纳米钛酸钡的结构性能及制备方法

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

纳米钛酸钡的结构性能及制备方法

摘要:钛酸钡纳米材料具有高介电常数和低介质损耗等优异的性能,是电子工业中应用最广泛的陶瓷材料之一。本文主要介绍了钛酸钡结构性能、应用方向和纳米钛酸钡制备方法。

关键词:钛酸钡结构性能制备方法粉体

前言

钛酸钡(BaTiO3)具有高介电常数、低的介质损耗及铁电、压电和正温度系数效应等优异的电学性能,被誉为“电子陶瓷工业的支柱”,广泛的应用于半导体陶瓷和电子工业等方面。

一、钛酸钡晶体的结构

钛酸钡是一致性熔融化合物,其熔点为1618℃。在此温度以下,1460℃以上结晶出来的钛酸钡属于非铁电的六方晶系6/mmm点群。此时,六方晶系是稳定的。在1460~130℃之间钛酸钡转变为立方钙钛矿型结构。在此结构中钛离子居于氧离子构成的氧八面体中央,钡离子则处于八个氧八面体围成的空隙中。此时的钛酸钡晶体结构对称性极高,因此无偶极矩产生,晶体无铁电性,也无压电性。随着温度下降,晶体的对称性下降。当温度下降到130℃时,钛酸钡发生顺电-铁电相变。在130~5℃的温区内,钛酸钡为四方晶系4mm点群,具有显著地铁电性,其自发极化强度沿c轴方向,即[001]方向。钛酸钡从立方晶系转变为四方晶系时,结构变化较小。从晶胞来看,只是晶胞沿原立方晶系的一轴(c 轴)拉长,而沿另两轴缩短。

当温度下降到5℃以下,在5~-90℃温区内,钛酸钡晶体转变成正交晶系mm2点群,此时晶体仍具有铁电性,其自发极化强度沿原立方晶胞的面对角线[011]方向。钛酸钡从四方晶系转变为正交晶系,其结构变化也不大。从晶胞来看,相当于原立方晶系的一根面对角线伸长了,另一根面对角线缩短了,c轴不变。当温度继续下降到-90℃以下时,晶体由正交晶系转变为三斜晶系3m点群,此时晶体仍具有铁电性,其自发极化强度方向与原立方晶胞的体对角线[111]方向平行。钛酸钡从正交晶系转变成三斜晶系,其结构变化也不大。

综上所述,在整个温区(<1618℃),钛酸钡共有五种晶体结构,即六方、立方、四方、单斜、三斜,随着温度的降低,晶体的对称性越来越低。在130℃(即居里点)以上,钛酸钡晶体呈现顺电性,在130℃以下呈现铁电性。

二、钛酸钡晶体的性能

1.钛酸钡晶体的自发极化。钛酸钡是一种典型的铁电体,所以提到钛酸钡,就一定要提到它的自发极化。一般来讲,电介质的电极化过程(方式)有三种,

即电子位移极化、离子位移极化和固有电矩转向极化。钛酸钡的自发极化的贡献主要来自于Ti4+的离子位移极化和氧八面体其中一个O2-的电子位移极化。

2.钛酸钡晶体的铁电畴。钛酸钡晶体是由无数钛酸钡晶胞组成的。当立方钛酸钡晶体冷却到居里点时,将开始产生自发极化,并同时进行立方相向四方相的转变。在发生自发极化的时候,其中一部分相互临近的晶胞都沿着原来立方晶胞的某个晶轴产生自发极化,而另一部分相互临近的晶胞可能沿原立方晶胞的另一个晶轴产生自发极化。这样当钛酸钡转变成四方相后,晶体就出现了沿不同方向自发极化的晶胞小单元,我们称之为电畴。也就是说,通过降低温度,晶体从顺电相转变为铁电相时,由于自发极化,引起表面静电相互作用变化,产生电畴结构。电畴的类型、畴壁的取向,除了主要由晶体的结构对称性决定外,同时还要满足以下两个条件:1)晶格形变的连续性:电畴形成的结果,使得沿畴壁而切割晶体所产生的两个表面上的晶格连续并相匹配。2)自发极化分量的连续性:两相邻电畴的自发极化强度在垂直于畴壁方向上的分量相等。因此,在四方钛酸钡单晶中,相邻电畴的自发极化方向只能相交成180°或90°,即只存在180°畴和90°畴。

3.钛酸钡的介电性质。钛酸钡陶瓷的介电性能基本上和钛酸钡单晶的相似。但由于陶瓷是多晶结构,存在晶粒和晶界。晶粒的大小和无序取向,晶界中玻璃相及杂质的存在,均直接影响其介电特性,使其与单晶的有所不同。

三、溶胶2凝胶法制备钛酸钡

溶胶2凝胶法因其是在室温附近进行的湿化学反应,因而具有反应过程温度低,易于控制,所制得的陶瓷粉体纯度高、均匀度好、成分配比可控等优点,在陶瓷粉体制备中的应用起来越广泛。以醋酸钡、钛酸四丁酯和冰醋酸为主要原料,通过溶胶-凝胶法所制得的掺杂改性钛酸钡粉体进行了研究。

1.运用溶胶2凝胶的方法,能制备掺杂改性BaTiO3粉体。在700摄氏度煅烧1h 能得到平均粒径为100nm 左右的陶瓷粉体,粉体的形状呈球形且团聚较少。

2.运用溶胶2凝胶的方法,能获得超细的高活性粉体,降低了烧结温度并能使所需掺杂的元素更容易地进入到晶格点阵。

3.过高的煅烧温度对粉体的质量是有害的,它不仅影响粒子的形状,而且还影响到粒子的团聚性能。

结束语

为了制造高质量的陶瓷元件,关键之一就是要实现粉末原料的超细、高纯和粒径分布均匀。研究可以制备粒径可控,粒径分布窄及分散性好的钛酸钡粉体材料的方法且能够大量生产成为了一个研究热点。

参考文献:

[1]陈翠华,钛酸钡晶体的铁电畴结构分析[J],湖北水利水电职业技术学院学报,2007(3).

[2]肖长江等,高压烧结纳米钛酸钡陶瓷的结构和铁电性[J],硅酸盐学报,2008(6).

相关文档
最新文档