弹塑性力学定理和公式

弹塑性力学定理和公式
弹塑性力学定理和公式

应力应变关系

弹性模量 ||广义虎克定律

1.弹性模量

对于应力分量与应变分量成线性关系的各向同性弹性体,常用的弹性常数包括:

a 弹性模量单向拉伸或压缩时正应力与线应变之比,即

b 切变模量切应力与相应的切应变之比,即

c 体积弹性模量三向平均应力

与体积应变θ(=εx+εy+εz)之比,即

d 泊松比单向正应力引起的横向线应变ε1的绝对值与轴向线应变ε的绝对值之比,即

此外还有拉梅常数λ。对于各向同性材料,这五个常数中只有两个是独立的。常用弹性常数之间的关系见表3-1 弹性常数间的关系。室温下弹性常数的典型值见表3-2 弹性常数的典型值。

2.广义虎克定律

线弹性材料在复杂应力状态下的应力应变关系称为广义虎克定律。它是由实验确定,通常称为物性方程,反映弹性体变形的物理本质。

A 各向同性材料的广义虎克定律表达式(见表3-3 广义胡克定律表达式)对于圆柱坐标和球坐标,表中三向应力公式中的x 、y、z分别用r、θ、z和r、θ、θ代替。对于平面极坐标,表中平面应力和平面应变公式中的x、y、z用r、θ、z代替。

B 用偏量形式和体积弹性定律表示的广义虎克定律应力和应变张量分解为球张量和偏张量两部分时,虎克定律可写成更简单的形式,即

体积弹性定律

应力偏量与应变偏量关系式

在直角坐标中,i,j=x,y,z;在圆柱坐标中,i,j=r,θ,z,在球坐标中i,j=r,θ,θ。

弹性力学基本方程及其解法

弹性力学基本方程 || 边界条件 || 按位移求解的弹性力学基本方法 || 按应力求解的弹性力学基本方程 || 平面问题的基本方程 || 基本方程的解法 || 二维和三维问题常用的应力、位移公式

1.弹性力学基本方程

在弹性力学一般问题中,需要确定15个未知量,即6个应力分量,6个应变分量和3个位移分量。这15个未知量可由15个线性方程确定,即

(1)3个平衡方程[式(2-1-22)],或用脚标形式简写为

(2)6个变形几何方程[式(2-1-29)],或简写为

(3)6个物性方程[式(3-5)或式(3-6)],简写为

2.边界条件

弹性力学一般问题的解,在物体内部满足上述线性方程组,在边界上必须满足给定的边界条件。弹性力学问题按边界条件分为三类。

a 应力边界问题在边界Sζ表面上作用的表面力分量为F x、F y、F z.。面力与该点在物体内的应力分量之间的关系,即力的边界条件为

式中,l nj=cos(n,j)为边界上一点的外法线n对j轴的方向余弦。

这一类问题中体积力和表面力是已知的,求解体内各点的位移、应变和应力。

b 位移边界问题在边界S x上给定的几何边界条件为

式中,U*i为表面上给定的位移分量。

这一类问题是已知体积力和表面各点的位移,求解体内各点的位移、应变和应力。

c 混合问题部分边界上给定力,部分边界上给定位移。

3.按位移求解的弹性力学基本方法

示的平衡方程:

求解时位移分量在物体内部满足式(3-14),在位移边界S u上满足式(3-13),在应力边界Sζ上满足式(3-12),但式中的应力分量应利用应力-应变关系和应变-位移关系变换为位移的形式。求出位移分量后,再利用几何方程和物性方程,求出应变和应力分量。

4.按应力求解的弹性力学基本方程

按应力求解时,以6个应力分量为基本未知量。它们必须满足平衡方程,同时还要满足以应力表示的协调方程,即

式(3-15)和平衡方程式(2-1-22)一起,成为按应力求解弹性问题的基本方程组。按应力求解弹性问题,就是寻求满足基本方程式(2-1-22)和式(3-15),以及边界条件[式(3-12)]的解。

5.平面问题的基本方程

弹性力学平面问题,包括平面应力和平面应变问题两类。通常利用应力函数将弹性力学平面问题简化为解双调和方程的边值问题。平面问题基本方程的直角坐标和极坐标表达式见表3-4 平面问题的基本方程。表中除物性方程外,对于其他方程,平面应力和平面应变问题中的形式是相同的。比较一下这两类问题的基本方程后可知,只要将平面应力问题的解中的弹性常数E、v改为E/(1-V2)、V/(1-V)后,就得到对应的平面应变问题的解。因此,对于截面形状和边界条件相同的物体,平面应力问题与平面应变问题中的应力分布(ζx、ζy、ηxy、ζz除外)是相同的。

6.基本方程的解法

15个弹性力学基本方程简化为以位移表示的3个平衡方程[式(3-14)]或以应力表示的6个协调方程[式(3-15)]。求解上述方程时,类似在平面问题中应用艾雷应力函数所用的方法,常引用应力函数或位移函数,以消去应力分量或位移分量,求解以应力函数表示的协调方程,或以位移函数表示的平衡方程。

表3-5 帕普科维奇-诺埃伯谢函数和勒夫谢函数列出用帕普科维奇-诺埃伯函数和勒夫函数表示的无体积力时平衡方程的齐次解。勒夫函数常用于求解轴对称问题。

7.二维和三维问题常用的应力、位移公式

(见表3-6 二维和三维问题常用的应力、位移公式)

能量原理

应变能、应变余能与应变能定理 || 虚位移定理 || 最小势能原理 || 虚力原理||

最小余能原理 || 卡氏定理 || 互等定理 || 李兹法

直接求解弹性力学基本方程在数学上存在困难,只有一些比较简单的问题已求得精确解。而能量法把求解问题的过程转变为一种极值问题,它比直接求解偏微分方程边值问题能更方便地得到近似解。因此能量原理是目前广泛应用的近似计算方法的基础。

1.应变能、应变余能与应变能定理

a 应变能单位体积的应变能称为应变能密度,以W表示。W为应变分量εij的函数,W可用脚标形式表示为

对于线弹性体,其值为

线弹性体的总应变能为

对各向同性材料,利用虎克定律,应变能密度可用单一的应力分量或应变分量表示为

b 应变余能单位体积的应变余能W*为应力分量ζij的函数,W*(ζij)定义为

对线弹性体,

c 用应变能和应变余能表示力与应变的关系应变能密度函数W(εij),表示因弹性变形而储存于单位体积内的弹性势能。应力与应变之间的关系,通过弹性势函数W表示为

对线弹性体,W*=W,式(3-34)变为

d 应变能定理如果弹性体在变形过程中无能量耗损,则弹性体内的应变能在数值上等于外力在变形过程中所作的功,即

式中,A为外力所作的功,包括体积力和面力所作的功。

2.虚位移定理

弹性体在外力作用下处于平衡状态时,体内各点如果发生一虚位移δui(所谓虚位移,是指几何约束容许的任意、微小的位移,也就是指符合物体的连续条件和位移边界条件的可能位移),则外力对虚位移所作的功(虚功),等于虚位移所引起的弹性体的虚应变能,即

式中,虚功δA包括体积力fi和面力pi在虚位移δui上所作的功,即

因虚位移而引起的虚应变能为

式(3-37)称为虚功原理或虚位移原理。虚位移原理等价于平衡条件。如结构上的外力在虚位移上所作的虚功等于结构的应变能,则结构必处于平衡状态。在虚位移原理推导过程中并未应用虎克定律,虚位移原理也适用于非弹性体。

3.最小势能原理

如果外力可由一个势函数V导出,外力势V=-A,则δV=-δA.由式(3-37),得变分方程

式中,

称为系统的总势能,是位移的函数。式(3-38)表明:弹性体处于平衡状态时,其内力和外力的总势能取驻值。可以证明,线弹性体处于平衡状态时,其总势能取最小值。因此,式(3-38)称为最小势能原理。也就是说,在所有几何容许位移中,满足势能驻值条件δⅡ=0的位移解,使总势能Ⅱ取最小值。在应用中,可根据势能驻值条件去求解弹性力学问题。

在分析结构稳定问题时,在平衡状态(δⅡ=0),总势能Ⅱ可能取极大值(δ2Ⅱ<0,不稳定平衡),驻值(δ2Ⅱ=0,临界状态)或极小值(δ2Ⅱ>0,稳定平衡)。

4.虚力原理

如对变形协调的弹性体施加某种虚力(即平衡条件所容许的,任意微小的力的改变,包括虚应力δζij和虚面力δpI),则虚外力在真实位移上的虚余功δA*等于虚应变余能,即

