15构造的思想方法 (一)
05高中数学思想方法专题五《构造思想方法》
高中数学思想方法专题五
例3已知a∈(0,1),求证:对于一切x∈R,都有1+2(2-a2)x2+(3a-a2)x4>2x+2ax3.
证明:整理为关于a的不等式:(x4+2x2)a2-(3x4-2x3)a-4x2+2x-1<0是关于a的二次式,因此,通过变更主元,构造关于a的二次函数.令f(a)=(x4+2x2)a2-(3x4-2x3)a-4x2+2x-1.
三、范例剖析
例1已知定义在R上的偶函数f (x)在[0,+∞)上是增函数,且f ()=0,则满足f (logx)>0的x的取值范围是( )
A.(0,+∞)B.(0,)C.(0,)∪(2,+∞)D.(0,)∪(,2)
解析:根据选择题的特点,利用特殊法求解:令f(x)=|x|﹣,则f(logx)=|logx|﹣,
即f(n)min=f(1)=++=,
故对一切自然数n使得f(n)>2a-5成立的充要条件是:>2a-5,∴a<,
故所求自然数a的最大值是3.
点拨:本题通过构造单调数列,是解证含自然数n的数学问题的一种常采用的方法.
例5已知α,β,γ满足关系等式sinα+sinβ+sinγ=0,cosα+cosβ+cosγ=0,且0≤α<β<γ<2π,求β-α和γ-β的值.
浅谈初中数学教学中的“几何模型” 构造思想
浅谈初中数学教学中的“几何模型” 构造思想作者:徐晓静来源:《考试与评价》2020年第01期【摘要】义务教育数学课程标准(2011版)将模型思想作为十个核心概念之一。
几何知识的学习是初中阶段很重要的一部分,建模思想作为初中几何核心思想,贯穿于整个几何知识体系,还是几何课堂教学中最常用的方法和手段。
构造思想是数学学习中需具备的一种指导思想,通过观察与联想等思想,构造出本题中表面不具备的模型。
达到把本身复杂的问题转化为简单,易求解的问题。
【关键词】几何模型; 构造法图形建模,就是建立几何图形模型的过程,包括对现实原型进行提炼,抽象,简化,以及确立,验证,解释,应用和拓展的过程。
构造思想利用观察与联想等思想,准确恰当地构造出一个或者多个同原来问题相关的辅助条件或问题。
一、把握图形建模之“形”图形建模是内隐的,教师应该认真研读教材,不但研读本课時的教学内容,还要研读与之相关的其他内容,挖掘问题之外的暗线,深刻把握知识内部的关联。
1. 第一环节,图形建模准备:在数学概念的教学中渗透数学思想方法初中数学几何中定义,定理都是一个个数学模型,如何使学生通过建模形成数学模型。
教师在教学过程中概念的教学,不能简单地把概念的定义告诉给学生,而是要尽可能地向学生讲授概念发生发展过程,把对概念的分析过程来龙去脉展示给学生。
让学生明确知识的内涵与外延。
笔者在上初三中考专题复习课中“角的关系:倍半角处理策略”对基本概念进行了如下推广,并运用概念去渗透数学思想。
01. OC是∠AOB的平分线,则∠AOC=∠BOC=1/2______;∠AOB=2______=2______02. 等腰三角形顶角的外角等于底角的______倍。
03. 折叠,旋转不改变图形的______。
探究“特殊半角”的三角函数值(由倍β到半β/2)(策略构造等腰三角形)求tan22.5=_____; ;求tan15=_____学生在遇到这样问题时,往往千头万绪,不知从何入手解题。
数学思想方法(整体思想、转化思想、分类讨论思想
专题知识突破五数学思想方法(一)(整体思想、转化思想、分类讨论思想)一、中考专题诠释数学思想方法是指对数学知识和方法形成的规律性的理性认识,是解决数学问题的根本策略。
数学思想方法揭示概念、原理、规律的本质,是沟通基础知识与能力的桥梁,是数学知识的重要组成部分。
数学思想方法是数学知识在更高层次上的抽象和概括,它蕴含于数学知识的发生、发展和应用的过程中。
抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在.因此,在复习时要注意体会教材例题、习题以及中考试题中所体现的数学思想和方法,培养用数学思想方法解决问题的意识.二、解题策略和解法精讲数学思想方法是数学的精髓,是读书由厚到薄的升华,在复习中一定要注重培养在解题中提炼数学思想的习惯,中考常用到的数学思想方法有:整体思想、转化思想、函数与方程思想、数形结合思想、分类讨论思想等.在中考复习备考阶段,教师应指导学生系统总结这些数学思想与方法,掌握了它的实质,就可以把所学的知识融会贯通,解题时可以举一反三。
三、中考考点精讲考点一:整体思想整体思想是指把研究对象的某一部分(或全部)看成一个整体,通过观察与分析,找出整体与局部的联系,从而在客观上寻求解决问题的新途径。
整体是与局部对应的,按常规不容易求某一个(或多个)未知量时,可打破常规,根据题目的结构特征,把一组数或一个代数式看作一个整体,从而使问题得到解决。
例1 (2014•德州)如图,正三角形ABC的边长为2,D、E、F分别为BC、CA、AB的中点,以A、B、C三点为圆心,半径为1作圆,则圆中阴影部分的面积是.思路分析:观察发现,阴影部分的面积等于正三角形ABC的面积减去三个圆心角是60°,半径是2的扇形的面积..考点二:转化思想转化思想是解决数学问题的一种最基本的数学思想。
在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题。
15构造的思想方法 (一)
显然由巳知得(x-1)+(y-1)+(z-1)=0 因此(x-1)3+(y-1)2+(z-1)3=3(x-1)(y-1)(z-1). 由此得 原式=1
例2 有质量为12,22,32,…,402的砝码各一个.试证:可以将它 们分成质量相等的两组,每组的砝码数也相等. 思路分析 如果盲目地去尝试,肯定不可取,观察并初步试探可 以发现简单的等式 12+42+62+72=22+32+52+82. 由此进一步想到可构造出恒等式 x2+(x+3)2+(x+5)2+(x+6)2=(x+1)2+(x+2)2+(x+4)2+(x+7)2. 于是可以将1,2,3,4,…,40除以8余数为1,4,6,7的为一组, 余数为2,3,5,0的为另一组,则可得满足条件的两组数字.
用构造的思想方法解题其核心就是要发现深藏用构造的思想方法解题其核心就是要发现深藏在问题表面形式后面的深层次的东西在问题表面形式后面的深层次的东西构造的思想方法构造的思想方法一模型性构造一模型性构造二技巧性构造二技巧性构造一一构造恒等式构造恒等式二二构造方程构造方程三三构造函数构造函数四四构造不等式构造不等式五五构造数列构造数列六六构造复数构造复数七七构造几何模型构造几何模型八八构造解析模型构造解析模型九九构造物理模型构造物理模型构造恒等式思路分析待求值式实际上巳暗示我们应设法构造一个恒等式使之能利用已有的结论
(八)构造解析模型 八 构造解析模型
思路分析 通过比较大小的方法进行证明,将会遇到烦琐的运算 若在数轴上构造三个点A、B、C,它们对应的实数值分别为a、
因a>0,故0<λ<1,由此知B在A、C之间,且B距C的距离 比距A的距离近.
(九)构造物理模型 九 构造物理模型
构造性思想及其方法
2 cs+ cs ) W+ - ycs) ( oB yoCx z +  ̄ 2zo 若能证 明这个二 A
次 函数 中, 0 ) 恒成立 , 即原式得证.
【 明】 设, ) - ( oB yDc +2 证 2 cs +c + z z
[f 知xE 号号f∈, f2 ) 1已 : } , , J ,一 y d
时也是一种重要而灵活的思维方式 , 它没有固定的
~% c。曷求…v~ 且+y+ 求g 值 H 一 a② …1) { is O c 的 (so=一 cl. 【 2 n —+ 4 y y o— …2 (
O cs +y= . = o( 2) 1 x
【 1 、 C是z4 的三个 内角 , Y z 例 】 B、 LBC 、 、 为 任意实数.
证 明 ; 2,( 2 c + cs . + 十 'c幄 + D曰 2 oC z
【 点评】 利用① , ③两式结构上的相似 , 启发 我们 巧妙地构造一个单 调增函数达到 问题的解决. 【 3 ( 0 7年 高考湖北理科卷 ) 例 】 20
厂 为二次 函数 , ∽ 且二次项系数大于 0 .对 ,。 .
