结构力学习题解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 平面体系的机动分析
题2-2.试对图示平面体系进行机动分析。
解析:如图2-2(a )所示,去掉二元体为(b ),根据两刚片法则,原体系为几何不变
体系,且无多余约束。
题2-3.试对图示平面体系进行机动分析。
解析:图2-3(a )去除地基和二元体后,如图2-3(b )所示,刚片Ⅰ、Ⅱ用一实铰3o ;
Ⅰ、Ⅲ用一无穷远虚铰1o 连接;Ⅱ、Ⅲ用一无穷远虚铰2o 连接;三铰不共线,根据三刚片法则,原体系为几何不变体系,且无多余约束。 题2-4.试对图示平面体系进行机动分析。
解析:刚片Ⅰ、Ⅱ、Ⅲ用一实铰1o 和两虚铰2o 、3o 连接,根据三刚片法则,体系为几何
去二元体
图2-2
(a )
(b )
(b )
去二元体
(a)
图2-3
不变体系,且无多余约束。
题2-5.试对图示平面体系进行机动分析。
解析:刚片Ⅰ、Ⅱ、Ⅲ通过铰1o 、2o 、3o 连接,根据三刚片法则,体系为几何不变体系,
且无多余约束。
题2-7.试对图示平面体系进行机动分析。
解析:刚片Ⅰ、Ⅱ用一无穷远虚铰1o 连接,刚片Ⅰ、Ⅲ用一无穷远虚铰2o 连接,
刚片Ⅱ、Ⅲ通过一平行连杆和一竖向链杆形成的虚铰3o 连接,根据三刚片法则,体系为几何不变体系,且无多余约束。 题2-8.试对图示平面体系进行机动分析
解析:去除二元体如图(b )所示,j=12,b=20所以,232122031w j b =--=⨯--=,
去二元体
(a )
(b )
图2-7
图2-5
图2-4
所以原体系为常变体系。
题2-9.试对图示平面体系进行机动分析
解析:去除地基如图(b )所示,刚片Ⅰ、Ⅱ用实铰1o 连接,刚片Ⅰ、Ⅲ用虚铰2o 连接,
刚片Ⅱ、Ⅲ用虚铰3o 连接,根据三刚片法则,体系为几何不变体系,且无多余约束。
题2-10.试对图示平面体系进行机动分析
解析:AB,CD,EF 为三刚片两两用虚铰相连(平行链杆),且
三铰都在无穷远处。所以为瞬变体系(每对链杆各自等长,但由于每对链杆从异侧连接,故系统为瞬变,而非不变)。
题2-11.试对图示平面体系进行机动分析
图2-9
(b )
去地基
(a )
(a )
(b )
图2-11
图2-8
去二元体
(a )
(b )
图2-10
解析:先考虑如图(b )所示的体系,将地基看作一个无限大刚片Ⅲ,与刚片Ⅰ用实铰2o
连接,与刚片Ⅱ用实铰3o 连接,而刚片Ⅰ、Ⅱ用实铰1o 连接,根据三刚片法则,图(b )体系为几何不变体系,且无多余约束。然后在图(b )体系上添加5个二元体恢复成原体系图(a )。因此,原体系为几何不变体系,且无多余约束。 题2-12. 试对图示平面体系进行机动分析
解析:如图(b )所示,将地基看作刚片Ⅲ,与刚片Ⅰ用虚铰
2
o 连接,与刚片Ⅱ用虚铰
3
o 连接,而刚片Ⅰ、Ⅱ用实铰
1
o 连接,根据三刚片法则,原体系为几何不变体系,
且无多余约束。
题2-13.试对图示平面体系进行机动分析
解析:将原体系(图(a ))中的二元体去除,新体系如图(b )所示,其中刚片Ⅰ、Ⅱ
分别与基础之间用一个铰和一个链杆连接,根据两刚片法则,原体系为几何不变体系
2-14.试对图示平面体系进行机动分析
解析:刚片Ⅰ、Ⅱ用实铰连接,而刚片Ⅰ和Ⅲ、Ⅱ和Ⅲ分别通过两平行连杆在无穷远处
形成的虚铰相连接,且四根连杆相互平行,因此三铰共线,原体系为瞬变体系。
去二元体
(a )
(b )
图2-13
图2-12
(a )
(b )
题2-15. 试对图示平面体系进行机动分析
解析:去除原体系中的地基,如图(b )所示,三个刚片分别通过长度相等的平行连杆
在无穷远处形成的虚铰相连,故为常变体系。
题2-16. 试对图示平面体系进行机动分析
解析:将支座和大地看成一个整体,因此可以先不考虑支座,仅考虑结构体,从一边,
譬如从右边开始向左依次应用二元体法则分析结构体,最后多余一根,因此原体系是有一个多余约束的几何不变体系。
题2-17. 试对图示平面体系进行机动分析。
解析:通过去除多余连杆和二元体,得到的图(c )为几何不变体系,因此,原体系是
有8个多余约束的几何不变体系。
图2-14
(b )
去二元体
(a )
图2
-15
去除地
(a )
(b )
图2-16
题2-18. 添加最少数目的链杆和支承链杆,使体系成为几何不变,且无多余联系。
解析:如图(a ),原体系的自由度32342324w m b r =--=⨯-⨯-=,因此至少需要添
加4个约束,才能成为几何不变体系。如图(b )所示,在原体系上添加了4跟连杆后,把地基视为一个刚片,则由三刚片法则得知,变形后的体系为几何不变且无多余约束体系。
题2-19. 添加最少数目的链杆和支承链杆,使体系成为几何不变,且无多余联系。
解析:如图(a ),原体系的自由度2()26(81)3w j b r =-+=⨯-+=,因此需要添加3个
约束,才能成为几何不变且无多余约束体系,如图(b )所示。
去掉中间8
根连杆
(a )
(b )
去二元体
(c )
(a )
(b )
图2-18
(b )
(a )
图 2-19
图2-17