式中(3-40)称虚力原理或余能原理,它和以位移为变量的虚位移原理相对应。式中

虚力原理将给出协调条件,如对弹性体施加某种虚力,当外虚余功等于虚应变余能时,弹性体必满足变形协调条件。

5.最小余能原理

式中,Ⅱ*称为系统的总余能。由式(4·5-40)得变分方程

式(3-42)表明,在满足平衡方程和静力边界条件的所有应力中,能适合几何边界条件并能产生协调应变场的正确解,使余能取胜驻值。可以证明,在线弹性小就形情况下,在平衡条件容许的所有应力中,使余能取驻值的应力,就是使余能为最小值的应力,也就是线弹性小变形问题的正确应力解。因此,式(3-42)称为最小余能原理。

6.卡氏定理

当物体的表面力为集中力时,虚力原理的余能驻值表达式可写为

式中,Qi--广义力

qi--广义位移

由上式得

对于线弹性系统,Ⅱ*=Ⅱ,U*=U,式(3-43)变为

对于线弹性系统,卡氏定理表述为:系统的应变能对任一集中的偏导数,等于力作用点以力方向的位移。

7.互等定理

设弹性体有两种平衡状态。第一种平衡状态为面力pi',体积力fi'和相应的位移ui'(i=x,y,z);第二种状态为面力pi″体积力fi″和相应的位移ui″。互等定理表述为:第一组外力在第二组外力引起的位移上所作的功,等于第二组外力在第一组外力引起的位移上所作的功,即

互等定理应用于梁的问题时,得影响系数对称性关系。设载荷为横向力p,挠度为y,式(3-45)写成

如果梁上只在x1,x2,…,xn处作用有集中力p1,p2, …,pn。把在xj处作用单位集中引起的在xI处的挠度记为aij,aij称为影响系数,由互等定理得

8.李兹法

李兹法是基于变位移的最小势能原理的直接近似求解方法。

根据问题的几何边界条件,假设的一组位移解中含有待定参数aj、bj、cj。由最小势能原理,在所有假定的几何容许的位移函数中,真实的位移使总势取驻值。因此可取如下一系列位移函数的近似解,即

式中,aj、bj、cj为待定参数;uxj(x,y,z)、uyj(x,y,z)、uz(x,y,z)为满足位移边界条件的位移函数。

由势能驻值条件,令

得到3n个线性方程组,解出aj、bj、cj后,代入式(3-47),就得到问题的位移解。一般只要位移数选择得当,只须取有限几个待定参数,就可得到足够精确的位移解。

李兹法也可以基于最小余能原理的余能驻值条件,直接求得近似应力解。

表3-7 弹性基础梁的近似解与精确解的比较

热应力

热弹性方程 || 热传导方程与温度场 || 热应力问题的应用

物体加热或冷却时,体内各部分因温度变化而伸缩,如果受到约束就产生热应力。一种约束是由于物体表面的边界条件产生的。例如,不同形状的物体均匀升高温度T时产生的热应力为

棒状物体,两端固定ζ=-αET

平板物体,周边固定ζ=-αET/(1-v)

块状物体,外表面固定ζ=-αET/(1-2v)

式中,ζ为线膨胀系数,负号表示压应力。

如果热应力超过弹性极限而产生塑性应变εp,冷却后将产生残余应力ζR。如εp小于弹性应变εe时,残余应力ζR=εp/E

引起物体热应力的另一种约束为物体内部存在不均匀温度场,物体各部分因伸缩受阴而产生热应力。热弹性问题主要是指这一类问题

1.热弹性方程

热弹性方程与常温下弹性力学基本方程不同之处在于物性方程,其他平衡方程和几何方程不变。对于各向

关系变为

按位移求解的热弹性方程见表3-8 按位移求解的热弹性基本方程。

2.热传导方程与温度场

在热弹性问题中,物体内应力的分布,取决于不同瞬时物体内温度的分布,即温度场,而温度场则是根据物体的初始温度分布,以及物体与环境之间的热交换条件,求解热传导方程而得到。

A 热传导方程对于均质各向同性材料,如材料的热学性能与温度无关时,热传导方程为

式中,

k=λ/cp为热扩散率

λ为热志率

c为比热容

p为密度

W为单位时间内单位体积热源的发热量

由热传导定律,热流密度的大小与温度梯度成正比,而方向相反,即

其中的比例常数,即为热导率λ。

室温时常用材料的热常数,见表3-9 热常数(20℃时)。

B 温度场温度场一般为位置和时间的函数,即

温度分布与时间无关的温度场称为定常温度场。物体内无热源时,常温度场的微分方程简化为拉普拉斯方程

在温度场的初始条件和边界条件中,一种情况是给定物体表面的温度分布函数T=F(x,y,z,t)。另一种情况是

式中,h为传热系数;TB为物体表面温度;TA为环境介质温度。

3.热应力问题的应用

A 任意形状薄平板(图3-2)设温度沿板厚方向变化,即T=T(z)。

图3-2 任意形状平板

(1)无外力约束情况下的热应力为

(2)板边固定情况下的热应力为

B 矩形薄平板

情况(1)(图3-3)板外部无约束,温度沿x和z方向不变,即T=T(y)。平板的热应力为

图3-3 矩形板情况(1)

温度为T0。温度沿y、z方向不变,这时

最大拉应力在o、p处,即ζx=Ea(T1-T0)

OP中点处的最大压应力,为ζy=-Ea×(T1-T0)。

图3-4 矩形板情况(2)

C 半无限体中有线热源(图3-5)设半无限体表面(oyz面)的温度为零。线热源MN∥oz,与表面的距离为a。单位长度的线热源,单位时间内发出的热量为H。这时半无限体的热应力为

式中

λ--物体的热导率

图3-5 半无限体中的线热源

D 半无限体表面上有点热源(图3-6)设单位时间内点热源o发出的热量为Q。表面其他地方完全绝热,则物体的温度分布为

物体内的热应力为

图3-6 半无限体表面上的点热源

塑性力学基本方程

屈服条件 || 塑性应力应变关系 || 滑移线场理论 || 极限分析定理

1.屈服条件

对于处于单向拉伸(或压缩)的物体,当应力达到屈服极限时,材料开始进入塑性状态,对于处于复杂应力状态的物体,由弹性状态过渡到塑性状态的临界条件称为屈服条件。在应力空间将初始屈服的应力点连成的弹性和塑性的分界面称为屈服面。描述屈服面的数学表达式称为屈服函数。常用的各向同性金属材料的屈服试验表明,屈服应力数据点介于屈雷斯卡(T resca)屈服条件和密赛斯(Mises)屈服条件之间,而更接近于密赛斯屈服条件。

A 屈雷斯卡屈服条件(最大切应力条件)屈雷斯卡屈服条件为:当最大切应力达到某一极限值时,材料开始进入塑性状态,即

在主应力空间,当差值∣ζ1-ζ2∣、∣ζ2-ζ3∣、∣ζ3-ζ1∣中任一个达到2k时,材料进入塑料性状态。因此用屈雷斯卡条件表示的屈服面为由下列六个平面组成的正六边形柱体(图3-7a),即

材料常数k由实验确定。在拉伸试验时,ζ1=2k=ζs,即k=ζs/2。在纯剪切试验时,ζ1-ζ3=2k=2ηs,即k=ηs。如果屈雷斯卡条件成立,必有ηs=1/2ζs

图3-7 屈服面

B 密赛斯屈服条件密赛斯条件为::当切应力强度ηI等于剪切屈服极限ηs时,材料开始屈服;或者当应力强度ζI等于拉伸屈服极限ζs时,材料开始屈服,即

式中,j′2为应力偏量第二不变量

对于密赛斯条件,ηs=ζs。密赛斯条件与屈雷斯卡条件的最大差别不超过15%。

在主应力空间,密赛斯屈服面为一外接于屈雷斯卡屈服面的圆柱面。在平面应力状态,设ζs=0,则在ζ1、ζ2应力平面上,密赛斯条件为一椭圆,屈雷斯卡条件为内接六边形(图3-7b)。

C 后继屈服函数(加载函数)已产生塑性变形的材料,继续塑性变形的条件,称为后继屈服条件。在主应力空间满足后继屈服条件的应力点所连成的曲面,称为后继屈服面(加载面)。对于理想塑性材料,后继屈服面即为初始屈服面;对于强化材料,后继屈服面随塑性变形的历史而变化。描述后继屈服面的函数,称为后继屈服函数或加载函数,一般可写成