于一切 实数 , ≥0 / ) 恒成立. 。 ≥ ∞. + 即: 十 2 z
蘅
型塾
藕
2 z o B+ x c s x c s 2 y o C
3 构造 法 是 一 种 综合 运 用 知 识 的 解题 方法 , . 同
进 Biblioteka 述, 出了构造方法 。 了方法 , 给 有 我们就可以战无 不胜 。
汹谴 性蕙 及 法 想 其方
姗
■ 董方博
一
春季班七年级下册教案第10讲 全等三角形中的化规思想及构造全等的方法(1)
第10讲全等三角形中的化规思想及构造全等的方法(1)【学习目标】1.熟悉并掌握三角形全等的“SSS”,“ASA”,“AAS”,“SAS”,“HL”条件;2.掌握全等三角形中的化规思想,能掌握“倍长中线法”和“截长补短法”。
【学习重点】全等三角形中的化规思想,“倍长中线法”和“截长补短法”的学习。
【学习难点】1.在多个问的问题中,能够根据第(1)问的方法进行方法的化规,解决(2),(3)问题;2.“倍长中线法”和“截长补短法”的学习,并能对相关题目进行分析方法与技巧的总结与运用。
【知识梳理】1.全等三角形判定方法:(1) “边角边”或“SAS” ;(2) “角边角”或“ASA”;(3) “边边边”或“SSS”;(4) “角角边”或“AAS” ;(5) “斜边、直角边”或“HL”2.构造全等三角形的方法:(1)通过翻折构造全等三角形;(2)通过旋转构造全等三角形【典例剖析】考点一:通过“基本图形”构造三角形全等(因为研究图形的性质时,往往要从研究图形中的线段相等关系或角的相等关系入手,做题时多观察,将图形进行分离为常见基本图形,从而轻松对角进行转移,难题迎刃而解,常见基本型有“K型(√型)”、“蝴蝶型(X型)”、“子母型”)例1:(2016最佳方案)请阅读,完成证明和填空。
某数学兴趣小组展示了他们小组探究发现的结果,内容如下:(1)如图1,正三角形ABC中,在AB,AC边上分别取点M,N,使BM=AN,连接BN,CM,发现BN=CM,且∠NOC=60°,请证明:∠NOC=60°。
(2)如图2,正方形ABCD中,在AB,BC边上分别取点M,N,使AM=BN,连接AN,DM,那么AN= ,且∠DON= 。
(3)如图3,在五边形ABCDE中,AB=BC=CD=DE=EA,∠BAC=∠B=∠C=∠D=∠AED=108°,在AB,BC边上分别取点M,N,使AM=BN,连接AN,EM,那么AN= ,且∠EON= 度。
高中数学解题方法之构造法(含答案)
十、构造法解数学问题时,常规的思考方法是由条件到结论的定向思考,但有些问题用常规的思维方式来寻求解题途径却比较困难,甚至无从着手。
在这种情况下,经常要求我们改变思维方向,换一个角度去思考从而找到一条绕过障碍的新途径。
历史上有不少著名的数学家,如欧几里得、欧拉、高斯、拉格朗日等人,都曾经用“构造法”成功地解决过数学上的难题。
数学是一门创造性的艺术,蕴含着丰富的美,而灵活、巧妙的构造令人拍手叫绝,能为数学问题的解决增添色彩,更具研究和欣赏价值。
近几年来,构造法极其应用又逐渐为数学教育界所重视,在数学竞赛中有着一定的地位。
构造需要以足够的知识经验为基础,较强的观察能力、综合运用能力和创造能力为前提,根据题目的特征,对问题进行深入分析,找出“已知”与“所求(所证)”之间的联系纽带,使解题另辟蹊径、水到渠成。
用构造法解题时,被构造的对象是多种多样的,按它的内容可分为数、式、函数、方程、数列、复数、图形、图表、几何变换、对应、数学模型、反例等,从下面的例子可以看出这些想法的实现是非常灵活的,没有固定的程序和模式,不可生搬硬套。
但可以尝试从中总结规律:在运用构造法时,一要明确构造的目的,即为什么目的而构造;二要弄清楚问题的特点,以便依据特点确定方案,实现构造。
再现性题组 1、求证: 31091022≥++=x x y (构造函数) 2、若x > 0, y > 0, x + y = 1,则42511≥⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+y y x x (构造函数) 3、已知01a <<,01b <<,求证:22)1()1()1()1(22222222≥-+-+-+++-++b a b a b a b a(构造图形、复数) 4、求证:9)9(272≤-+x x ,并指出等号成立的条件。
(构造向量)5、已知:a>0、b>0、c>0 ,求证:222222c ac a c bc b b ab a ++≥+-++-当且仅当ca b 111+=时取等号。
数学解题中的构造法思想
数学解题中的构造法思想数学科 庞春英我们首先从下面例题的解法开始讨论: 例:解方程组 ⎪⎩⎪⎨⎧=++=++=++323232c z c cy x b z b by x a z a ay x 解法一:直接按照三元一次方程组的消元法解题 (略)。
解法二:把原方程组改写为⎪⎩⎪⎨⎧=---=---=---000232323x cy z c c x by z b b x ay z a a 利用方程根的定义,我们把a,b,c 看成关于t 的三次方程023=---x yt zt t 的三个根。
根据韦达定理得:x abc y ac bc ab z c b a ==++=++,,,因此原方程组的解为:⎪⎩⎪⎨⎧++=++==c b a z ca bc ab y abcx 。
比较例题的两种解法:解法一作为一般的方法,求解极为麻烦,运算量大;解法二则是构造一个满足问题条件的关于t 的三次方程,构造的元件是a,b,c ,构造的“支架”是原方程变形的关系式“023=---x yt zt t ”。
在解法二中,以问题已知元素或条件为“元件”,数学中的某些关系式为“支架”,在思维中构造了一种新的“建筑物”这种方法有一定的普遍意义。
在解题过程中思维的创造活动的特点是“构造”,我们称之为构造性思维,运用构造性思维解题的方法称为构造法,即为了解决某个数学问题,我们通过联想和化归的思想,人为地构造辅助图形、模型、方程、函数以帮助解决原来的问题,这样的解题方法,可以看作是构造解题。
早在公元前三百年左右,欧几里德为了证明素数有无穷多个,假设只有有限个素数n p p p p 321,,,而构造一个新素数121+n p p p ,从而证明了原命题。
另外,古希腊人为了证明毕达哥拉斯学派的信条“万物皆为(有理数)”是不对的,构造一个边长为1的正方形,则它的对角线竟不是一个“有理数”。
上述这些大概是数学史上最早采用构造法解题的例子吧。
所谓构造法,其实质就是运用数学的基本思想,经过认真的观察,深入的思考,构造出解题的数学模型,从而使问题得以解决。
不等式的几种证明方法及其应用
不等式的几种证明方法及其应用不等式的证明方法多种多样,常用的证法有初等数学中的综合法、分析法、比较法和数学归纳法等,高等数学中常用的方法是利用函数的单调性、凹凸性等方法.本文将对其中一些典型证法给出系统的归纳与总结,并以例题的形式展示这些方法的应用.1 利用构造法证明不等式“所谓构造思想方法就是指在解决数学问题的过程中,为完成从条件向结论的转化,利用数学问题的特殊性设计一个新的关系结构系统,找到解决原问题的具体方法.利用构造思想方法不是直接解决原问题,而是构造与原问题相关或等价的新问题.”)52](1[P 在证明不等式的问题中,构造思想方法常有以下几种形式:1.1 构造函数证明不等式构造函数指根据所给不等式的特征,巧妙地构造适当的函数,然后利用一元二次函数的判别式或函数的有界性、单调性、奇偶性等来证明不等式.1.1.1 利用判别式在含有两个或两个以上字母的不等式中,若根据题中所给的条件,能与一元二次函数有关或能通过等价形式转化为一元二次函数的,都可考虑使用判别式法.例1 设R z y x ∈,,,证明0)(322≥+++++z y x z y xy x 成立. 解 令22233)3()(z yz y x z y x x f +++++=为x 的二次函数. 由2222)(3)33(4)3(z y z yz y z y +-=++-+=∆知0≤∆,所以0)(≥x f . 故0)(322≥+++++z y x z y xy x 恒成立.对于某些不等式,若能根据题设条件和结论,结合判别式的结构特征,通过构造二项平方和函数)(x f =(11b x a -)2+(x a 2-22)b +…+2)(n n b x a -,由0)(≥x f 得出0≤∆,从而即可得出所需证的不等式.例2 设+∈R d c b a ,,,,且1=+++d c b a ,求证614141414<+++++++d c b a )18](2[P .证明 令)(x f =(x a 14+-1)2+(114-+x b )2+)114(-+x c 2+)114(-+x d 2=4)14141414(282++++++++-x d c b a x (因为1=+++d c b a ).由0)(≥x f 得0≤∆ 即0128)14141414(42≤-+++++++d c b a .所以62414141414<≤+++++++d c b a .1.1.2 利用函数有界性若题设中给出了所证不等式中各个变量的变化范围,可考虑利用函数的有界性来证明,具体做法是将所证不等式视为某个变量的函数.例3 设,1,1,1<<<c b a 求证1->++ca bc ab )18](2[P . 证明 令1)()(+++=ac x c a x f 为x 的一次函数. 因为,1,1<<c a 所以0)1)(1(1)1(>++=+++=c a ac c a f ,0)1)(1(1)()1(>--=+++-=-c a ac c a f .即∀)1,1(-∈x ,恒有0)(>x f .又因为)1,1(-∈b ,所以0)(>b f , 即01>+++ca bc ab . 1.1.3 利用函数单调性在某些问题中,若各种式子出现统一的结构,这时可根据这种结构构造函数,把各种式子看作同一函数在不同点的函数值,再由函数的单调性使问题得到解决.例4 求证121212121111n n n na a a a aa a a a a a a +++≤++++++++++)53](1[P .分析 通过观察可发现式中各项的结构均相似于式子M M +1,于是构造函数xxx f +=1)()0(≥x .证明 构造函数xxx f +=1)( )0(≥x . 因为0)1(1)(2'>+=x x f , 所以)(x f 在),0[+∞上严格递增.令n a a a x +++= 211,n a a a x +++= 212. 因为21x x ≤,所以)()(21x f x f ≤. 所以≤+++++++nn a a a a a a 21211nn a a a a a a +++++++ 21211=+++++na a a a 2111++++++ n a a a a 2121nna a a a ++++ 211nna a a a a a ++++++≤1112211 .1.1.4 利用函数奇偶性 例5 求证221xx x <-)0(≠x .证明 设)(x f 221x x x --=,对)(x f 进行整理得)(x f )21(2)21(xx x -+=, )(x f -=)21(2)21(xx x ---+-=)12(2)12(-+-x x x =)21(2)21(x x x -+=)(x f , 所以)(x f 是偶函数.当0>x 时,12>x ,所以021<-x,所以0)(<x f . 由偶函数的图象关于y 轴对称知,当0<x 时,0)(<x f . 即 当0≠x 时,恒有0)(<x f ,即221xx x <- )0(≠x . 注意 由以上几种情况可以看出,如何构造适当的函数并利用函数的性质来证明不等式是解题的关键.1.2 构造几何图形证明不等式构造几何图形,就是把题中的元素用一些点或线来取代,使题中的各种数量关系得以在图中表现出来,然后借助几何图形的直观性或几何知识来寻求问题的解答.一般是在问题的条件中数量关系有明显的几何意义,或可以通过某种方式与几何形(体)建立联系时宜采用此方法.)52](1[P 这种方法十分巧妙且有效,它体现了数形结合的优越性.下面将具体介绍用几何法证明不等式的几种途径:1.2.1 构造三角形)1](3[P例6 已知z y x ,,为正数,求证22y xy x +++22z xz x ++>22z yz y ++.分析 注意到︒-+=++120cos 22222xy y x y xy x ,于是22y xy x ++可看作是以y x ,为两边,夹角为︒120的三角形的第三边,由此,易得出下面的证明:证 如图1 ,在BC A ∆内取一点O ,分别连接OC OB OA ,,,使图1B︒=∠=∠=∠120COA BOC AOB ,z OC y OB x OA ===,,则22y xy x AB ++=,22z xz x AC ++=,22z yz y BC ++=.由BC AC AB >+, 即得所要证明的不等式.