
2、了解微分方程(组)的数值解法。
3、会微分方程(组)的一些简单应用。
二、实验环境(实验器材、环境要求):
1、计算机
2、Matlab软件
三、实验内容(实验原理、任务等):
1、求微分方程的解析解,并画出它们的图形。
(1) , , ;
(2) , , 。
2、求下列微分方程组 的通解.
3、求下列方程(组)的数值解,并画出它们的图形。
plot(x,y,'r');
x = 0 0.0800 0.1800 0.2800 0.3800 0.48000.5800
0.6800 0.7800 0.8800 0.9800 1.0000
y = 1.0000 1.0770 1.1662 1.2490 1.32671.4000
1.4697 1.5363 1.6001 1.6614 1.72061.7322
四、实验具体步骤:
1.(1)编写M文件
x=[0,1]
y=dsolve('Dy=y+2*x')
y=dsolve('Dy=y+2*x','y(0)=1','x')
ezplot(x,y)
输出通解
x = 0 1
y = -2*x+exp(t)*C1
y =-2*x-2+3*exp(x)
编写绘制图形代码
x=0:0.01:1;
y=-2*x-2+3*exp(x);
plot(x,y)
输出图形如右
(2)编写M文件
y=dsolve('D2y+y=cos(x)','x')
y=dsolve('D2y+y=cos(x)','y(0)=1','Dy(0)=0','x')
输出通解
y=sin(x)*C2+cos(x)*C1+1/2*cos(x)+1/2*sin(x)*x
输出通解
x = C2*exp(-t)+C3*exp(2*t)
y =C2*exp(-t)+C3*exp(2*t)+exp(-2*t)*C1
z =C3*exp(2*t)+exp(-2*t)*C1
3.
(1)
建立M文件weif.m,如下:
function f=weif(x,y)
f=y-2*x/y;
求Байду номын сангаас:
[x,y]=ode23('weif',[0,1],1)
y =cos(x)+1/2*sin(x)*x
编写绘制图形代码
x=linspace(0,2*pi);
y=cos(x);
plot(x,y)
输出图形如右
2.编写M文件
[x,y,z]=dsolve('Dx=2*x-3*y+3*z','Dy=4*x-5*y+3*z','Dz=4*x-4*y+2*z','t')
图形如右
(2)
建立M文件rigid.m,如下:
function dy=rigid(t,y)
dy=zeros(3,1);
dy(1)=y(2)*y(3);
dy(2)=-y(1)*y(3);
dy(3)=-0.51*y(1)*y(2);
取t0=0,tf=15,输入命令:
[T,Y]=ode45('rigid',[0 15],[0 1 1]);