式中,H为应变历史和材料性质的函数。在应力空间,加载面随H的变化而改变其形状、大小和位置。目前应用较多的两种简单的强化模型为等向强化模型和随动强化模型。图3-8表示按照屈雷斯卡屈服条件在π面(ζ1+ ζ2+ ζ3=0的面)上的屈服曲线和加载曲线。

图3-8 屈服曲线和加载曲线

等向强化模型的加载函数表示为

式中,H为决定于塑性应变历史的单调递增正函数。加载面是初始屈服面等向扩大,屈服面中心位置不变。这种模型不考虑材料的包辛格效应。

随动强化模型的加载函数表示为

式中,ζij表示初始屈服面中心在应力空间的残茶剩饭量。加载面的大小,形状保持不变。

2.塑性应力应变关系

塑性应力应变关系有增量(流动)理论和全量(形变)理论两种类型。

A 增量理论材料在塑性变形时,应力与应变之间一般不存在一一对应的关系。增量理论假设在塑性流动的任一瞬时,塑性应变增量矢量与加载面正交,即

对理想塑性材料,ψ=f。若取f为密赛斯屈服函数时,上式变为

对于刚塑性材料,式(3-70)写成完全表达式为

式中,

式(3-71)称为列维- 密赛斯(levy-Mises)关系式。

若考虑弹性变形,则对密赛斯理想塑性材料有

式中,塑性功增量

式(3-73)称为普朗特-劳埃斯(prandtl-Reuss)关系式。

对于具有密赛斯等向强化加载面的强化材料,增量理论公式中的比例因子dλ为与材料强化性质有关的非负标量,当加载时

式中H′为强化函数H对其自变量的导数。

B 全量理论全量理论用应力和应变的瞬时值表示的塑性应力应变关系,是塑性应力应变增量关系沿加载途径的积分形式。当满足小变形及简单加载(应力分量成比例增长)条件,应力强度a i和应变强度εi之间存在单一的函数关系。这时全量理论表达为

式中,应变强度

3.滑移线场理论

滑移线场理论,是基于塑性材料在屈服流动时,沿最大切应力方向,成为塑性变形区内的特征性质。据此来对整个变形区进行应力分布的数值分析。

此处所讨论的滑移线场理论,只限于各向同性的理想刚塑性材料的平面应变问题,并假设屈服条件与静水压力无关。

A 应力方程不滑移线场的几何性质

(1) 应力方程在塑性变形区内,连接最大切应变方向的线,称为滑移线。两族正交的滑移线组成的网络,称为滑移线场。这两簇曲线,分别称为α簇和β簇。从α线到β逆时针转动时,最大主应力方向在α线和β线之间。从x轴到α线的逆时针转角用θ表示(图3-9)。α、β的曲线方程为

图3-9 α、β线和应力图

由于主切应力面上的切应力k=ηs,如果正应力ζ(ζ=ζx+ζy/2)和θ角已知时,滑移线场内任一点的应力仅取决于ζ、θ的变化,即

由单元体平衡条件,应力沿滑移线变化规律为

式(3-80)称为汉基(Hencky)应力方程

(2) 滑移线场的几何性质

1. 沿线性质由应力方程,沿同一滑移线移动时,ζ和θ的变换成正比,即

在直线段上,ζ和θ都是常量。

2. 跨线性质(图3-10)位于两根同簇滑移线之间的另一簇滑线段上,θ的变化相等,即

相应地,ζ的变化也相等,即

图3-10 跨线性质

B 速度方程和速端曲线在刚塑性体平面应变问题中,沿滑移线上的线应变为零。因此将任一点处的质点速度沿α线和β线分解为vα和vβ(图3-11),得到速度沿线变化规律为

图3-11 速度的分解

式(3-84)称为盖林格(Geiringer)速度方程。

可以把速度方程改写成差分方程,求出节点速度,建立速度场。也可以用作图法作速度图(速度矢端曲线)来表示速度分布。由于沿滑移线上线应变为零,同一滑线相邻两点的相对速度必与该滑移线线元正交。因此滑移线上各点的速度矢端曲线与该滑移线线元正交。图3-12中代表P1点的速度平面上的映象即为速度图。

图3-12 速度场和速端曲线

(a)物理平面 (b)速端曲线

4.极限分析定理

在设计中把加载的极限状态作为设计准则的分析方法,称为极限分析。理想刚塑性结构的极限载荷,是指载荷增加到某一数值时,结构达到极限状态,这时即使载荷不再增加,塑性变形继续发展。由于求解弹塑性结构极限状态对应的极限载荷比较复杂,因此需要寻求一种计算极限载荷的近似方法,即利用极限分析上下限定理,来估计极限载荷的近似值范围。在分析中,把材料假定为理想刚塑性体。

刚塑性材料平面应变问题的真实解,在应力方面体内应满足平衡方程、屈服条件和应力边界条件,在几何方面应满足体积不变条件和速度边界条件,并使外力对速度场作正功率。在实际问题中,要同时满足全部条件是困难的。如果只满足应力方面的条件,这时所得到的应力场称称为静力许可应力场。根据这个应力场求得的载荷为真实极限载荷的下限。如果只满足应变和位移条件所求得的速度场,称为运动许可速度场,由此求得的载荷为真实极限载荷的上限。如果上下载荷相等,所求得的载荷,即为真实的极限载荷。

A 下限定理由任何静力许可应力场所求得的载荷,恒小于或等于极限载荷。在塑性状态下,物体发生一微小变形速度v i时,在非作用力表面Sv上,任一静力许可应力场所引起的表面力T′i所作的功率,恒小于或等于极限载荷表面力Ti所作的功率,即

B 上限定理任一与运动许可速度场相对应的载荷,恒大小或等于极限载荷。在塑性状态下,任一运动许可速度场上所作的功率,恒大于或等于极限载荷表面力,在真实应变速度场上所作的功率,即

式中,V*I--任一运动许可速度场

k--剪切屈服应力

S*D--速度不连续面

ΔV*--S*D面上速度不连续量

ζ*ij和ε*ij——由V*i导出的应力和应变速度率如果塑性机构按刚性块在速度不连续面上相互移动,则上式左边第一项为零,在许多实际问题中,力的边界条件

,这时式(3-86)简化为

粘弹性

粘弹性模型与本构关系 || 三维性粘弹性理论的基本方程与对应原理弹性理论和塑性理论中的应力应变关系,都不考虑时间和速率的影响。近代某些工程材料,在一定条件下,显示出与时间有关的性质。例如,金属、陶瓷和高聚合物在较高温度下发生蠕变,即在不就应力下应变随时间绶慢增加的现象。在定应变下,应力随时间绶慢衰减的现象,称为松弛。具有明显时间效应的本构关

系的物体,称为粘弹性理论。

1.粘弹性模型与本构关系

A 基本元件粘弹性体的力学模型,可看作具有理想弹性元件(弹簧,用S表示)的组合体。

在简单拉伸情况下,理想弹性元件(图3-14a)的应力应变关系为

ζ=Eε

而理想粘性元件(图3-14b)的应力应变率关系为

图3-14 弹簧阻尼器

式中,η--粘性系数

B 马克思威尔体由S和D串联的粘弹性模型称为马克思威尔体(图3-15a)。用字母M或S-D表示,

其本构方程为

式中,p1、q1为材料常数,p1=η/E,q1=η。方程的解含有时间t

在定应力下应变随时间的变化规律,即蠕变特性为

变形随时间t线性(图3-15b),表现出流体粘性性质。

在定应变ε0下的松弛特性(图3-15c)为

图3-15 马克思威尔体

(a) 粘弹性模型 (b) 蠕变曲线 (c) 松弛曲线

C 开尔文体(图3-16a)为S和D并联组成的粘弹性模型。用字母K或S/D表示。开尔文体的本构方程

图3-16 开尔文体

(a) 粘弹性模型 (b) 蠕变曲线 (c) 松弛曲线

式中 q0=E q1=η

开尔文体在定应力ζ0下蠕变特性(图3-16b)为

式中η=q1/q0

在定应变εo的松弛特性(图3-16c)为

ζ=q0ε0+ q1ε0·δ(t)

