大学物理之54电场强度通量高斯定理

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(5) 静电场:有源场.
Φe SE dSε10
n
qin i
i1
四 高斯定理应用举例
用高斯定理求电场强度的一般步骤为 对称性分析; 根据对称性选择合适的高斯面; 应用高斯定理计算.
Φe SE dSε10
n
qin i
i1
例2 设有一半径为R , 均匀带电Q 的球面. 求球面内外任意点的电场强度.
-q
2 高斯定理
高斯面
在真空中静电场,穿过任一闭合曲面 的电场强度通量,等于该曲面所包围的所
有电荷的代数和除以 ε 0 .
Φe SE dSε10
n
qin i
i1
3 高斯定理的讨论
(1) 高斯面:闭合曲面. (2) 电场强度:所有电荷的总电场强度.
(3) 电通量:穿出为正,穿进为负.
(4) 仅面内电荷对电通量有贡献.
二 电场强度通量
1 定义 通过电场中某个面的电场线数
2 表述
匀强电场 , E垂直平面时.
SS
Een
E
Φe ES
二 电场强度通量
1 定义 通过电场中某个面的电场线数
2 表述
匀强电场 ,
E与平面夹角 θ.
Φe EScoθs ES
S

en
E
非匀强电场,曲面S .
dS dSe n
d Φ e E cθ o d S s E d S
库仑定律 电场强度叠加原理
高斯 定理
高斯 (C.F.Gauss 17771855)
高 德国数学家、天文学
家和物理学家,有“数 学王子”美称,他与韦
斯 伯制成了第一台有线电
报机和建立了地磁观测 台,高斯还创立了电磁 量的绝对单位制.
点电荷位于球面中心
E q
4
πε0
R2
Φe SEdS
4
q πε0R2
+
E
λh
+
EdSE2πrh
S
ε0
E λ
2πε0r
h r+ o +
x+
y
例4 设有一无限大均匀带电平面,电荷面
密度为 ,求距平面为r处某点的电场强度.
解 对称性分析与
高斯面的选取
2ES σS
E
ε0
E
E σ
S
2ε0
E σ 2ε0
σ
E
σ
EE
E
无限大带电平面的电场叠加问题
σ
σ
ε0
0
ε0
σ
0
ε0
点电荷系的电场
S E d S S E 1 d S S E 2 d S S E n d S
Φ e1Φ e2Φ en
Φou ε0
qiin
1n
EdS
S
ε0 i1
qiin
dS
sqi
S E d S S E 1 d S S E 2 d S S E n d S
dS
S
q
ε0
dS
+
R
点电荷在闭合曲面内
q dΦe 44ππqεε00r2drdS2S'coθs
drS2' dΩ
Φe
q 4πε0
dΩ q ε0
dS
en
+
dS

点电荷在闭合曲面外
d Φ 1 E 1d S 1 0
d Φ 2 E 2 d S 2 0
dΦ1dΦ20
SEdS0
q
E2
+
dS2
dS1 E1
Φ edΦ eSEdS
en
θE
dS
S
非均匀电场,闭合曲面S .
ΦeSEdS
EcoθsdS
S
“穿出”θ 90 “穿进”θ 90
E
θ
en
S
en
θ
E
例1 三棱柱体放置在如图所示的匀强电 场中. 求通过此三棱柱体的电场强度通量.

5
Φe Φei i 1
Φe1Φe2
y
P N
S2
en
E
S1
0
典型电场的电场线分布图形
正点电荷与负点电荷的电场线 一对等量正点电荷的电场线 一对等量异号点电荷的电场线 一对不等量异号点电荷的电场线 带电平行板电容器的电场线
正点电荷与负点电荷的电场线
+
-
一对等量正点电荷的电场线
+
+
一对等量异号点电荷的电场线
-
+
一对不等量异号点电荷的电场线
2q
解 对称性分析:球对称
高斯面:闭合球面
(1) 0rR
SEdS0
E0
S
O
Rr
Q
(2) rR
EdSE4r2
Q
S2
ε0
Q E 4πε0r 2
QE
4π0R 2
Q 4πε0r 2
oRr
r
OQ
s
例3 设有一无限长均匀带电直线,单位
长度上的电荷,即电荷线密度为,求距
直线为r 处的电场强度.
解 对称性分析与 高斯面的选取
en
zM
o
en
R
x
Q
Φ e 1 s 1E d S E 1 cS π o s E 1 S Φ e 2s 1E d S E 2 cS θ o E s1 S
5
Φe Φei 0 i1
y
P N
S2
en
E
S1
en
zM
o
en
R
x
Q
三 高斯定理
1 高斯定理的导出 在点电荷q的电场中,通过求电通量导出.
相关文档
最新文档