北京化工大学2012-2013(1)高等数理统计试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京化工大学2012-2013(1)《高等数理统计》试卷
1. Let n X X X ,,,21 be iid random samples with pdf given by: 1)|(-=θθθx x f for 10<
(1) Find the method of moment estimator (MME) for θ and denote it by θ~.
(2) Find the maximum likelihood estimator (MLE) of θ and denote it by 1ˆθ. Find the MLE of θ
1 and denote it by 2ˆθ. (3) Calculate the Cramer-Rao Lower Bound for the variance of any unbiased estimator of θ
1. (4) Is 2ˆθ unbiased estimator of θ1? If 2ˆθ is unbiased estimator of θ
1, is it the uniformly minimum variance estimator (UMVUE) of θ
1? Justify your answer. 2. Let n X X X ,,,21 be iid with pdf θθθ<<=x x f 0,/1)|(.
(1) Prove that i n i n X X ≤≤=1)(max a complete sufficient statistics for the parameter θ.
(2) Based on )(n X , find the uniformly minimum variance estimator (UMVUE) of θ.
3. Let n X X X ,,,21 be a random sample form a ),(2σθn population, where θ and 2
σ are unknown. We are interested in testing 00:θθ=H versus 01:θθ≠H ,
here 0θ is a specified value of θ.
(1) Show that the test that rejects 0H when
n S t X n /22/,10αθ->- is a test of size α, where 2/,1α-n t satisfies /2)t (/2,1αα=≥n-T P with 1~-n t T .
(2) Show that the test in part (1) can be derived as a likelihood ratio test (LRT).
4. Let n X X X ,,,21 be a random sample form a ),(2σθn population,2
σ is known. Consider testing 1:0=θH versus 2:1=θH . Construct a uniformly most powerful (UMP) test with the size of α.