其中,δ(t)为狄拉克函数,即当t≠0时,δ(t)=0;t=0时,δ(t)=+∞

D 多元件模型的本构方程实际材料的粘弹性特性与上述两种模型往往不符,因此寻求由更多元件组成

的模型。其本构关系列在表4.5-10中。多元件模型的本构方程的一般形式为

式中,P,Q为线性微分运算算子。引入算子符号D后,

E 蠕变柔度和松弛模量除了用式(3-91)微分形式的本构方程来描述粘弹性体的流变性质外,可以用蠕变柔度J(t)和松弛模量Y(t)来表示粘弹性体在定应力下的蠕就特性和定应变下的松弛特性。在定应力

工程力学常用公式

公式: 1、轴向拉压杆件截面正应力 N F A σ= ,强度校核max []σσ≤ 2、轴向拉压杆件变形 Ni i i F l l EA ?=∑ 3、伸长率: 1100%l l l δ-= ?断面收缩率:1 100%A A A ψ-=? 4、胡克定律:E σε=,泊松比:'ευε=-,剪切胡克定律:G τγ= 5、扭转切应力表达式: T I ρρ τρ= ,最大切应力: max P P T T R I W τ= =, 4 4 (1) 32 P d I πα= -, 3 4 (1) 16 P d W πα= -,强度校核: max max []P T W ττ= ≤ 6、单位扭转角: P d T dx GI ?θ= =,刚度校核:max max []P T GI θθ=≤,长度为l 的一段 轴两截面之间的相对扭转角P Tl GI ?= ,扭转外力偶的计算公式:()(/min)9549KW r p Me n = 7、薄壁圆管的扭转切应力: 2 02T R τπδ= 8、平面应力状态下斜截面应力的一般公式: cos 2sin 22 2 x y x y x ασσσσσατα +-= + -, sin 2cos 22 x y x ασστατα -= + 9、平面应力状态三个主应力: '2 x y σσσ+= + ''2 x y σσσ+= '''0σ= 最大切应 力 max ''' 2 σστ-=± =,最大正应力方位 02tan 2x x y τασσ=- - 10 、第三和第四强度理论: 3r σ= , 4r σ=

11、平面弯曲杆件正应力: Z My I σ= ,截面上下对称时, Z M W σ= 矩形的惯性矩表达式:312Z bh I =圆形的惯性矩表达式:4 4(1) 64Z d I πα=- 矩形的抗扭截面系数:26Z bh W = ,圆形的抗扭截面系数:3 4(1)32Z d W πα=- 13、平面弯曲杆件横截面上的最大切应力: max max *S z S Z F S F K bI A τ= = 14、平面弯曲杆件的强度校核:(1)弯曲正应力max []t t σσ≤,max []c c σσ≤ (2)弯曲切应力max []ττ≤(3)第三类危险点:第三和第四强度理论 15、平面弯曲杆件刚度校核:叠加法max [] w w l l ≤,max []θθ≤ 16、(1)轴向载荷与横向载荷联合作用强度: max max min ()N Z F M A W σσ= ± (2)偏心拉伸(偏心压缩):max min ()N Z F F A W δ σσ= ± (3)弯扭变形杆件的强度计算: 3[]r Z σσ= = ≤4[] r Z σσ= = ≤

经典力学和相对论

牛顿经典力学 牛顿经典力学认为质量和能量各自独立存在,且各自守恒,它只适用于物体运动速度远小于光速的范围。牛顿 力学较多采用直观的几何方法,在解决简单的力学问题 时,比分析力学方便简单。 广义相对论 广义相对论(General Relativity?),是爱因斯坦于1915年以几何语言建立而成的引力理论,统合了狭义相对论和牛顿的万有引力定律,将引力改描述成因时空中的物质与能量而弯曲的时空,以取代传统对于引力是一种力的看法。 广义相对论的相对性原理:所有非惯性系和有引力场存在的惯性系对于描述物理现象都是等价的。 爱因斯坦狭义相对论 相对论是20世纪物理学史上最重大的成就之一,它包括狭义相对论和广义相对论两个部分,狭义相对论颠复了从牛顿以来形成的时空概念,提示了时间与空间的统一性和相对性,建立了新的时空观。广义相对论把相对原理推广到非惯性参照系和弯曲空间,从而建立了新的引力理论。在相对论的建立过程中,爱因斯坦起了主要的作用。 物理经典力学和爱因斯坦的相对论有什么区别物理经典力学是牛顿时期的力学那时候的坐标系是忽略时间的,只有空间

爱因斯坦的相对论时期是考虑了时间的是时间和空间都考虑的 相对论与经典力学的区别与联系。 可以这样高度总结地来看: 经典力学是狭义相对论在低速(v<

工程力学公式大全

工程力学公式: 1、轴向拉压杆件截面正应力N F A σ= ,强度校核max []σσ≤ 2、轴向拉压杆件变形Ni i i F l l EA ?=∑ 3、伸长率:1100%l l l δ-=?断面收缩率:1100%A A A ψ-=? 4、胡克定律:E σε=,泊松比:'ευε=-,剪切胡克定律:G τγ= 5、扭转切应力表达式:T I ρρ τρ=,最大切应力:max P P T T R I W τ==,44(1)32P d I πα=-,3 4(1)16P d W πα=-,强度校核:max max []P T W ττ=≤ 6、单位扭转角:P d T dx GI ?θ==,刚度校核:max max []P T GI θθ=≤,长度为l 的一段轴两截面之间的相对扭转角P Tl GI ?=,扭转外力偶的计算公式:()(/min) 9549KW r p Me n = 7、薄壁圆管的扭转切应力:202T R τπδ= 8、平面应力状态下斜截面应力的一般公式: cos 2sin 222x y x y x ασσσσσατα+-=+-,sin 2cos 22x y x ασστατα-=+ 9、平面应力状态三个主应力 : '2x y σσσ+= ,''2 x y σσσ+='''0σ= 最大切应力max ''' 2σστ-=±=最大正应力方位02tan 2x x y τασσ=-- 10、 第三和第四强度理论:3r σ= 4r σ=11、平面弯曲杆件正应力:Z My I σ=,截面上下对称时,Z M W σ=

矩形的惯性矩表达式: 3 12 Z bh I=圆形的惯性矩表达式: 4 4 (1) 64 Z d I π α =- 矩形的抗扭截面系数: 2 6 Z bh W=,圆形的抗扭截面系数: 3 4 (1) 32 Z d W π α =- 13、平面弯曲杆件横截面上的最大切应力:max max * S z S Z F S F K bI A τ== 14、平面弯曲杆件的强度校核:(1)弯曲正应力 max [] t t σσ ≤, max [] c c σσ ≤ (2)弯曲切应力 max [] ττ ≤(3)第三类危险点:第三和第四强度理论 15、平面弯曲杆件刚度校核:叠加法max[] w w l l ≤, max [] θθ ≤ 16、(1)轴向载荷与横向载荷联合作用强度:max max min ()N Z F M A W σσ=± (2)偏心拉伸(偏心压缩): max min ()N Z F F A W δ σσ=± (3)弯扭变形杆件的强度计算: 22222 3 11 [] r y z Z M T M M T W W σσ =+=++≤ 22222 4 11 0.750.75[] r y z Z M T M M T W W σσ =+=++≤

理论力学复习公式

静力学知识点 静力学公理和物体的受力分析 本章总结 1.静力学是研究物体在力系作用下的平衡条件的科学。 2.静力学公理 公理1 力的平行四边形法则。 公理2 二力平衡条件。 公理3 加减平衡力系原理 公理4 作用和反作用定律。 公理5 刚化原理。 3.约束和约束力 限制非自由体某些位移的周围物体,称为约束。约束对非自由体施加的力称为约束力。约束力的方向与该约束所能阻碍的位移方向相反。 4.物体的受力分析和受力图 画物体受力图时,首先要明确研究对象(即取分离体)。物体受的力分为主动力和约束力。要注意分清内力与外力,在受力图上一般只画研究对象所受的外力;还要注意作用力和反作用力之间的相互关系。 常见问题 问题一画受力图时,严格按约束性质画,不要凭主观想象与臆测。 平面力系 本章总结 1. 平面汇交力系的合力 ( 1 )几何法:根据力多边形法则,合力矢为 合力作用线通过汇交点。 ( 2 )解析法:合力的解析表达式为 2. 平面汇交力系的平衡条件 ( 1 )平衡的必要和充分条件: ( 2 )平衡的几何条件:平面汇交力系的力多边形自行封闭。 ( 3 )平衡的解析条件(平衡方程): 3. 平面内的力对点O 之矩是代数量,记为 一般以逆时针转向为正,反之为负。 或