注 该题可做如下推广:已知z y x ,,为正数,πα<<0,πβ<<0,πγ<<0,且πγβα2=++,求证++-22cos 2y xy x α>+-22cos 2z xz x β22cos 2z yz y +-γ,令γβα,,为满足条件的特殊角可设计出一系列的不等式.例7 已知正数k n m c b a ,,,,,满足p k c n b m a =+=+=+,求证2p cm bk an <++. 证明 如图2,构造边长为p 的正三角形ABC ,在边BC AB ,,上依次截取 n FA b CF k EC c BE m DB a AD ======,,,,,.因为ABC FEC DBE ADF S S S S ∆∆∆∆<++所以243434343p bk cm an <++, 即2p cm bk an <++. 1.2.2 构造正方形)1](3[P例8 已知+∈R x ,d c b a ,,,均是小于x 的正数,求证+-+22)(b x a +-+22)(c x b +-+22)(d x c x a x d 4)(22<-+.分析 观察不等式的左边各式,易联想到用勾股定理,每个式子代表一直角三角形的一斜边,且)()()()(d x d c x c b x b a x a -+=-+=-+=-+,所以可构造边长为x 的正方形.证明 如图3,构造边长为x 的正方形ABCD ,在边DA CD BC AB ,,,上 依次截取,a AE =,a x EB -=,d BF =c CG d x FC =-=,,b DHc x GD =-=,,b x HA -=.则四边形EFGH 的周长为+-+22)(b x a +-+22)(c x b +-+22)(d x c 22)(a x d -+.由三角形两边之和大于第三边知,四边形EFGH 的周长小于正方形ABCD 的周长, 从而命题得证.1.2.3 构造矩形图2x-c 图3例9 已知z y x ,,为正数,证明))((z y y x yz xy ++≤+.分析 两个数的乘积,可看作以这两个数为边长的矩形的面积,也可以看成以这两个数为直角边长的三角形面积的两倍.证明 如图4 ,造矩形ABCD ,使,y CD AB ==,x BE =,z EC =设α=∠AED .由AED ECD ABE ABCD S S S S ∆∆∆++=矩形知 =+)(z x y ++yz xy 2121αsin ))((21z y y x ++. 化简得αsin ))((z y y x yz xy ++=+.因为1sin 0≤<α,所以))((z y y x yz xy ++≤+(当且仅当︒=90α时,等号成立).1.2.4 构造三棱锥例10 设,0,0,0>>>z y x 求证22y xy x +->+-+22z yz y 22x zx z +-)129](4[P .分析 注意到22y xy x +-︒-+=60cos 222xy y x ,可以表示以y x ,为边, 夹角为︒60的三角形的第三边,同理22z yz y +-,22x zx z +-也有类似意义.证明 如图5,构造顶点为O 的四面体ABC O -,使︒=∠=∠=∠60AOC BOC AOB ,z OC y OB x OA ===,,,则有22y xy x AB +-=,22z yz y BC +-=,22x xz z AC +-=.在ABC ∆中AC BC AB >+,即得原不等式成立.注 该题还可做如下推广:已知z y x ,,为正数,,0πα<<,0πβ<<πγ<<0时πγβα20<++<且,βαγβα+<<-求证22cos 2y xy x +-α+22cos 2z xz x +-β>22cos 2z yz y +-γ.例10便是当︒===60γβα时的特殊情况.1.3 构造对偶式证明不等式对偶思想是根据矛盾双方既对立又统一的二重性,巧妙地构造对偶数列,从而将问题解决的一种思想.⌒ADCBE y x +图4图5OAC例11 求证1212124321+<-⨯⨯⨯n nn .分析 令=P nn 2124321-⨯⨯⨯ ,由于P 中分子为奇数、分母为偶数,则由奇数的对偶数为偶数可构造出关于P 的一个对偶式Q ,1225432+⨯⨯⨯=n nQ .证明 设=P n n 2124321-⨯⨯⨯ ,构造P 的对偶式Q ,1225432+⨯⨯⨯=n nQ .因为Q P <<0,所以=<PQ P 2)2124321(n n -⨯⨯⨯ 121)1225432(+=+⨯⨯⨯n n n .所以121+<n P ,即原不等式成立.注 构造对偶式的途径很多,本题是利用奇偶性来构造对偶式,此外,还可利用倒数关系、相反关系、对称性关系等来构造对偶式.1.4 构造数列证明不等式这种方法一般用于与自然数有关的不等式证明,当问题无法从正面入手时,可考虑将它转化为数列,然后利用数列的单调性来证明.例12 求证:不等式!21n n ≤-,对任何正整数n 都成立)55](1[P .分析 不等式可变形为,1!21≤-n n n 是正整数,所以可构造数列{},n a 其中1,!211==-a n a n n ,则只需证1a a n ≤即可.对于任意正整数n ,=-+=--+!2)!1(211n n a a n n n n 0)!1(2)1()!1()1(2211≤+-=++---n n n n n n n , 所以{}n a 是递减数列.所以1a a n ≤,即原命题成立.1.5 构造向量证明不等式向量由于其自身的形与数兼备的特性,使得它成了数形结合的桥梁,也是解决一些问题的有利工具.对于某些不等式的证明,若能借助向量模的意义、数量积的性质等,可使不等式得到较易的证明.1.5.1 利用向量模的性质 例13 已知,,,,R d c b a ∈求证++++2222c b b a 2222a d d c +++)(2d c b a +++≥.证明 在原点为O 的直角坐标系内取四个点:()(),,,,c b b a B b a A ++(),,d c b c b a C ++++(),,a d c b d c b a D ++++++则原问题可转化为+,该不等式显然成立.1.5.2 利用向量的几何特征例14 设{}n a 是由正数组成的等比数列,n S 是前n 项和,求证)31](5[12.022.02.0log 2log log P n n n S S S ++>+. 分析 可将上述不等式转化为,212++<⋅n n n S S S 构造向量,用平行四边形的几何特征来证明.证明 设该等比数列的公比为q ,如图6,构造向量(),,11a a OA =(),,1n n qS qS OB +=()()12111,,+++=++=n n n n S S qS a qS a OC ,则OB OA OC +=,故B C A O ,,,构成平行四边形.由于OB OA ,在对角线OC 的两侧,所以斜率OB OA k k ,中必有一个大于OC k ,另一个小于OC k .因为{}n a 是由正数组成的等比数列,所以OA n n OC k S S k =<=++121, 所以OC OB k k <, 即<+1n n S S 21++n n S S . 所以212++<⋅n n n S S S . 此外,还可以利用向量的数量积证明不等式,一般是根据向量的数量积公式θb a =⋅找出不等关系,如b a ≤⋅≤等,然后利用不等关系证明不等式,在此对这种方法不再举例说明.综上所述,利用构造思想证明不等式时,需对题目进行全面分析,抓住可构造的因素,并借助于与之相关的知识,构造出所求问题的具体形式或是与之等价的新问题,通过解决所构造的问题使原问题获得解决.就构造的对象来说它的表现形式是多样的,这就需要我们牢固的掌握基础知识和解题技巧,综合运用所学知识将问题解决.2 利用换元法证明不等式换元法是数学解题中的一种重要方法,换元的目的是通过换元达到减元,或通过换元得到熟悉的问题形式.换元法主要有以下几种形式:图6O xyABC2.1 三角换元法例15 已知,122≤+y x 求证2222≤-+y xy x .证明 设θθsin ,cos r y r x ==()10≤≤r ,则=-+222y xy x θθθθ22222sin sin cos 2cos r r r -+θθθ222sin 2sin cos -+=r224sin 22sin 2cos 222≤≤⎪⎭⎫ ⎝⎛+=+=r r r πθθθ.注 这种方法一般是已知条件在结构上与三角公式相似时宜采用.若题设为,12=+y x 可设;sin 2,cos θθ==y x 题设为,122=-y x 可设θθtan ,sec ==y x 等.2.2 均值换元法例16 设,1,,,=++∈z y x R z y x 求证31222≥++z y x )12](2[P .证明 设,31α+=x ,31β+=y ,31γ+=z 其中0=++γβα 则 =++222z y x ++2)31(α++2)31(β=+2)31(γ31)(231222≥++++++γβαγβα(当且仅当γβα==时取等号).2.3 增量换元法这种方法一般用于对称式(任意互换两个字母顺序,代数式不变)和给定字母顺序的不等式的证明.例17 已知,0>>y x 求证 yx y x -<-)55](6[P .证明 由,0>>y x 可令t y x += )0(>t . 因为2)(2t y yt t y t y +=++<+, 所以t y t y +<+, 即y x y x -<-.总之,证明不等式时适当的引进换元,可以比较容易的找到解题思路,但具体使用何种代换,则因题而异,总的目的是化繁为简.3 利用概率方法证明不等式)51](7[P利用概率方法证明不等式,主要是根据实际问题,构造适当的概率模型,然后利用有关结论解决实际问题.3.1利用概率的性质:对任意事件A ,1)(0≤≤A P ,证明不等式例18 证明若,10,10≤≤≤≤b a 则1+≤+≤ab b a ab .分析 由,10,10≤≤≤≤b a 可把a 看做事件A 发生的概率,b 看做事件B 发生的概率. 证明 设事件A 与B 相互独立,且,)(,)(b B P a A P ==则ab b a B A P B P A P B A P -+=-+=)()()()( .因为,1)(0≤≤B A P 所以10≤-+≤ab b a ,所以1+≤+≤ab b a ab .3.2 利用Cauchy-Schwarz 不等式:2))((ξηE ≤22ηξE E 例19 设0>i a ,0>i b ,,2,1=i …n ,, 则 21)(∑=ni i i b a ≤))((1212∑∑==ni in i i ba .证明 设随机变量ξηηξ,,满足下列要求ξ概率分布:P (ξ=i a )=n 1(n i ,,2,1 =),η概率分布:P (η=i b )=n1(n i ,,2,1 =),ξη概率分布:⎪⎩⎪⎨⎧≠=== )(0)(1)(j i j i nb a P j i ξη, 则 2ξE =∑=n i i a n 121,2ηE =∑=n i i b n 121,)(ξηE =∑=n i i i b a n 11.由2))((ξηE ≤22ηξE E 得 212)(1∑=n i i i b a n ≤)1)(1(1212∑∑==n i i n i i b n a n .即 21)(∑=ni i i b a ≤))((1212∑∑==ni in i i ba .用概率证明不等式比较新颖,开辟了证明不等式的又一途径.但该法用起来不太容易,因为读者必须对概率这部分知识熟悉掌握,才能选择适当的结论加以利用,因此对这种方法只做简单了解即可.4 用微分方法证明不等式在高等数学中我们接触了微分, 用微分方法讨论不等式,为不等式证明方法开辟了新的视野. 4.1利用微分中值定理微分中值定理包括罗尔定理、拉格朗日定理、柯西定理、泰勒定理,下面仅给出拉格朗日中值定理、泰勒定理的应用:拉格朗日中值定理)120](8[P 若函数)(x f 在[]b a ,上连续,()b a ,内可导,则在()b a ,内至少存在一点ξ,使得)('ξf =ab a f b f --)()(.例20 已知0>b ,求证b b bb<<+arctan 12. 证明 函数x arctan 在[]b ,0上满足拉格朗日中值定理的条件,所以有b arctan -0arctan =)0()(arctan '-=b x x ξ=21ξ+b,),0(b ∈ξ. 而b bx b <+<+2211ξ, 故原不等式成立.泰勒定理)138](8[P 若函数)(x f 在[]b a , 上有直至n 阶的连续导数,在()b a ,内存在()1+n 阶导函数,则对任意给定的0,x x ()b a ,∈,使得10)1(00)(200''00'0)()!1()()(!)()(!2)())(()()(++-++-++-+-+=n n nn x x n f x x n x f x x x f x x x f x f x f ξ 该式又称为带有拉格朗日余项的泰勒公式.例21 设函数)(x f 在[]b a ,上二阶可导,且M x f ≤)('',,1,0)2(=-=+a b ba f 试证 4)()(M b f a f ≤+)69](9[P .证明 将函数)(x f 在点20ba x +=展成二阶泰勒公式 ++-+++=)2)(2()2()('b a x b a f b a f x f 2'')2)((21b a x f +-ξ=)2)(2('ba xb a f +-++2'')2)((21b a x f +-ξ. 将b a x ,=代入上式得)21)(2()('b a f a f +-=+)(811''ξf ,)(81)21)(2(')(2''ξf b a f b f ++=. 相加得))()((81)()(2''1''ξξf f b f a f +=+. 取绝对值得))()((81)()(2''1''ξξf f b f a f +≤+≤4M .4.2 利用极值例22 设12ln ->a 为任一常数,求证xeax x <+-122()0>x )188](10[P .证明 原问题可转化为求证012)(2>-+-=ax x e x f x)0(>x .因为0)0(=f ,所以只需证022)('>+-=a x e x f x.由02)(''=-=xe xf 得)('x f 的稳定点2ln =x .当2ln <x 时,0)(''<x f . 当2ln >x 时,0)(''>x f . 所以 02)2ln 1(222ln 22)2(ln )(min ''>+-=+-==>a a f x f x .所以原不等式成立.4.3 利用函数的凹凸性定义)193](10[P )(x f 在区间I 上有定义,)(x f 称为I 上的凸(凹)函数,当且仅当:21,x x ∀∈I ,有)2(21x x f +≤2)()(21x f x f + ()2(21x x f +≥2)()(21x f x f +). 推论)201](10[P 若)(x f 在区间I 上有二阶导数,则)(x f 在I 上为凸(凹)函数的充要条件是:0)(''≥x f (0)(''≤x f ).例23 证明na a a n +++ 21≥n n a a a 21 ),,2,1,0(n i a i =>)125](11[P .证明 令,ln )(x x f =则01)(,1)(2'''<-==xx f x x f ,所以 x x f ln )(=在()+∞,0上是凹函数,对),0(,,,21+∞∈n a a a 有)ln ln (ln 1ln 2121n n a a a nn a a a +++≥⎪⎭⎫ ⎝⎛+++ ,所以na a a n +++ 21≥nn a a a 21.例24 对任意实数,,b a 有)(212b ab a e e e+≤+)80](12[P .证明 设xe xf =)(,则),(,0)(''+∞-∞∈>=x e x f x,所以)(x f 为),(+∞-∞上凸函数.从而对b x a x ==21,有2)()()2(b f a f b a f +≤+. 即)(212b ab a e e e+≤+. 5 利用几个著名的不等式来证明不等式5.1 均值不等式)133](4[P定理 1 设n a a a ,,,21 是n 个正数,则)()()()(n Q n A n G n H ≤≤≤称为均值不等式,其中,111)(21na a a nn H +++=,)(21n n a a a n G =,)(21na a a n A n+++=na a a n Q n22221)(+++=分别称为n a a a ,,,21 的调和平均值,几何平均值,算术平均值,均方根平均值.例25 已知,10<<a ,02=+y x 求证812log )(log +≤+a yx a a a . 证明 由,10<<a ,0,0>>yxa a 有y x y x y x a a a a a +=⋅≥+22,从而得22log )2(log )(log yx a a a a y x a y x a ++=≤++, 故现在只需证812≤+y x 或 41≤+y x 即可. 而4141)21(22≤+--=-=+x x x y x (当21=x 时取等号),所以812log )(log +≤+a yx a a a .5.2 Cauchy 不等式 定理2)135](4[P 设),,2,1(,n i R b a i i =∈,则∑∑∑===≥⋅n i ni i i ni ii b a ba 121122,)(当且仅当nn a b a b a b === 2211时等号成立. 例26 证明三角不等式 2112)(⎥⎦⎤⎢⎣⎡+∑=ni i i b a ≤2112⎪⎭⎫ ⎝⎛∑=ni i a +2112⎪⎭⎫ ⎝⎛∑=ni i b )33](12[P .证明 因为∑=+ni i ib a12)(=∑=+ni i i i a b a 1)(+∑=+ni i i i b b a 1)(根据Cauchy 不等式,可得∑=+ni i i ia b a1)(≤211212)(⎥⎦⎤⎢⎣⎡+∑∑==ni i n i i i a b a . (1)∑=+ni i i i b b a 1)(≤211212)(⎥⎦⎤⎢⎣⎡+∑∑==ni i ni i ib b a . (2) 把(1)(2)两个式子相加,再除以2112)(⎥⎦⎤⎢⎣⎡+∑=ni i i b a ,即得原式成立.5.3 Schwarz 不等式Cauchy 不等式的积分形式称为Schwarz 不等式. 定理3)271](10[P )(),(x g x f 在[]b a ,上可积,则⎰⎰⎰≤b ababadx x g dx x f dx x g x f .)()())()((222若)(),(x g x f 在[]b a ,上连续,其中等号当且仅当存在常数βα,,使得)()(x g x f βα≡时成立(βα,不同时为零).例27 已知)(x f 在[]b a ,上连续,,1)(=⎰badx x f k 为任意实数,求证2)cos )((⎰bakxdx x f 1)sin )((2≤+⎰b akxdx x f )272](10[P .证明 上式左端应用Schwarz 不等式得2)cos )((⎰bakxdx x f 2)cos )(()(⎥⎦⎤⎢⎣⎡=⎰badx kx x f x f⎰⎰⋅≤babakxdx x f dx x f 2cos )()(⎰=bakxdx x f 2cos )(. (1)同理2)sin )((⎰bakxdx x f ⎰≤bakxdx x f 2sin )(. (2)由(1)+(2)即得原不等式成立. 5.4 利用W.H.Young 不等式 定理4)288](10[P 设)(x f 单调递增,在),0[+∞上连续,,0)0(=f )(,0,1x fb a ->表示)(x f 的反函数,则⎰⎰-+≤bady y f dx x f ab 010,)()(其中等号当且仅当b a f =)(时成立.例28 设,0,>b a ,1>p ,111=+qp 试证q b p a ab q p +≤)290](10[P .证明 因为,1>p 所以1)(-=p xx f 单调递增且连续 (当0≥x 时),1111)(---==q p y yy f )111(-=-q p . 应用W.H.Young 不等式有 qb p a dy y f dx x f ab qp ba+=+≤⎰⎰-01)()(.。
解码专训一:巧用构造法求几种特殊角的三角函数值
在线分享文档解码专训一:巧用构造法求几种特殊角的三角函数值名师点金:对于30°、45°、60°角的三角函数值,我们都可通过定义利用特殊直角三角形三边的关系进行计算;而在实际应用中,我们常常碰到像15°、22.5°、67.5°等一些特殊角的三角函数值的计算,同样我们也可以构造相关图形,利用数形结合思想进行巧算.巧构造15°与30°角的关系的图形计算15°角的三角函数值 1.求sin 15°,cos 15°,tan 15°的值.巧构造22.5°与45°角的关系的图形计算22.5°角的三角函数值2.求tan 22.5°的值.巧用折叠法求67.5°角的三角函数值3.小明在学习“锐角三角函数”中发现,将如图所示的矩形纸片ABCD 沿过点B 的直线折叠,使点A 落在BC 边上的点E 处,还原后,再沿过点E 的直线折叠,使点A 落在BC 边上的点F 处,求出67.5°角的正切值.(第3题)巧用含36°角的等腰三角形中的相似关系求18°、72°角的三角函数值4.求sin 18°,cos 72°的值.巧用75°与30°角的关系构图求75°角的三角函数值5.求sin 75°,cos 75°,tan 75°的值.用科技让复杂让每个人平等地提升自己 解码专训二:巧用三角函数解学科内综合问题名师点金:锐角三角函数体现着一种新的数量关系——边角关系,锐角三角函数解直角三角形,既是相似三角形及函数的延续,又是继续学习三角形的基础,利用三角函数可解决与学科内的一次函数、反比例函数、相似三角形,一元二次方程等综合问题,也会应用到后面学习的圆的内容中,它的应用很广泛.)利用三角函数解与函数的综合问题1.如图,直线y =kx -1与x 轴、y 轴分别交于B ,C 两点,tan ∠OCB =12.(1)求点B 的坐标和k 的值;(2)若点A(x ,y)是第一象限内的直线y =kx -1上的一个动点,在点A 的运动过程中,试写出△AOB 的面积S 与x 的函数关系式.(第1题)2.如图,反比例函数y =k x (x >0)的图象经过线段OA 的端点A ,O 为原点,过点A 作AB ⊥x 轴于点B ,点B 的坐标为(2,0),tan ∠AOB =32.(1)求k 的值;(2)将线段AB 沿x 轴正方向平移到线段DC 的位置,反比例函数y =k x (x >0)的图象恰好经过DC 的中点E ,求直线AE 对应的函数关系式;(3)若直线AE 与x 轴交于点M ,与y 轴交于点N ,请你探索线段AN 与线段ME 的数量关系,写出你的结论,并说明理由.(第2题)利用三角函数解与方程的综合问题3.在Rt△ABC中,∠C=90°,斜边c=5,两直角边的长a,b是关于x的一元二次方程x2-mx+2m-2=0的两个根,求Rt△ABC中较小锐角的正弦值.利用三角函数解与相似的综合4.如图,在矩形ABCD中,点E是CD的中点,点F是边AD上一点,连接FE并延长交BC的延长线于点G,连接BF,BE,且BE⊥FG. 地提升自己(1)求证:BF=BG;(2)若tan∠BFG=3,S△CGE=63,求AD的长.(第4题)解码专训三:应用三角函数解实际问题的四种常见问题名师点金:在运用解直角三角形的知识解决实际问题时,要学会将千变万化的实际问题转化为数学问题,要善于将某些实际问题中的数量关系归结为直角三角形中的元素(边、角)之间的关系,若不是直角三角形,应尝试添加辅助线,构造出直角三角形进行解答,这样才能更好地运用解直角三角形的方法求解.其中仰角、俯角的应用问题,方向角的应用问题,坡度、坡角的应用问题要熟练掌握其解题思路,把握解题关键.定位问题1.(2014·贺州)如图,一艘海轮在A点时测得灯塔C在它的北偏东42°方向上,它沿正东方向航行80海里后到达B处,此时灯塔C在它的北偏西55°方向上.(1)求海轮在航行过程中与灯塔C的最短距离;(结果精确到0.1海里)(2)求海轮在B处时与灯塔C的距离(结果保留整数).(参考数据:sin 55°≈0.819,cos 55°≈0.574,tan 55°≈1.428,tan 42°≈0.900,tan 35°≈0.700,tan 48°≈1.111)(第1题)坡坝问题2.如图,水坝的横断面是梯形,背水坡AB的坡角∠BAE=45°,坝高BE =20米.汛期来临,为加大水坝的防洪强度,将坝底从A处向后水平延伸到F 处,使新的背水坡BF的坡角∠F=30°,求AF的长度.(结果精确到1米,参考在线分享文档 数据:2≈1.414,3≈1.732) (第2题)测距问题3.一条东西走向的高速公路上有两个加油站A ,B ,在A 的北偏东45°方向上还有一个加油站C ,C 到高速公路的最短距离是30千米,B ,C 间的距离是60千米,想要经过C 修一条笔直的公路与高速公路相交,使两路交叉口P 到B ,C 的距离相等,请求出交叉口P 到加油站A 的距离.(结果保留根号)测高问题4.(2015·盐城)如图所示,一幢楼房AB 背后有一台阶CD ,台阶每层高0.2米,且AC =17.2米,设太阳光线与水平地面的夹角为α,当α=60°时,测得楼房在地面上的影长AE =10米.现有一只小猫睡在台阶的MN 这层上晒太阳.(3取1.73)(1)求楼房的高度约为多少米?(2)过了一会儿,当α=45°时,问小猫能否还可以晒到太阳?请说明理由.(第4题)解码专训四:利用三角函数解判断说理问题名师点金:利用三角函数解答实际中的“判断说理”问题:其关键是将实际问题抽象成数学问题,建立解直角三角形的数学模型,运用解直角三角形的知识来解决实际问题.