4. 力偶和力偶矩 力偶是由等值、反向、不共线的两个平行力组成的特殊力系。力偶没有合力,也不能用一个力来平衡。 平面力偶对物体的作用效应决定于力偶矩M 的大小和转向,即 式中正负号表示力偶的转向,一般以逆时针转向为正,反之为负。 力偶对平面内任一点的矩等于力偶矩,力偶矩与矩心的位置无关。 5. 同平面内力偶的等效定理:在同平面内的两个力偶,如果力偶相等,则彼此等效。力偶矩是平面力偶作用的唯一度量。 6. 平面力偶系的合成与平衡 合力偶矩等于各分力偶矩的代数和,即 平面力偶系的平衡条件为 7、平面任意力系 平面任意力系是力的作用线可杂乱无章分布但在同一平面内的力系。当物体(含物体系)有一几何对称平面,且力的分别关于此平面对称时,可简化为平面力系计算。还有其他情况也可按平面任意力系计算。 本章用力的平移定理对平面任意力系进行简化,得到主矢主矩的概念,并进一步对力系简化结果进行讨论;然后得出平面任意力系的平衡条件,得出平衡方程的三种形式,并用平衡方程求解一些平衡问题;介绍静定超静定问题的概念,对物体系的平衡问题进行比较多的训练;最后介绍平面简单桁架的概念和内力计算。 常见问题 问题一不要因为这一章的内容简单,就认为理论力学容易学,而造成轻视理论力学的印象,这将给后面的学习带来影响。 问题二本章一开始要掌握好单个物体的平衡问题与解题技巧,这样才能熟练掌握物体系平衡问题的解法与解题技巧。 问题三在平时做题时,要注意解题技巧的训练,能用一个方程求解的就不用两个方程,但考试时则不一定如此。 第三章空间力系 本章总结 1. 力在空间直角坐标轴上的投影 ( 1 )直接投影法 ( 2 )间接投影法(图形见课本) 2. 力矩的计算 ( 1 )力对点的矩是一个定位矢量, ( 2 )力对轴的矩是一个代数量,可按下列两种方法求得: ( a )

经典力学的局限性(难)

6.经典力学的局限性难 1.关于经典力学、狭义相对论和量子力学,下面说法中正确的是( ) A.狭义相对论和经典力学是相互对立,互不相容的两种理论 B.在物体高速运动时,物体的运动规律服从狭义相对论理论,在低速运动时,物体的运动服从牛顿定律 C.经典力学适用于宏观物体的运动,量子力学适用于微观粒子的运动 D.不论是宏观物体,还是微观粒子,经典力学和量子力学都是适用的 【答案】BC 【解析】 A项:经典力学是狭义相对论在低速(v<<c)条件下的近似,即只要速度远远小于光速,经过数学变换狭义相对论的公式就全部变化为牛顿经典力学的公式,故A错误; B项:在物体高速运动时,物体的运动规律服从狭义相对论理论,在低速运动时,物体的运动服从牛顿定律,故B正确; C、D项:牛顿经典力学只适用于宏观低速物体,而微观、高速适用于狭义相对论,故C 正确;D错误。 故选:BC。 2.下列物理学公式正确的是 A.声音在空气中的传播速度(p为压强,为密度) B.声音在空气中的传播速度(p为压强,为密度) C.爱因斯坦提出的质量与速度关系(为静止质量,c为光速,为物体速度) D.爱因斯坦提出的时间与速度关系(为静止时间,c为光速,为物体速度) 【答案】BD 【解析】 A、B项:密度的单位为kg/m3,压强的单位为N/m2,又1N=1kg m/s2,则的单位为 ,等于速度的单位。故B正确,A错误; C项:爱因斯坦提出的质量与速度关系,(m0为静止质量,C为光速,v为物体速度)故C错误;

D项:爱因斯坦提出的时间与速度关系(t0为静止时间,C为光速,v为物体速度),故D正确。 故应选:BD。 3.2017 年 6 月 16 日,来自中国的“墨子号”量子卫星从太空发出两道红色的光射向青海德令哈站与千里外的云南丽江高美古站,首次实现了人类历史上第一次距离达千里级的量子密钥分发。下列说法正确的是() A.经典力学适用于“量子号”绕地球运动的规律, B.经典力学适用于光子的运动规律, C.量子力学可以描述“量子号”发出“两道红光”的运动规律 D.量子密钥分发的发现说明经典力学已经失去了使用价值 【答案】AC 【解析】A、经典力学适用于宏观低速的物体运动,卫星的运动相对微观粒子的运动速度小很多,属于宏观低速,故A正确。B、量子力学适用于微观高速的物体运动,如光子的运动,故B错误。C、D、量子力学和经典力学的适用范围不同,各自在自己的范围内是有价值的,并不会失去用处;故C正确,D错误。故选AC。 4.(多选)爱因斯坦相对论的提出是物理学领域的一场重大革命,主要是因为( ) A.否定了经典力学的绝对时空观 B.揭示了时间、空间并非绝对不变的本质属性 C.打破了经典力学体系的局限性 D.使人类对客观世界的认识开始从宏观世界深入到微观世界 【答案】BC 【解析】A、运动的钟变慢,运动的尺缩短,运动物体的质量变大,这是狭义相对论的几个重要的效应,揭示了时间、空间并非绝对不变的属性,故A错误,B正确; C、爱因斯坦相对论解释了经典牛顿力学不能解释的高速、微观范围,但狭义相对论在狭义相对性原理的基础上统一了牛顿力学和麦克斯韦电动力学两个体系,指出它们都服从狭义相对性原理,它打破了经典力学体系的局限性,故C正确; D、普拉克提出的量子理论使人类对客观世界的认识开始从宏观世界深入到微观世界,故D错误。 5.下列说法正确的是 A.不论是对宏观物体,还是微观粒子,经典力学和量子力学都是适用的 B.当物体运动速度很大(接近光速)时,经典力学理论所得的结果与实际结果之间出现了较大的偏差

弹塑性力学基本理论及应用 刘土光 华中科技大学研究生院教材基金资助 第二章应力状态

第二章 应力状态理论 2.1 应力和应力张量 在外力作用下,物体将产生应力和变形,即物体中诸元素之间的相对位置发生变化,由于这种变化,便产生了企图恢复其初始状态的附加相互作用力。用以描述物体在受力后任何部位的内力和变形的力学量是应力和应变。本章将讨论应力矢量和某一点处的应力状态。 为了说明应力的概念,假想把受—组平衡力系作用的物体用一平面A 分成A 和B 两部分(图2.1)。如将B 部分移去,则B 对A 的作用应代之以B 部分对A 部分的作用力。这种力在B 移去以前是物体内A 与B 之间在截面C 的内力,且为分布力。如从C 面上点P 处取出一包括P 点在内的微小面积元素S ?,而S ?上的内力矢量为F ?,则内力的平均集度为F ?/S ?,如令S ?无限缩小而趋于点P ,则在内力连续分布的条件下F ?/S ?趋于一定的极限σo ,即 σ=??→?S F S 0lim 这个极限矢量σ就是物体在过c 面上点P 处 的应力。由于S ?为标量,故,σ的方向与F ?的 极限方向一致。内力矢量F ?可分解为所在平面 的外法线方向和切线方向两个分量n F ?和s F ?。 同样,应力σ可分解为所在平面的外法线方向 和切线方向两个分量。沿应力所在平面 的外法线方向n 的应力分量称为正应力,记为n σ,沿切线方向的应力分量称为切应力,记为 n τ。此处脚注n 标明其所在面的外法线方向,由此, S ?面上的正应力和切应力分别为 在上面的讨论中,过点P 的平面C 是任选的。显然,过点P 可以做无穷多个这样的平面C ,也就是说,过点P 有无穷多个连续变化的n 方向。不同面上的应力是不同的。这样,就产生了如何描绘一点处的应力状态的问题。为了研究点P 处的应力状态,在点P 处沿坐标轴x ,y ,z 方向取一个微小的平行六面体(图2.2),其六个面的外法线方向分别与三个坐标轴的正负方向重合,其边长分别为x ?,Δy ,Δz 。假定应力在各面上均匀分布,于是各面上的应力便可用作用在各面中心点的一个应力矢量来表示,每个面上的应力矢量又可分解关一个正应力和两个切应力分量,如图2.2所示。以后,对正应力只用一个字母的下标标记,对切应力则用两个字母标记*其中第一个字母表示应力所在面的外法线方向;第二个字母表示应力分量的指向。正应力的正负号规定为:拉应力为正,压应力为负。切应力的正负早规定分为两种情况:当其所在面的外法线与坐标轴的正方向一致时,则以沿坐标轴正方向的切应力为正.反之为负;当所在面的外法线与坐标袖的负方向一致时,则以沿坐标轴负方向的切应力为正,反之为负。图2.2中的各应力分量均为正。应力及其分量的单位为Pa 。 图2.1 应力矢量