航行路线问题1.如图,某货船以24海里/时的速度将一批重要物资从A处运往正东方向的M处,在点A处测得某岛C在北偏东60°的方向上.该货船航行30分钟后到达B处,此时再测得该岛在北偏东30°的方向上,已知在C岛周围9海里的区域内有暗礁.若继续向正东方向航行,该货船有无触礁危险?试说明理由.(第1题)工程规划问题2.A,B两市相距150千米,分别从A,B处测得国家级风景区中心C处的方位角如图所示,风景区区域是以C为圆心、45千米为半径的圆,tanα=1.627,tanβ=1.373.为了开发旅游,有关部门设计修建连接A,B两市的高速公路.问连接A,B两市的高速公路会穿过风景区吗?请说明理由.(第2题)航行拦截问题3.(2015·荆门)如图,在一次军事演习中,蓝方在一条东西走向的公路上的A处朝正南方向撤退,红方在公路上的B处沿南偏西60°方向前进实施拦截,红方行驶1 000米到达C处后,因前方无法通行,红方决定调整方向,再朝南偏西45°方向前进了相同的距离,刚好在D处成功拦截蓝方,求拦截点D处到公路的距离(结果不取近似值).(第3题)台风影响问题用科技让复杂地提升自己4.如图所示,在某海滨城市O 附近海面有一股强台风,据监测,当前台风中心位于该城市的东偏南70°方向200 km 的海面P 处,并以20 km /h 的速度向北偏西65°的PQ 方向移动,台风侵袭的范围是一个圆形区域,当前半径为60 km ,且圆的半径以10 km /h 的速度不断扩大. (1)当台风中心移动4 h 时,受台风侵袭的圆形区域半径增大到________km ;当台风中心移动t(h )时,受台风侵袭的圆形区域半径增大到____________km ;(2)当台风中心移动到与城市O 距离最近时,这股台风是否会侵袭这座海滨城市?请说明理由.(参考数据:2≈1.41,3≈1.73)(第4题)解码专训五:解直角三角形中常见的热门考点名师点金:本章主要学习直角三角形的性质,锐角三角函数的定义,锐角三角函数值,解直角三角形,以及解直角三角形的实际应用,重点考查运用解直角三角形的知识解决一些几何图形中的应用和实际应用,是中考的必考内容.直角三角形的性质1.(2014·宁波)如图,正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC =1,CE =3,点H 是AF 的中点,那么CH 的长是( )A .2.5B .5C .322D .2(第1题)让每个人平等 (第2题)2.如图,在△ABC 中,∠C =90°,∠B =60°,D 是AC 上一点,DE ⊥AB于点E ,且CD =2,DE =1,则BC 的长为________.锐角三角函数的定义3.如图,∠AOB 是放置在正方形网格中的一个角,则cos ∠AOB 的值是________.(第3题)(第4题)4.如图,在矩形ABCD 中,E 为边CD 上一点,沿AE 折叠,点D 恰好落在BC 边上的F 点处,若AB =3,BC =5,则tan ∠EFC 的值为________.5.如图,在Rt △ABC 中,∠ACB =90°,BC =3,AC =15,AB 的垂直平分线ED 交BC 的延长线于D 点,垂足为E ,求sin ∠CAD 的值.(第5题)特殊角的三角函数值及其计算在线分享文档让每个人平等地提升自己6.在等腰直角三角形ABC 中,∠C =90°,那么sin A 等于( )A .12B .22C .32D .17.若等腰三角形底边与底边上的高的比是23,则顶角为( )A .60°B .90°C .120°D .150°8.计算:(cos 60°)-1÷(-1)2 016+|2-8|-22+1×(tan 30°-1)0.解直角三角形(第9题)9.如图是教学用的直角三角板,边AC =30 cm ,∠C =90°,tan ∠BAC =33,则边BC 的长为( )A .30 3 cmB .20 3 cmC .10 3 cmD .5 3 cm (第10题)10.(2014·大庆)如图,矩形ABCD 中,AD =2,F 是DA 延长线上一点,G 是CF 上一点,且∠ACG =∠AGC ,∠GAF =∠F =20°,则AB =________. 11.(2014·临沂)如图,在▱ABCD 中,BC =10,sin B =910,AC =BC ,则▱ABCD 的面积是________.(第11题)解直角三角形的实际应用12.(2015·南京)如图,轮船甲位于码头O的正西方向A处,轮船乙位于码头O的正北方向C处,测得∠CAO=45°,轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为45 km/h和36 km/h,经过0.1 h,轮船甲行驶至B处,轮船乙行驶至D处,测得∠DBO=58°,此时B处距离码头O 多远?(参考数据:sin58°≈0.85,cos 58°≈0.53,tan 58°≈1.60)(第12题)三角函数与学科内的综合13.如图,在矩形ABCD中,AB=4,AD=5,P是射线BC上的一个动点,过点P作PE⊥AP,交射线DC于点E,射线AE交射线BC于点F,设BP=a.(1)当点P在线段BC上时(点P与点B,C都不重合),试用含a的代数式表示CE的长;(2)当a=3时,连接DF,试判断四边形APFD的形状,并说明理由;(3)当tan∠PAE=12时,求a的值.(第13题)地提升自己用科技让复杂的世界变简单解直角三角形中思想方法的应用a .转化思想14.如图所示,已知四边形ABCD ,∠ABC =120°,AD ⊥AB ,CD ⊥BC ,AB =303,BC =503,求四边形ABCD 的面积.(要求:用分割法和补形法两种方法求解)(第14题)b .方程思想15.如图,在Rt △ABC 中,∠ACB =90°,sin B =35,点D 是BC 上一点,DE ⊥AB 于点E ,CD =DE ,AC +CD =9,求BE ,CE 的长.(第15题)16.(中考·泰州)如图,为了测量山顶铁塔AE 的高,小明在27 m 高的楼CD 底部D 测得塔顶A 的仰角为45°,在楼顶C 测得塔顶A 的仰角为36°52′.已知山高BE 为56 m ,楼的底部D 与山脚在同一水平线上,求该铁塔的高AE.(参考数据:sin 36°52′≈0.60,tan 36°52′≈0.75)的世界变简单让每个人平等地提升自己 (第16题)答案解码专训一1.解:如图,在Rt △ABC 中,∠BAC =30°,∠C =90°,延长CA 到D ,使AD =AB ,则∠D =15°,设BC =a ,则AB =2a ,AC =3a ,∴AD =2a ,CD=(2+3)a.在Rt △BCD 中,BD =BC 2+CD 2=a 2+(7+43)a 2=(6+2)a.∴sin 15°=sin D =BC BD =a (6+2)a =6-24; cos 15°=cos D =CD BD =(2+3)a (6+2)a=6+24; tan 15°=tan D =BC CD =a (2+3)a=2- 3.(第1题)(第2题)2.解:如图,在Rt △ABC 中,∠C =90°,AC =BC ,延长CA 到D ,使DA =AB ,则∠D =22.5°,设AC =BC =a ,则AB =2a ,∴AD =2a ,DC =(2+在线分享文档用科技让复杂的世界变简单让每个人平等地提升自己1)a ,∴tan 22.5°=tan D =BC CD =a (2+1)a=2-1. 3.解:∵将矩形纸片ABCD 沿过点B 的直线折叠,使点A 落在BC 边上的点E 处,∴AB =BE ,∠AEB =∠EAB =45°,还原后,再沿过点E 的直线折叠,使点A 落在BC 边上的点F 处,∴AE =EF ,∠EAF =∠EFA =45°÷2=22.5°,∴∠FAB =67.5°. 设AB =x ,则AE =EF =2x , ∴tan ∠FAB =tan 67.5°=FB AB =2x +x x=2+1.(第4题)4.解:如图,作△ABC ,使∠BAC =36°,AB =AC ,使∠ABC 的平分线BD 交AC 于D 点,过A 作AE ⊥BC 于E 点,设BC =a ,则BD =AD =a ,由△ABC ∽△BCD 可得:AB BC =BC CD ,∴AB a =a AB -a , 即AB 2-a·AB -a 2=0,∴AB =5+12a(负根舍去),∴sin 18°=sin ∠BAE =BE AB =5-14.∴cos 72°=cos ∠ABE =BE AB =5-14.(第5题)5.解:方法1:利用第1题的图形求解.方法2:如图,作△ABD ,△ACD ,使得DC =DA ,∠DAB =30°,过点A 作AD ⊥BC 于D ,过B 作BE ⊥AC 于E ,则∠BAE =75°,设AD =DC =a ,则AC =2a ,BD =33a ,AB =233a ,∴BC =BD +CD =⎝ ⎛⎭⎪⎫33+1a.则CE =BE =BC·sin 45°=6+326a ,∴AE =AC -CE =32-66a ,∴sin 75°=sin ∠BAE =cos 75°=cos ∠BAE =AE AB =6-24,tan 75°=tan ∠BAE =BE AE =2+ 3.解码专训二1.解:(1)把x =0代入y =kx -1,得y =-1,∴点C 的坐标是(0,-1),∴OC =1.在Rt △OBC 中,∵tan ∠OCB =OB OC =12,∴OB =12.∴点B 的坐标是⎝ ⎛⎭⎪⎫12,0. 把B ⎝ ⎛⎭⎪⎫12,0的坐标代入y =kx -1,得12k -1=0.解得k =2. (2)由(1)知直线AB 对应的函数关系式为y =2x -1,所以△AOB 的面积S 与x 的函数关系式是S =12OB·y =12×12(2x -1)=12x -14.2.解:(1)∵点B 的坐标为(2,0),tan ∠AOB =32,∴A 点的坐标为(2,3),∴k =6.(2)易知点E 的纵坐标为32,代入y =6x 中,得点E 的横坐标为4,即点E 的坐标为⎝ ⎛⎭⎪⎫4,32,∵直线AE 过点A(2,3),E ⎝⎛4,32,∴易得直线AE 对应的函数关系式为y =-34x +92. (3)结论:AN =ME.理由:在y =-34x +92中,令y =0可得x =6,令x =0可得y =92. ∴点M(6,0),N ⎝ ⎛⎭⎪⎫0,92. 方法一:延长DA 交y 轴于点F ,则AF ⊥ON ,且AF =2,OF =3,∴NF =ON -OF =32.根据勾股定理可得AN =52.∵CM =6-4=2,EC =32,∴根据勾股定理可得EM=5 2,∴AN=ME.方法二:连接OE,延长DA交y轴于点F,则AF⊥ON,且AF=2,∵S△EOM =12OM·EC=12×6×32=92,S△AON=12ON·AF=12×92×2=92,∴S△EOM=S△AON.∵AN和ME边上的高相等,∴AN=ME.3.解:∵a,b是方程x2-mx+2m-2=0的根,∴a+b=m,ab=2m-2.在Rt△ABC中,由勾股定理,得a2+b2=c2,即a2+b2=52.∴a2+b2=(a+b)2-2ab=25,即m2-2(2m-2)=25.解得m1=7,m2=-3.∵a,b是Rt△ABC的两条直角边的长,∴a+b=m>0.即m=-3不合题意,舍去.∴m=7.当m=7时,原方程为x2-7x+12=0.解得x1=3,x2=4.不妨设a=3,b=4,则∠A是最小的锐角,∴sin A=ac=35.即Rt△ABC中较小锐角的正弦值为3 5.4.(1)证明:∵四边形ABCD是矩形,∴∠D=∠DCG=90°,∵点E是CD 的中点,∴DE=CE.∵∠DEF=∠CEG,∴△EDF≌△ECG,∴EF=EG.∵BE⊥FG,∴BE是FG的中垂线,∴BF=BG.(2)解:∵BF=BG,∴∠BFG=∠G,∴tan∠BFG=tan G=3,设CG=x,则CE=3x,∴S△CGE =32x2=63,解得x=23(负值舍去),∴CG=23,CE=6,又易得EC2=BC·CG,∴BC=63,∴AD=6 3.解码专训三1.解:(1)过C作AB的垂线,垂足为D,根据题意可得:∠ACD=42°,∠BCD=55°.设CD=x海里,在Rt△ACD中,tan 42°=ADCD,则AD=x·tan 42°海里,在Rt△BCD中,tan 55°=BDCD,则BD=x·tan 55°海里.∵AB=80海里,在线分享文档用科技让复杂的世界变简单让每个人平等地提升自己∴AD +BD =80海里,∴x·tan 42°+x·tan 55°=80,解得x ≈34.4,答:海轮在航行过程中与灯塔C 的最短距离约是34.4海里;(2)在Rt △BCD 中,cos 55°=CD BC ,∴BC =CD cos 55°≈60(海里),答:海轮在B 处时与灯塔C 的距离约是60海里.2.解:在Rt △ABE 中,∠BEA =90°,∠BAE =45°,BE =20米,∴AE =20米. 在Rt △BEF 中,∠BEF =90°,∠F =30°,BE =20米,∴EF =BE tan 30°=2033=203(米). ∴AF =EF -AE =203-20≈20×1.732-20=14.64≈15(米).答:AF 的长度约是15米.3.解:分两种情况: (1)如图(1),在Rt △BDC 中,CD =30千米,BC =60千米.sin B =CD BC =12,∴∠B =30°.∵PB =PC ,∴∠BCP =∠B =30°. ∴在Rt △CDP 中,∠CPD =∠B +∠BCP =60°,∴DP =CD tan ∠CPD=30tan 60°=103(千米). 在Rt △ADC 中,∵∠A = 45°,∴AD =DC =30千米.∴AP =AD +DP =(30+103)千米. (第3题)(2)如图(2),同法可求得DP =103千米,AD =30千米.∴AP =AD -DP =(30-103)千米.故交叉口P 到加油站A 的距离为(30±103)千米.用科技让复杂让每个人平等地提升自己点拨:本题运用了分类讨论思想,针对P 点位置分两种情况讨论,即P 可能在线段AB 上,也可能在BA 的延长线上.(第4题)4.解:(1)当α=60°时,在Rt △ABE 中,∵tan 60°=BA AE =BA 10,∴BA =10 tan 60°=103≈10×1.73=17.3(米).即楼房的高度约为17.3米.(2)当α=45°时,小猫仍可以晒到太阳.理由如下:如图,假设没有台阶,当α=45°时,从点B 射下的光线与地面AD 的交点为点F ,与MC 的交点为点H. ∵∠BFA =45°,∴tan 45°=BA AF =1. 此时的影长AF =BA ≈17.3米,所以CF =AF -AC ≈17.3-17.2=0.1(米),∴CH =CF =0.1米,∴楼房的影子落在台阶MC 这个侧面上.∴小猫仍能晒到太阳.解码专训四 1.解:若继续向正东方向航行,该货船无触礁危险.理由如下:过点C 作CD ⊥AB ,交AB 的延长线于点D.依题意,知AB =24×3060=12(海里),∠CAB =90°-60°=30°,∠CBD =90°-30°=60°.在Rt △DBC 中,tan ∠CBD =tan 60°=CD BD , ∴BD =33CD. 在Rt △ADC 中,tan ∠CAD =tan 30°=CD AD ,∴AD =3CD.又∵AD =AB +BD ,在线分享文档用科技让复杂让每个人平等地提升自己∴3CD =12+33CD ,得CD =63海里.∵63>9,∴若继续向正东方向航行,该货船无触礁危险.技巧点拨:将这道航海问题抽象成数学问题,建立解直角三角形的数学模型.该货船有无触礁危险取决于岛C 到航线AB 的最短距离与9海里的大小关系,因此解决本题的关键在于求岛C 到航线AB 的距离.2.解:不会穿过风景区.理由如下:过C 作CD ⊥AB 于点D ,根据题意得:∠ACD =α,∠BCD =β,则在Rt △ACD 中,AD =CD·tan α,在Rt △BCD 中,BD =CD·tan β.∵AD +DB =AB ,∴CD·tan α+CD·tan β=AB ,∴CD =AB tan α+tan β=1501.627+1.373=1503=50(千米).∵50>45,∴连接A ,B 两市的高速公路不会穿过风景区.(第3题)3.解:如图,过B 作AB 的垂线,过C 作AB 的平行线,两线交于点E ;过C 作AB 的垂线,过D 作AB 的平行线,两线交于点F ,则∠E =∠F =90°,拦截点D 处到公路的距离DA =BE +CF.在Rt △BCE 中,∵∠E =90°,∠CBE =60°,∴∠BCE =30°,∴BE =12BC =12×1 000=500(米);在Rt △CDF 中,∵∠F =90°,∠DCF =45°,CD =1 000米,∴CF =22CD =5002(米). ∴DA =BE +CF =(500+5002)米,即拦截点D 处到公路的距离是(500+5002)米.4.解:(1)100;(60+10t)(2)过点O 作OH ⊥PQ 于点H.在Rt △POH 中,∠OHP =90°,∠OPH =65°-(90°-70°)=45°,OP =200 km ,∴OH =PH =OP·sin ∠OPH =200×sin 45°=1002≈141(km ).设经过t h 时,台风中心从P 移动到H ,台风中心移动速度为20 km /h ,此时,受台风侵袭的圆形区域半径应为60+10×52≈131(km ).台风中心在整个移动过程中与城市O 的最近距离OH ≈141 km ,而台风中心从P 移动到H 时受侵袭的圆形区域半径约为131 km ,131 km <141 km ,因此,当台风中心移动到与城市O 距离最近时,城市O 不会受到台风侵袭.解码专训五1.B 点拨:连接AC ,CF ,根据正方形性质分别求出AC ,CF 的长,由∠ACD =∠GCF =45°,得∠ACF =90°,然后利用勾股定理求出AF 的长,再根据直角三角形斜边上的中线等于斜边的一半解答即可.2.4333.224.435.解:设AD =x ,则BD =x ,CD =x -3,在Rt △ACD 中,(x -3)2+(15)2=x 2,解得x =4, ∴CD =4-3=1 ∴sin ∠CAD =CD AD =14. 6.B 7.C8.解:原式=⎝ ⎛⎭⎪⎫12-1÷1+22-2-22+1×1=2+22-2-(22-2) =2.9. C 10.6 11.181912.解:设B 处距离码头Ox km ,在Rt △CAO 中,∠CAO =45°,∵tan ∠CAO =COAO , ∴CO =AO·tan ∠CAO =(45×0.1+x)·tan 45°=(4.5+x) km ,在Rt △DBO 中,∠DBO =58°,∵DC =DO -CO , ∴36×0.1=x·tan 58°-(4.5+x), ∴x =36×0.1+4.5tan 58°-1≈36×0.1+4.51.60-1=13.5.因此,B 处距离码头O 大约13.5 km .13.解:设CE =y ,(1)∵四边形ABCD 是矩形,∴AB =CD =4,BC =AD=5,∠B =∠BCD =∠D =90°.∵BP =a ,CE =y ,∴PC =5-a ,DE =4-y ,∵AP ⊥PE ,∴∠APE =90°,∠APB +∠CPE =90°,∵∠APB +∠BAP =90°,∴∠CPE =∠BAP ,∴△ABP ∽△PCE ,∴BP CE =ABPC ,∴y =-a 2+5a 4,即CE =-a 2+5a 4.(2)四边形APFD 是菱形,理由如下:当a =3时,y =-32+5×34=32,即CE=32,∵四边形ABCD 是矩形,∴AD ∥BF ,∴△AED ∽△FEC ,∴AD CF =DECE ,∴CF =3,∴PF =PC +CF =5.∴PF =AD ,∴四边形APFD 是平行四边形,在Rt △APB 中,AB =4,BP =3,∠B =90°,∴AP =5=PF , ∴四边形APFD 是菱形.(3)根据tan ∠PAE =12可得APPE =2,易得△ABP ∽△PCE ,∴BP CE =AB PC =AP PE =2,得a y =45-a =2或a y =4a -5=2,解得a =3,y =1.5或a =7,y =3.5.∴a =3或7.14.解法1:如图①所示,过点B 作BE ∥AD 交DC 于点E ,过点E 作EF ∥AB 交AD 于点F ,则BE ⊥AB ,EF ⊥AD.∴四边形ABEF 是矩形.∴∠CBE =120°-90°=30°,∠D =180°-120°=60°.在Rt △BCE 中,BE =BC cos ∠CBE =503cos 30°=50332=100,EC =BC·tan ∠CBE =503×tan 30°=503×33=50. 在Rt △DEF 中,DF =EF tan D =AB tan 60°=3033=30.∴AD =AF +DF =BE +DF =100+30=130. ∴S四边形ABCD =S梯形ABED +S △BCE =12(AD +BE)·AB +12BC·EC =12×(130+100)×303+12×503×50=4 700 3.用科技让复杂的世界变简单让每个人平等地提升自己(第14题)解法2:如图②所示,延长DA ,CB 交于点E ,则∠ABE =180°-∠ABC =60°,∠E =90°-∠ABE =30°. 在Rt △ABE 中,AE =AB·tan 60°=303×3=90, BE =AB cos 60°=30312=60 3.∴CE =BE +BC =603+503=110 3.在Rt △DCE 中,DC =CE·tan 30°=1103×33=110. ∴S四边形ABCD =S △DCE -S △ABE=12DC·CE -12AB·AE =12×110×1103-12×303×90=4 700 3.点拨:求不规则图形的面积要将其转化为直角三角形或特殊的四边形的面积来求.可适当添加辅助线,把不规则四边形分割为直角三角形和直角梯形求解;还可通过补图,把不规则四边形转化为直角三角形求解.15.解:∵sin B =35,∠ACB =90°,DE ⊥AB ,∴sin B =DE DB =AC AB =35.设DE =CD =3k(k >0),则DB =5k. ∴CB =8k ,AC =6k ,AB =10k. ∵AC +CD =9,∴6k +3k =9.解得k =1. ∴DE =3,DB =5,∴BE =DB 2-DE 2=52-32=4. 过点C 作CF ⊥AB 于点F ,则CF ∥DE ,∴DE CF =BE BF =BD BC =58,∴CF =245,BF =325,∴EF =BF -BE =125.在Rt △CEF 中,CE =CF 2+EF 2=1255. 16.解:如图,过点C 作CF ⊥AB 于点F.(第16题)设塔高AE=x m,由题意得EF=BE-CD=56-27=29(m),AF=AE+EF=(x+29)m. 在Rt△AFC中,∠ACF=36°52′,AF=(x+29)m,则CF=AFtan36°52′≈x+290.75=43x+1163(m),在Rt△ABD中,∠ADB=45°,AB=(x+56)m,则BD=AB=(x+56)m,∵CF=BD,∴x+56≈43x+1163,解得x≈52.答:该铁塔的高AE约为52 m.用科技让复杂。
初中数学中的构造思想
初中数学中的构造思想作者:徐敏明来源:《科学导报·学术》2020年第25期摘要:从平时教学中能体会到学生有构造法的意识,却没有构造法系统的归纳与方法,因此学生经常在解题过程中碰到阻碍。
从而本文归纳了几种常见的构造法,并讲解如何建立条件与构造对象的联系来获得构造的思路,以便学生更好地掌握构造法,使构造法在解题中发挥出创造性的作用,同时培养学生的解题能力,减轻学生的学习负担。
关键词:构造法;初中数学;创造性;解题能力;思路分析引言我在进行八年级上册第四章《平面直角坐标系》教学时,发现很大部分同学对求两点之间的距离问题感到迷茫与不解。
例如:已知O为坐标原点,点A坐标为(1,2),点B坐标为(-1,4),请求线段OA、AB的长?部分同学可能会直接求OA的长,即一个点到坐标原点的距离,却不知道任意两点之间的距离,只能说明这些同学是靠记公式求得OA的长,而并非正真理解求两点之间距离的知识本源。
其实,此题主要是要求学生掌握直角三角形的构造,再利用勾股定理求出AB的长。
但是,我们的学生往往缺乏利用构造法解决问题的思想,因此对类似的题目感到毫无头绪。
所以,我就对初中阶段的几种构造方法做了简单的归纳,以帮助学生能初步形成构造思想。
正文首先,我主要通过有限的几个例题,来分析各问题的特点和性质,然后建立与构造对象之间的联系,进而获取构造思路,达到灵活应用构造法解题的目的。
1 构造图形著名数学家华罗庚教授说过:“数与形,本是相倚依。
”一般来讲,代数的问题比较抽象,若能通过构造将之合理转化为几何问题,利用“数形结合”这一重要思想方法沟通代数与几何的关系,往往可增强问题的直观性,使解答事半功倍,实现难题巧解。
巧用构造图形不仅可以提升学生数形互用的能力,而且还对培养学生探究能力和建模能力有积极作用。
例1:已知,,求证:思路分析:刚看见此题,貌似很难找到突破口,但是我们观察左式的形式与两点间的距离公式很像,不难联想到将不等式的左边看成点分别到四个点距离的和。
浅谈构造法解题的思想方法
这 是一 个 代数 不 等式 的证明 问题 , 直接 用代数方法相 当繁杂 , 但是 ,考虑 到 、 y . z 均
为正数 , x y = 2 x y c o s 6 0  ̄ , 类 比余 弦定 理则 可构 A 造 四面 体 0 —A B C , 如
图, 使 AO B= /B O C = C O A= 6 0  ̄ .设 O A .