2020年整理工程力学公式大全.doc

工程力学公式: 1、轴向拉压杆件截面正应力N F A σ=,强度校核max []σσ≤ 2、轴向拉压杆件变形Ni i i F l l EA ?= ∑ 3、伸长率:1100%l l l δ-= ?断面收缩率:1 100%A A A ψ-=? 4、胡克定律:E σε=,泊松比:'ευε=-,剪切胡克定律:G τγ= 5、扭转切应力表达式:T I ρρτρ=,最大切应力:max P P T T R I W τ==,44(1)32 P d I πα=-,3 4(1)16 P d W πα= -,强度校核:max max []P T W ττ= ≤ 6、单位扭转角:P d T dx GI ?θ= =,刚度校核:max max []P T GI θθ=≤,长度为l 的一段轴两截面之间的相对扭转角P Tl GI ?= ,扭转外力偶的计算公式:()(/min) 9549KW r p Me n = 7、薄壁圆管的扭转切应力:202T R τπδ = 8、平面应力状态下斜截面应力的一般公式: cos 2sin 22 2 x y x y x ασσσσσατα+-= + -,sin 2cos 22 x y x ασστατα-= + 9、平面应力状态三个主应力: '2 x y σσσ+= ,''2x y σσσ+='''0σ= 最大切应力max ''' 2 σστ-=± =最大正应力方位02tan 2x x y τασσ=- - 10、 第三和第四强度理论:3r σ= 4r σ= 11、平面弯曲杆件正应力:Z My I σ= ,截面上下对称时,Z M W σ=

矩形的惯性矩表达式: 3 12 Z bh I=圆形的惯性矩表达式: 4 4 (1) 64 Z d I π α =- 矩形的抗扭截面系数: 2 6 Z bh W=,圆形的抗扭截面系数: 3 4 (1) 32 Z d W π α =- 13、平面弯曲杆件横截面上的最大切应力:max max * S z S Z F S F K bI A τ== 14、平面弯曲杆件的强度校核:(1)弯曲正应力 max [] t t σσ ≤, max [] c c σσ ≤ (2)弯曲切应力 max [] ττ ≤(3)第三类危险点:第三和第四强度理论 15、平面弯曲杆件刚度校核:叠加法max[] w w l l ≤, max [] θθ ≤ 16、(1)轴向载荷与横向载荷联合作用强度:max max min ()N Z F M A W σσ=± (2)偏心拉伸(偏心压缩): max min ()N Z F F A W δ σσ=± (3)弯扭变形杆件的强度计算: 22222 3 11 [] r y z Z M T M M T W W σσ =+=++≤ 22222 4 11 0.750.75[] r y z Z M T M M T W W σσ =+=++≤

工程力学公式

轴向拉伸与压缩 正应力ζ=F N/A 正应变ε=Δl/l (无量纲) l/EA EA为抗拉(压)刚度 胡克定律Δl=F N ζ=Eε E为弹性模量 泊松比ν=【ε’/ε】横向比纵向 刚度条件:Δl=F l/EA <=[Δl] 或δ<=[δ] N 先计算每段的轴力,每段的Δl加起来即为总的Δl 注意节点是位移 P151 拉压超静定: 1按照约束的性质画出杆件或节点的受力图 2根据静力平衡列出所有独立的方程 3画出杆件或杆系节点的变形-位移图 4根据变形几何关系图建立变形几何关系方程,建立补充方程 5将胡可定律带入变形几何方程,/得到解题需要的补充方程 6独立方程与补充方程联立,求的所有的约束力 剪切 1剪切胡克定律η=GγG~MPa为剪切弹性模量,γ为切应变(无量纲)2 G=E/2(1+ν)ν泊松比 3剪切与挤压实例 校核铆钉的剪切强度 单剪(两层板)η=Fs/As =F/A F为一个方向的拉力 双剪(三层板)η=Fs/As =F/nA n整块板上所有的铆钉 校核铆钉的挤压强度 挤压ζc=Fc/Ac ζc=Fc/nAc=F/ntd n为对称轴一侧的铆钉数 校核板(主板、盖板)的抗拉强度 ζ=F/A=F/t(b-nd)<<[ζ] n 为危险截面上的铆钉数

1外力偶矩:T=9550 N k / n ( N k~kw,n~r/min) 2扭矩Mn = T (Mn~N*m) 判断方向,右手螺旋定则,向外为正,内为负3扭矩图 4切应变、剪切角γ= θ*ρ(θ为单位扭转角) 5切应力:η ρ=G*γρ=Gρθ 扭转角公式:dψ=Mdx/GIp 6θ=Mn/G*Ip 刚度校核公式 Ip~mm4 极惯性矩, 与截面形状有关,GIp 抗扭刚度,θ~rad/m 7ηmax=Mn/Wp=Mnρ/Ip 强度校核公式 Wp~mm3抗扭截面模量,与截面形状有关 8 Ip 和Wp 的计算: 实心圆截面: Wp = ПD3/16 Ip = ПD4/32 空心圆截面:Wp = ПD3(1-α4)/16 Ip = ПD4(1-α4)/32 薄壁圆截面:Wp = 2Пr 02t r =D /2=D/2 Ip = 2Пr 3t 9 扭转角θ= Mn*l/G*Ip (l为杆长)θ~rad/m 10 自由扭转 截面周边的切应力方向与周边平行,角点出切应力为0 ηmax=Mn/αhb2 长边中点处 θ=Mn/βGhb3 b为短边,h为长边,αβ为相关系数 无论是扭转强度,还是扭转刚度,圆形截面比正方形截面要好。 狭长矩形:ηmax=3Mn/hb2 θ=3Mn/hGb3 θ=3Mnl/hGb3 闭口薄壁杆ηmax=3Mn/2ΩδΩ为-截面中心线所围截面积δ为壁厚Φ=Mnls/4GΩ2δ s为截面中线的长度 θ=MnS/4GΩ2δ 等厚度开口薄壁杆η=3Mn/hδ 2 θ=3Mnl/Ghδ 3 (计算时展开成矩形)在抗扭性能方面,闭口薄壁杆远比开口薄壁杆好

理论力学公式

理论力学公式

————————————————————————————————作者:————————————————————————————————日期: ?

理论力学公式 运动学公式 定轴转动刚体上一点的速度和加速度:(角量与线量的关系) 1.点的运动 矢量法 2 2 , , )(dt r d dt v d a dt r d v t r r ==== 直角坐标法 ) ()()(321t f z t f y t f x ===z v y v x v z y x ===z a y a x a z y x === 点的合成运动 r e a v v v +=r e a a a a +=(牵连运动为平动时) k r e a a a a a ++=(牵连运动为转动时) 其中, ),sin(2 , 2r e r e k r e k v v a v a ωωω=?=2 2 , , )(dt d dt d dt d t f ? ωε?ω?====

三.运动学解题步骤.技巧及注意的问题 1.分析题中运动系统的特点及系统中点或刚体的运动形式。 2.弄清已知量和待求量。 3.选择合适的方法建立运动学关系求解。 各种方法的步骤,技巧和使用中注意的问题详见每次习题课中的总结。 动力学公式 1. 动量定理 质点系动量定理的微分形式,即质点系动量的增量等于作用于质点系的外力元冲量 的矢量和;或质点系动量对时间的导数等于作用于质点系的外力的矢量和. 质心运动定理 ω R v =ε τR a =2 ωR a n =全加速度: 2 ),(ωε= n a tg 轮系的传动比: n n n n i Z Z R R n n i ωωωω ωωωωωω13221111221212112 ,-????====== ω ω , ?=+=AB v v v v BA BA A B 为图形角速度 ετ ?=AB a BA 2 ω ?=AB a n BA ω,ε分别为图形的角速度,角加速度 n BA BA A B a a a a ++=τ() d d e i p F t =∑

塑性理论的基本假设

塑性理论的基本假设 在金属成形中应用塑性理论的目的是要探索金属成形的塑性变形机理。这样,调研可提供以下的分析和判断:(a)金属的流动性(速度、应变和应变率),(b)温度和热传导,(c)材料强度的局部变化或流动应力和(d)应力,成形中的负载、压力和能量。这样变形机理就可提供决断:金属如何流动,借助塑性成形可如何去获得所希望的几何形状以及用成形方法生产出的零件具有什么样的机械性能。 为了建立金属变形的可控制的数字模型(曲线图形),作出以下几个简化的但是合理的假设: 1)忽略弹性变形。然而当必要时,弹性复原(例如,弯曲回弹情况)和加工中的弹性弯曲(例如,成形加工精度非常接近公差)定要考虑; 2)作为一种连续体来考虑材料变形(如结晶,而晶间疏松和位错是不加考虑的); 3)单向拉伸或压缩试验与多向变形条件下的流动应力相互有关; 4)各向异性和Bauschinger效应忽略不计; 5)体积保持恒定; 6)用简化法来表示摩擦,如用Coulomb's定律法或用恒剪切应力法。这将在后面进行讨论。 在压缩应力状态下的金属特性更加复杂。这可以从一金属圆柱体试样在两个模板之间被压缩时怎样发生变化的分析中可以看得出来。当工件达到金属的屈服应力的应力状态时,塑性变形就开始发生。当试样高度降低时,试样随着横截面的增加而向外扩展。这种塑性变形在克服工件和模板的两端之间的摩擦力中发生。该金属变形状态是受到其复杂应力体系所支配。 这应力体系可从单一的、单向的到三维的即三向发生变化。有一个由模板施加的应力和有两个由摩擦反力引起的应力。如果模板与工件间无摩擦,工件就在单向压应力下发生屈服,正像其受到拉伸载荷作用时的情形一样。而且压缩的屈服应力跟拉伸屈服应力极端一致。由于摩擦力的存在而改变了这一状况,故需要更高的应力才能引起屈服。为了找到拉伸屈服应力与三向应力状态下产生屈服时的应力值之间的数量关系,已经做了很多尝试。对于所有的金属在三向载荷作用下的各种情况下,包括各种塑性屈服试验情况中均未发现单一的(应力、应变)关系。已经存在的若干个建议使用的塑性屈服理论,其中每一种理论只能在一定的范围内有效。在考虑使用这些理论之前,研究三向应力体系并创立既利用数量关系又利用图解技术的解题方法,那是必要的。 对于三维应力状态,最方便而有效的方法就是利用莫尔圆,当研究塑性屈服的各种复杂情况时,你可以很容易地运算和进行处理。 The stress system has altered from single, uniaxial to three-dimensional or triaxial. There is one applied stress from the platens and two are induced by the friction reaction. If there was no friction between the platens and the workpiece, then yielding would occur under a uniaxial compressive stress exactly as in the case of tensile loading. The yield stress in compression would then coincide exactly with the yield stress in tension. The presence of friction, however, alters the situation and a higher stress is required to cause yielding. Many attempts have been made to find

理论力学公式

理论力学公式 运动学公式 定轴转动刚体上一点的速度和加速度:(角量与线量的关系) ω R v =ε τR a =2 ωR a n =全加速度: 2 ),(ωε = n a tg 点的合成运动 r e a v v v +=r e a a a a +=(牵连运动为平动时) k r e a a a a a ++=(牵连运动为转动时) 其中, ) ,sin(2 , 2r e r e k r e k v v a v a ωωω=?= 1.点的运动 ? 矢量法 2 2 , , )dt r d dt v d a dt r d v t r r ====? 直角坐标法 ) ()()(321t f z t f y t f x == =z v y v x v z y x == =z a y a x a z y x == =2 2 , , )(dt d dt d dt d t f ? ωε?ω?====

三.运动学解题步骤.技巧及注意的问题 1.分析题中运动系统的特点及系统中点或刚体的运动形式。 2.弄清已知量和待求量。 3.选择合适的方法建立运动学关系求解。 各种方法的步骤,技巧和使用中注意的问题详见每次习题课中的总结。 动力学公式 1. 动量定理 质点系动量定理的微分形式,即质点系动量的增量等于作用于质点系的外力元冲量的矢量和;或质点系动量对时间的导数等于作用于质点系的外力的矢量和. 质心运动定理 M a c = ∑F ≡ R 2. 动量矩定理: 平行移轴定理 ) (2 2) ( e z z e z z M dt d I M I ==∴?ε或—刚体定轴转动微分方程 ∑==) ()()(e O e i O O M F m dt L d 一质点系对固定点的动量矩定理 ε τ ?=AB a BA 2 ω?=AB a n BA ω,ε分别为图形的角速度,角加速度 n BA BA A B a a a a ++=τωω , ?=+=AB v v v v BA BA A B 为图形角速度 轮系的传动比: n n n n i Z Z R R n n i ωωωω ωωωωωω13221111221212112 ,-????====== 2 'md I I zC z +=() d d e i p F t =∑

弹塑性力学基本理论及应用__第八章_能量原理及其应用

第八章 能量原理及其应用 弹塑性力学问题实质上是边值问题,即求解满足一定边界条件的偏微分方程组。然而只有对一些特殊的结构在特定加载条件下才能找到精确解,而对于一般的力学问题,如空间问题,泛定方程为含有15个未知量的6个偏微分方程,在给定边界条件时.求解是极其困难的,而且往往足小对能的。因此,为了解决具体的工程结构力学问题,目前都广泛应用数值方法,如有限元法、无限元法、边界元法、无网格化法及样条元法等等。这些解法的依据都是能量原理。本章将讨论利用能量原理和极值原理求解弹塑性力学问题的近似解法。 本章共讨论五个能量原理。首先是虚位移原理,由虚位移原理推导出最小势能原理,其次介绍虚应力原理,和由虚应力原理推导出最小余能原理。另外,还简单介绍最大耗散能原理。本章还讲述了根据上述的能量原理建立的有关弹性力学问题的数值解法。 8.1 基本概念 1.1 物体变形的热力学过程 由第四章知,物体在外界因素影响下的变形过程,严格来说都是一个热力学过程。因此研究物体的状态,不仅要知道物体的变形状态,而且还要知道物体中每一点的温度。如果物体在变形过程中,各点的温度与其周围介质的温度保持平衡,则称这一过程为等温过程;若在变形过程中,物体的温度没有改变,即既没有热量损失也没有热量增加,则称这一过程为绝热过程。物体的瞬态高频振动,高速变形过程都可视为绝热过程。 令物体在变形过程中的动能为E ,应变能为U ,则在微小的t δ时间间隔内,物体从一种状态过渡到另一种状态时,根据热力学第一定律,总能量的变化为 Q W U E δδδδ+=+ (a) 其中,W δ为作用于物体上的体力和面力所完成的功;Q δ是物体由其周围介质所吸收(或向外发散)的热量,并以等量的功度量。假定弹性变形过程是绝热的,则对于静力平衡问题有 00==Q ,E δδ (b) 将式(b)代入式(a),则有 W U δδ= (8.1-1)

工程力学公式大全(河北工程大学)

工程力学资料 工程力学公式: 1、轴向拉压杆件截面正应力N F A σ=,强度校核max []σ σ≤ 2、轴向拉压杆件变形N i i i F l l EA ?=∑ 3、伸长率:1100% l l l δ -=?断面收缩率:1 100% A A A ψ-=? 4、胡克定律:E σ ε =,泊松比:'ευε=-,剪切胡克定律:G τ γ= 5、扭转切应力表达式:T I ρ ρ τρ =,最大切应力:m ax P P T T R I W τ = = , 4 4 (1) 32 P d I πα= -,3 4 (1)16 P d W πα= -,强度校核:m ax m ax []P T W ττ= ≤ 6、单位扭转角:P d T dx G I ?θ = = ,刚度校核:m ax m ax []P T G I θ θ= ≤,长度为 l 的一段轴两截面之间的相对扭转角P Tl G I ?= ,扭转外力偶的计 算公式:()(/m in) 9549 K W r p M e n = 7、薄壁圆管的扭转切应力:2 02T R τπδ = 8、平面应力状态下斜截面应力的一般公式: cos 2sin 22 2 x y x y x ασσσσσατα +-= + -,sin 2cos 22 x y x α σστατα -= + 9、平面应力状态三个主应力: 22 '( )2 2 x y x y x σσσσ στ+-= ++,22 ''( )2 2 x y x y x σσσσ στ+-= -+,'''0σ=