教学随笔
凌缆绚 穆 题
● 乔 振 字
构 造 法 是 运 用 数学 的基 本 思 想 ,经 过认 真 的 观 察, 深入的思考 , 构造出解题 的数学模型从而使 问题 得以解决 的方法 。运用构造法来解题是培养学生创 造意识 和创新思维的手段之一 ,同时对提高学生的 解题 能力也有所帮助。下面我们来说明如何 通过 构 造 法解 题 。
5 2 5
2ቤተ መጻሕፍቲ ባይዱ
约去y 得 : 一 , 即。 。
( 四) 类 比构 造
+ 。 。
5
的值为一 。
2
数学 家华罗庚先生 曾说过 : “ 数形结合千 般少 , 分离开来万事休 ” , 可见 数形结合的重要性 , 做题 时 如果 能数形结合巧妙构造 , 就能达到事半功倍之效。
( 一) 数 形 结合 构 造
5
-
藏
)
一
有x y = c o s 2 - O O S 2 — 4 a t : ( 1 + c o s
5 5
5
( 1 +
2
2
5
C O S : ( ( 2 0 5 4 " t rC — —) , = — — O S — — ) 。 0
0
这种解法有时可避免烦琐 的计算 ,自己创造 条 件, 整体运作 , 方便易解。
高中数学核心方法 构造法
高中数学核心方法:构造法构造法,这是一种高级的数学思维方法,它通过将问题转化为另一种形式,从而帮助我们更深入地理解问题并找到解决方案。
尽管构造法在数学的其他领域中也有应用,但本文将集中讨论它在高中数学中的应用。
一、理解构造法构造法是一种通过创建或构造某种对象或模型来解决数学问题的策略。
这个对象或模型通常是为了更好地描绘和理解问题,以及提供一种能够揭示问题本质的直观表示。
在构造法的使用过程中,我们需要运用类比、想象和猜测等思维方式,以图找到解决问题的线索和灵感。
二、构造法的优势1、直观性:构造法能将抽象的数学问题转化为更具体、更直观的形式,从而让问题更容易理解。
2、创新性:通过构造法,我们可以从全新的角度看待问题,这有助于我们发现新的解决方案。
3、有效性:构造法能让我们更清楚地看到问题的核心,从而更有效地解决问题。
三、构造法的应用实例1、函数图像的构造:在解决一些函数问题时,我们可以根据函数的性质,如奇偶性、单调性等,来构造函数的图像。
这可以帮助我们直观地理解函数的行为,从而更容易地解决问题。
2、数列的构造:在解决一些数列问题时,我们可以根据数列的性质来构造新的数列,如等差数列等比数列等。
这可以帮助我们更好地理解数列的规律,从而更容易地解决问题。
3、几何图形的构造:在解决一些几何问题时,我们可以根据题目的条件来构造出相应的几何图形。
这可以帮助我们直观地理解问题的条件和结论,从而更容易地解决问题。
四、如何掌握构造法1、深入理解:要掌握构造法,首先需要对数学的基础知识有深入的理解。
只有理解了问题的本质,才能找到合适的构造方法。
2、练习实践:通过大量的练习和实践,我们可以逐渐掌握构造法的技巧和精髓。
只有不断地尝试和应用,才能真正理解和掌握这种方法。
3、总结反思:每次使用构造法解决问题后,都需要进行总结和反思。
看看哪些地方做得好,哪些地方需要改进,这样才能不断提高自己的构造法能力。
4、寻求帮助:如果遇到困难,不要害羞或害怕,积极寻求帮助。
数学常用的17种思想方法
数学常用的17种思想方法:小学初中都适用!数学如此简单!1、对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。
如直线上的点(数轴)与表示具体的数是一一对应。
2、假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。
假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
3、比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。
在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
4、符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。
如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。
如定律、公式、等。
5、类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。
如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。
类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。
6、转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。
如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。
7、分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。
如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。
又如三角形可以按边分,也可以按角分。
不同的分类标准就会有不同的分类结果,从而产生新的概念。
05构造的思想方法
高中数学思想方法专题(五)---构造的思想方法所谓构造的思想方法,就是指在对问题进行透彻地分析,对其实质进行深刻地了解的基础上,借助于逻辑分析或长期积累的经验,发挥高度的想象和创造性,将原来的问题从原来的模式转化为更能反映其本质特征的新模式的思想方法。
构造思想是一种很活跃的创造性思想方法,它能沟通数学各个不同的分支,甚至还能沟通数学与其他的学科,实现跨度极大的问题转化,这是一种难度大、规律不易掌握的高层次的思想方法。
“构造”是一种重要而灵活的思维方式,它没有固定的模式.要想用好它,需要有敏锐的观察、丰富的联想、灵活的构造、创造性的思维等能力,故有一定的难度.应用好构造思想解题的关键有二:一是要有明确的方向,即为什么目的而构造;二是要弄清条件的本质特点,以便重新进行逻辑组合构造的方法有很多,其中以构造函数法、构造方程法、构造图形法、构造数列法、构造模型法、构造复数法等最为常见。
下面介绍一些常用的构造方法。
1.构造函数法在求解某些数学问题时,根据问题的条件,构想组合一种新的函数关系,使问题在新的观念下转化并利用函数的有关性质解决原问题是一种行之有效的解题手段。
构造函数证(解)问题是一种创造性思维过程,具有较大的灵活性和技巧性。
在运用过程中,应有目的、有意识地进行构造,始终“盯住”要证、要解的目标。
【例1】证明:如果(1x y ++=,那么0x y +=证明:构造函数()lg(()f x x x R =+∈易证()f x 在R 上是奇函数且单调递增(1x y ++=()()l g 1)f x f y ∴+=+lg(y +=lg[((x y +++=lg1 = 0()()f x f y ∴=- 即:()()f x f y ∴=-又 ()f x 是增函数 x y ∴=- 即0x y +=[例2]已知x,y,z ∈(0,1),求证: x(1-y)+y(1-z)+z(1-x)分析:此题条件、结论均具有一定的对称性,然而难以直接证明,不妨用构造法一试。
构造法的数学思想及其运用
基础教育P UBLIC C OURSE147OCCUPATION2014 07摘 要:构造的思想方法是解决数学问题常用的思想方法。
本文介绍了方程构造法、命题构造法、模型同类构造、解图形构造、函数构造等构造法的运用。
关键词:数学教学 构造 运用构造法的数学思想及其运用文/丁文敏在数学教学中,我们常常采用构造方法来解决数学问题。
因为有的结论难以直接表达,需要借助一定的条件才能转化到结论,于是就可以利用数学问题的特殊性,进行新的关系结构的设计,间接地寻找解决问题的具体方法。
这种方法不是直接解决原问题,而是创造一个与原来问题有关或等价的新问题。
它可以用于对经典数学的概念、定理的解释,也可以用于开发构造性数学的新领域。
在解决初等数学问题时,构造思想方法得到广泛的应用。
用构造思想解题的巧妙之处在于构造一个与原问题有关的辅助新问题,希望通过它的解决来帮助解决原问题。
一般情况下,创设一个比原问题更简单、更直观的新问题,使得原问题迎刃而解,此方法的运用就成功了。
一、方程构造法遇到等量性的问题都可能使用方程这个工具,对于一些计算问题也可运用方程的思想来解决。
倘若一个量不能或难于直接求得,就设法导出它所满足的方程,于是问题就归结为求解方程了。
我们可以根据解的定义构造方程,可以引入未知数,把问题转化为方程问题求解,可以用韦达定理逆定理构造方程,可以利用判别式构造方程,可以根据题目特点把问题转化为方程来解决。
例1:若a+b+c=m,1/a+1/b+1/c=1/m,a、b、c互不相等,求证a、b、c中必有一个等于m。
若将a、b、c看作未知量,由条件可知其和为m,两两积和ab+bc+ca=—。
这样就可以设出abc后,按三次方程的韦达定理构造出a、b、c为根的方程。
这样我们可以证明:令abc=n,则ab+bc+ca=—,因此a、b、c是方程t 3-mt 2+t -n=0的三个根。
方程(t -m)(t 2+—)=0有一根t1=m,即a、b、c 中必有一个等于m。
数学思想方法一整体思想(解析)(自己整理)
数学思想方法一整体思想整体思想,就是在研究和解决有关数学问题时,通过研究问题的整体形式、整体结构、整体特征,从而对问题进行整体处理的解题方法.从整体上去认识问题、思考问题,常常能化繁为简、变难为易,同时又能培养学生思维的灵活性、敏捷性.整体思想的主要表现形式有:整体代入、整体加减、整体代换、整体联想、整体补形、整体改造等等.在初中数学中的数与式、方程与不等式、函数与图象、几何与图形等方面,整体思想都有很好的应用,因此,每年的中考中涌现了许多别具创意、独特新颖的涉及整体思想的问题,尤其在考查高层次思维能力和创新意识方面具有独特的作用. 一.数与式中的整体思想例1.已知114a b -=,则2227a ab b a b ab---+的值等于 ( ) A.6 B.6- C.125 D.27-分析:根据条件显然无法计算出a ,b 的值,只能考虑在所求代数式中构造出11a b-的形式,再整体代入求解.解:112242b 6112272(4)72()7a ab b a a b ab b a------===-+⨯-+-+说明:本题也可以将条件变形为4b a ab -=,即4a b ab -=-,再整体代入求解.例2.已知代数式25342()2x ax bx cx x dx++++,当1x =时,值为3,则当1x =-时,代数式的值为解:因为当1x =时,值为3,所以231a b c d +++=+,即11a b cd++=+,从而,当1x =-时,原式()21211a b c d-++=+=-+=+例3.已知2002007a x =+,2002008b x =+,2002009c x =+,求多项式222a b c ab bc ac ++---的值.分析:要求多项式的值,直接代入计算肯定不是最佳方案,注意到222a b c ab bc ac ++---2221()()()2a b b c c a ⎡⎤=-+-+-⎣⎦,只要求得a b -,b c -,c a -这三个整体的值,本题的计算就显得很简单了.解:由已知得,1a b b c -=-=-,2c a -=,所以, 原式2221(1)(1)232⎡⎤=-+-+=⎣⎦ 说明:在进行条件求值时,我们可以根据条件的结构特征,合理变形,构造出条件中含有的模型,然后整体代入,从整体上把握解的方向和策略,从而使复杂问题简单化. 二.方程(组)与不等式(组)中的整体思想例4.已知24122x y k x y k +=+⎧⎨+=+⎩,且03x y <+<,则k 的取值范围是分析:本题如果直接解方程求出x ,y 再代入03x y <+<肯定比较麻烦,注意到条件中x y +是一个整体,因而我们只需求得x y +,通过整体的加减即可达到目的.解:将方程组的两式相加,得:3()53x y k +=+,所以513x y k +=+,从而50133k <+<,解得3655k -<<例5. 