最大切应力22 m ax ''' ( )2 2 x y x σσ σστ τ--=± =±+,最大正应力方位 02tan 2x x y τασσ=- - 10、第三和第四强度理论:22 3 4r σστ =+,22 4 3r σ στ =+ 11、平面弯曲杆件正应力:Z M y I σ= ,截面上下对称时,Z M W σ = 矩形的惯性矩表达式: 3 12 Z bh I = 圆形的惯性矩表达式: 4 4 (1)64 Z d I πα= - 矩形的抗扭截面系数:2 6 Z bh W = ,圆形的抗扭截面系数: 3 4 (1)32 Z d W πα= - 13、平面弯曲杆件横截面上的最大切应力:max max *S z S Z F S F K bI A τ = = 14、平面弯曲杆件的强度校核:(1)弯曲正应力m ax [] t t σ σ≤, m ax []c c σσ≤ (2)弯曲切应力max []ττ≤(3)第三类危险点:第三和第四强度 理论 15、平面弯曲杆件刚度校核:叠加法 m ax [ ]w w l l ≤,m ax []θθ≤ 16、(1)轴向载荷与横向载荷联合作用强度: max max min ()N Z F M A W σσ=± (2)偏心拉伸(偏心压缩):m ax m in ()N Z F F A W δσ σ=± (3)弯扭变形杆件的强度计算:

肛肠动理论力学

肛肠动力学 一、概述 (一)肛肠动力学的概念 用静力学和动力学的方法来研究结肠、直肠、肛管(包括盆底)的各种运动方式,从而对排便生理、肛门自制生理及有关肛肠疾病的病理生理学进行研究,称为肛肠动力学(Anorectal Dynamics)。 平时,固态粪便储存于乙状结肠甚至降结肠中。结肠及直肠松弛,内外括约肌、耻骨直肠肌均处于张力收缩状态。在结肠至肛门这一段距离中,存在着一个远心端压力高,近心端压力低的向心型压力梯度和蠕动波梯度,排便阻力大于排便动力,粪便得以储存(自制)。排便时,结、直肠肌收缩,肠腔内压增高,腹肌亦收缩使腹压增高,而内括约肌、耻骨直肠肌、外括约肌均反射性松弛,肛管压力迅速降低,上述压力梯度逆转,排便动力大于排便阻力,粪便排出肛门(自制解除)。这两种状态下肛管、直肠、盆底的功能变化及各器官协调功能均可通过压力变化而表现出来,测定这些压力变化便可判断有关器官的功能和协调情况。(二)肛肠动力学的发展概况 压力测定的方法诊断肛肠疾病始于30多年前,但其历史却可上溯到一百多年前。1877年Cowers发现扩张直肠后。内括约肌短暂松弛,他即将之称为直肠内括约肌抑制反射。Denny-Brown等(1935)肯定了这一发现。Callaghan和 Nixon(1964)报道先天性巨结肠患者此反射缺如。1967年,Schnaufer、Lawson、Nixon等分别发表文章,介绍用肛管直肠测压诊断小儿先天性巨结肠的方法。此后,应用者逐渐增多。七十年代初。开始将肛管直肠测压的方法用于肛肠外科疾病的病理生理研究和诊断,如痔、肛裂患者肛管压力改变及扩肛治疗后压力的变化。以后,又相继有人报道排便失禁、直肠脱垂、肛瘘、直肠孤立性溃疡综合征、会阴下降综合征等疾病肛管直肠测压的结果。八十年代始,人们又用肛肠测压法评价各种肛肠手术后患者的肛管直肠功能,将其用于排便失禁的生物反馈治疗,将骶神经—肛门外括约肌反射用作术中监测手段,帮助鉴别神经组织。近几年来,测压方法以及由其衍生出来的各种方法已广泛地应用于肛肠外科的各个领域,被公认为十分重要的研究手段和有用的诊断方法。显然,"测压"这一名词已难以全面准确地体现本方法学的现状和发展趋势。本文作者在工程界学者的帮助下,于1986年提出"肛肠动力学"的概念,以期代替“测压”一词。 (三)肛肠动力学检查的意义 排便、自制以及多种肛肠疾病的发生、发展都与结肠、直肠、肛管、盆底的力学状态改变有关。由于涉及的因素很多,机理十分复杂以及检测手段的限制,过去医师们仅能凭病人主诉和直肠指诊x线照相所提供的比较粗略的形态学资料进行判断,而难以对它们的功能,尤其是运动状态下的功能进行定性、定量观察。近些年发展起来的排粪造影技术,使人们对大肠肛门运动过程中的形态学改变的观察成为可能,但对这些过程申肉眼无法观察到的力学状态却难以准确了解,动力学检查恰好提供了一种有效的定量手段,从而在肛肠疾病的诊断和研究中得到广泛应用。当它与肠道转运功能检查、排粪造影检查、盆底肌电图检查结合应用时,能提供关于结肠、直肠、盆底、内外括约肌生理的许多重要的基本信息,从而使肛肠外科疾病的研究、诊断、治疗水平有了提高。 (四)研究肛肠动力学的基本要求

塑性力学原理+

1. 什么是塑性? 塑性是一种在某种给定载荷下,材料产生永久变形的材料特性,对大多的工程材料来说,当其应力低于比例极限时,应力一应变关系是线性的。另外,大多数材料在其应力低于屈服点时,表现为弹性行为,也就是说,当移走载荷时,其应变也完全消失。 由于屈服点和比例极限相差很小,因此在ANSYS程序中,假定它们相同。在应力一应变的曲线中,低于屈服点的叫作弹性部分,超过屈服点的叫作塑性部分,也叫作应变强化部分。塑性分析中考虑了塑性区域的材料特性。 路径相关性: 即然塑性是不可恢复的,那么这种问题的就与加载历史有关,这类非线性问题叫作与路径相关的或非保守的非线性。 路径相关性是指对一种给定的边界条件,可能有多个正确的解—内部的应力,应变分布—存在,为了得到真正正确的结果,我们必须按照系统真正经历的加载过程加载。 率相关性: 塑性应变的大小可能是加载速度快慢的函数,如果塑性应变的大小与时间有关,这种塑性叫作率无关性塑性,相反,与应变率有关的性叫作率相关的塑性。 大多的材料都有某种程度上的率相关性,但在大多数静力分析所经历的应变率范围,两者的应力——应变曲线差别不大,所以在一般的分析中,我们变为是与率无关的。 工程应力,应变与真实的应力、应变: 塑性材料的数据一般以拉伸的应力—应变曲线形式给出。材料数据可能是工程应力( P/A )与工程应 变(Δl/l 0),也可能是真实应力(P/A)与真实应变( L n (l/l ) )。 大应变的塑性分析一般采用真实的应力,应变数据而小应变分析一般采用工程的应力、应变数据。什么时候激活塑性: 当材料中的应力超过屈服点时,塑性被激活(也就是说,有塑性应变发生)。而屈服应力本身可能是下列某个参数的函数。 ? 温度 ? 应变率 ? 以前的应变历史 ? 侧限压力 ? 其它参数 2. 塑性原理方面的几个概念 任何塑性理论都包括如下几个主要方面: 屈服条件:它规定在不同组合的外加应力作用下,塑性形变从什么时候开始发生;

工程力学公式

工程力学公式大全 第一章: 力矩 用符号MO (F )表示。即 力矩矢量 描述力的转动效应 力矩矢量的模描述转动效应的大小,它等于力的大小与矩心到力作用线的垂直距离(力臂)的乘积,即 q 为矢径r 与力F 之间的夹角。 平面力系的合力对平面上任一点之矩等于力系中所有的力对同一点之矩的代数和 或者简写成 ()ABO h F M O ?±=?±=2F ()F r F ?=O M ()θsin F Fr Fh M O ==n O O O O 21R ()()()()n O O O O M M M M F F F F 21R +???++===n i i O O M M 1 R F F ()()∑==n i i O O M M 1R F F

力偶矩 第二章: 一主矢: 有任意多个力所组成的力系 (F1,F2…Fn),的矢量和: 二主矩: 力系中所有的力对同一点O 之矩的矢量和 用表示: 空间任意汇交系在oxyz 坐标中投影表达式: ()()Fh M M M O O ='+=F F ∑==n i Fi F 1)(10 0Fi n i M M ∑==∑==n i ix x F F 1 ∑==n i iy y F F 1 ∑==n i iz z F F 1

对于空间任意力系 主矩的分量表达式为 第三章 静力学平衡问题 平面一般力系的平衡方程: 00 ()0 x y o F F M F ===∑∑∑ 1n Ox O i i x M ==()1n Ox O i i x M =?? ???∑=M F 1 n Oy O i i y =()1n Oy O i i y M =?? ? ??∑=M F 1n Oz O i i z =???F ()1n Oz O i i z M =?? ???∑=M F

相关文档
最新文档