已知关于x ,y 的二元一次方程组3511x ay x by -=⎧⎨+=⎩的解为56x y =⎧⎨=⎩,那么关于x ,y的二元一次方程组3()()5()11x y a x y x y b x y +--=⎧⎨++-=⎩的解为为分析:如果把56x y =⎧⎨=⎩代入3511x ay x by -=⎧⎨+=⎩,解出a ,b 的值,再代入3()()()11x y a x y x y b x y +--=⎧⎨++-=⎩进行求解,应当是可行的,但运算量比较大,相对而言比较繁琐. 若采用整体思想,在方程组3()()5()11x y a x y x y b x y +--=⎧⎨++-=⎩中令x y mx y n+=⎧⎨-=⎩,则此方程组变形为3511m an m bn -=⎧⎨+=⎩,对照第一个方程组即知56m n =⎧⎨=⎩,从而56x y x y +=⎧⎨-=⎩,容易得到第二个方程组的解为11212x y ⎧=⎪⎪⎨⎪=-⎪⎩,这样就避免了求a ,b 的值,又简化了方程组,简便易操作.解:11212x y ⎧=⎪⎪⎨⎪=-⎪⎩说明:通过整体加减既避免了求复杂的未知数的值,又简化了方程组(不等式组),解答直接简便.例6.解方程 22523423x x x x+-=+分析:本题若采用去分母求解,过程很复杂和繁冗,根据方程特点,我们采用整体换元,将分式方程转化为整式方程来解.解:设223x x y +=,则原方程变形为54y y-=,即2450y y --=,解得15y =,21y =-,所以2235x x +=或2231x x +=-,从而解得152x =-,21x =,312x =-,41x =-,经检验1x ,2x ,3x ,4x 都是原方程的解.说明:(1)对于某些方程,如果项中含有相同部分(或部分相同)可把它看作一个整体,用整体换元进行代换,从而简化方程及解题过程.当然本题也可以设2234y x x =+-,将方程变形为54y y =+来解. (2)利用整体换元,我们还可以解决形如22315122x x x x -+=-这样的方程,只要设21x y x =-,从而将方程变形为15322y y +=,再转化为一元二次方程来求解. 例7. 有甲、乙、丙三种货物,若购甲3件,乙7件,丙1件,共需3.15元;若购甲4件,乙10件,丙1件,共需4.20元.现在计划购甲、乙、丙各1件,共需多少元?分析:要求的未知数是三个,而题设条件中只有两个等量关系,企图把甲、乙、丙各1件的钱数一一求出来是不可能的,若把甲、乙、丙各1件的钱数看成一个整体,问题就可能解决.解:设购甲、乙、丙各1件分别需x 元、y 元、z 元.依题意,得37315410420x y z x y z ++=++=⎧⎨⎩..,即2331533420()().()().x y x y z x y x y z ++++=++++=⎧⎨⎩解关于x y +3,x y z ++的二元一次方程组,可得x y z ++=105.(元) 答:购甲、乙、丙各1件共需1.05元.第9题YXO 1-14321I HEDBA说明:由于我们所感兴趣的不是x 、y 、z 的值,而是x y z ++这个整体的值,所以目标明确,直奔主题,收到了事半功倍的效果. 三.函数与图象中的整体思想例8.已知y m +和x n -成正比例(其中m 、n 是常数) (1)求证:y 是x 的一次函数;(2)如果y =-15时,x =-1;x =7时,y =1,求这个函数的解析式. 解:(1)因y m +与x n -成正比例,故可设y m k x n k +=-≠()()0 整理可得y k x k n m =-+()因k ≠0,k 、-+()k n m 为常数,所以y 是x 的一次函数.(2)由题意可得方程组-=--+=-+⎧⎨⎩1517k k n m k k n m ()()解得k =2,k n m +=13. 故所求的函数解析式为y x =-213. 说明:在解方程组时,单独解出k 、m 、n 是不可能的,也是不必要的.故将k n m +看成一个整体求解,从而求得函数解析式,这是求函数解析式的一个常用方法.例9. 若关于x 的一元二次方程22(1)20x a x a +-+-=有一根大于1,一根小于1-,求a 的取值范围.分析:此题如果运用根的判别式和韦达定理,解答此题较为困难.整体考虑,把一元二次方程22(1)20x a x a +-+-=与二次函数22(1)2y x a x a =+-+-联系起来,利用二次函数的图象来解题,则显得很直观,也较为容易.解:由题意可知,抛物线与x 轴的交点坐标,一个交点在点(1,0)的右边,另一个交点在点(1,0)-的左边,抛物线图象开口向上,则可得:当1x =时,0y <,当1x =-时,0y <,即2220a a a a ⎧+-<⎨-<⎩,∴20a -<<. 说明:(1)由于当1x =,1x =-时,0y <, 所以解答过程中不必再考虑0∆>了.(2)利用函数与图象,整体考察,是解决涉及方程(不等式)有关根的问题最有效的方法第11题OP FEDCBA在之一,在数学教学中应当引起足够的重视. 四.几何与图形中的整体思想例10.如图,123456∠+∠+∠+∠+∠+∠=分析:由于本题出无任何条件,因而单个角是无法求出的.利用三角形的性质,我们将12∠+∠视为一个整体,那么应与△ABC 中BAC ∠的外角相等,同理34∠+∠,56∠+∠分别与ABC ∠,ACB ∠的外角相等,利用三角形外角和定理,本题就迎刃而解了.解:因为12DAB ∠+∠=∠,34IBA ∠+∠=∠,56GCB ∠+∠=∠,根据三 角形外角定理,得360DAB IBA GCB ∠+∠+∠=°, 所以123456∠+∠+∠+∠+∠+∠=360°.说明:整体联想待求式之间的关系并正确应用相关性质是解决此类问题的关键. 例11.如图,菱形ABCD 的对角线长分别为3和4, P 是对角线AC 上任一点(点P 不与A ,C 重合),且PE ∥BC 交AB 于E , PF ∥CD 交AD 于F ,则图中阴影部分的面积为 .解:不难看出,四边形AEPF 为平行四边形, 从而△OAF 的面积等于△OAE 的面积, 故图中阴影部分的面积等于△ABC 的面积, 又因为12ABC ABCD S S ∆=1134322=⨯⨯⨯=,所以图中阴影部分的面积为3. 说明:本题中,△OAF 与△OAE 虽然并不全等,但它们等底同高,面积是相等的.因而,可以将图中阴影部分的面积转化为△ABC 的面积.我们在解题过程中,应仔细分析题意,挖掘题目的题设与结论中所隐含的信息,然后通过整体构造,常能出奇制胜.例12.如图,在正方形ABCD 中,E 为BC 边的中点,AE 平分BAF ∠,试判断AF 与BC CF +的大小关系,并说明理由.解:AF 与BC CF +的大小关系为AF BC CF =+.分别延长AE ,DC 交于点G ,因为E 为BC 边的中点,因而易证△ABE ≌△GCE ,所以AB GC =,并且BAE CGE ∠=∠,AB BC =,从而BC CF GF +=.由于AE 平分BAF ∠,所以BAE FAE ∠=∠,故FAE CGE ∠=∠,即△AFG 为等腰三角形,即AF GF =,所以,AF BC CF =+.说明:证明一条线段等于另外两条线段的和差,常常用截长法或补短法把问题转化为证明两条线段相等的问题,本题中我们利用三角形全等将BC CF +转化为FG 这一整体,从而达到了解决问题的目的.用整体思想解题不仅解题过程简捷明快,而且富有创造性,有了整体思维的意识,在思考问题时,才能使复杂问题简单化,提高解题速度,优化解题过程.同时,强化整体思想观念,灵活选择恰当的整体思想方法,常常能帮助我们走出困境,走向成功.练习一、选择题1. (2011盐城,4,3分)已知a ﹣b =1,则代数式2a ﹣2b ﹣3的值是( )A.﹣1B.1C.﹣5D.52. (2011,台湾省,26,5分)计算(250+0.9+0.8+0.7)2﹣(250﹣0.9﹣0.8﹣0.7)2之值为何?( ) A 、11.52 B 、23.04C 、1200D 、24003. 10(2011山东淄博10,4分)已知a 是方程x 2+x ﹣1=0的一个根,则22211a a a---错误!未找到引用源。
例谈高中数学构造的思想-2019年文档
例谈高中数学构造的思想
历史上有不少著名的数学家,如欧几里得、欧拉、高斯、拉格朗日等人,都曾经用“构造法”成功地解决过数学上的难题。
构造法的核心是构造,要善于将数与形结合,将式与方程、函数、图形等建立联系,构造出新的数学形式,使问题巧妙地获得解决。
“构造思想”作为一种重要的化归思想,在数学中有着极为重要的作用,现举例谈谈其在数学解题中的运用。
一、构造对偶式
有些涉及到非对称式问题,有时构造出这些非对称式的对偶式,可以使问题得到解决。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
构造的思想方法
一、模型性构造 二、技巧性构造
一、模型性构造
(一)构造恒等式 (二)构造方程 (三)构造函数 (四)构造不等式 (五)构造数列 (六)构造复数 (七)构造几何模型 (八)构造解析模型 (九)构造物理模型
构造恒等式
思路分析 待求值式实际上巳暗示我们,应设法构造一个恒等式,使之能利用已有 的结论:
可构造出如图15-1的△ABC,其中AC=3, BC=2,∠BAC=2α,∠B=2β.过C作 CE⊥AB于E,则 AB=AE+BE=3cos2α+2cos2β =3(1-2sin2α)+2(1-2sin2β) =5-2(3sin2α+2sin2β) =5-2=3=AC. 故△ABC为等腰三角形. 往下作BC边上的高AD,在Rt△ADC
(八)构造解析模型 八 构造解析模型
思路分析 通过比较大小的方法进行证明,将会遇到烦琐的运算 若在数轴上构造三个点A、B、C,它们对应的实数值分别为a、
因a>0,故0<λ<1,由此知B在A、C之间,且B距C的距离 比距A的距离近.
(九)构造物理模型 九 构造物理模型
思路分析 考查七个大小均为1的共点力,使相邻的两个力的夹
些力在x轴方向上的分力的和为0可得
由此立即可得结论.
思考:能否把命题推广到更一般的情况 ?
显然由巳知得(x-1)+(y-1)+(z-1)=0 因此(x-1)3+(y-1)2+(z-1)3=3(x-1)(y-1)(z-1). 由此得 原式=1
例2 有质量为12,22,32,…,402的砝码各一个.试证:可以将它 们分成质量相等的两组,每组的砝码数也相等. 思路分析 如果盲目地去尝试,肯定不可取,观察并初步试探可 以发现简单的等式 12+42+62+72=22+32+52+82. 由此进一步想到可构造出恒等式 x2+(x+3)2+(x+5)2+(x+6)2=(x+1)2+(x+2)2+(x+4)2+(x+7)2. 于是可以将1,2,3,4,…,40除以8余数为1,4,6,7的为一组, 余数为2,3,5,0的为另一组,则可得满足条件的两组数字.
思考 请你将问题推广到一般的情况.
(三)构造函数 三 构造函数 例4 证明:对于任何自然数n≥3,在欧氏平面上存在一个n个点的 集合,使得每一对点之间的距离是无理数,而且每三个点构成一 个非退化的三角形有有理面积(第28届IMO). 思路分析 初看此题似乎无法下手,但是当找到函数y=x2这个简单 模型后,问题就迎刃而解了. 在y=x2上取点Pi(i,i2)(i=1,2, 3,…,n). 当i≠j时,
当1+2cos2A>0时,复数b+ai的辐角为3A,故当b≠0
当1+2cos2A<0时,复数b+ai的辐角为π+3A,故当b≠0
故 (1+2cos2A)2=a2+b2.
(七)构造几何模型3sin2α-sin2β
思路分析 此题若仅限于三角式的变形,则将陷入歧途.仔细观察,
构造一个△ABC,使∠A=2α,∠B=2β,AC=3,BC=2,则只 须证明AB=AC,就有BC边上的高平分∠A,问题可证. 为能构造出△ABC,首先须证2α、2β为锐角 因3sin2α+2sin2β=1, 所以cos2β=1-2sin2β=3sin2α>0, cos2α=1-sin2α=sin2α+2sin2β>0. 故2α、2β均为锐角,
再取抛物线上三个不同的点Pi、Pj、Pk,i、j、k∈{1,2,…, 数
(四)构造不等式 四 构造不等式
求证:3z1-z2是实数 思路分析 如果能想到只要证明(3z1-z2)2>0,问题就豁然 开朗了.下面设法由条件构造出与此有关的不等式. 由已知可变形得(3z1-z2)2=-(z1+2z2)2>0(因为z1+2z2是纯虚 数),故问题得证.
构造的思想方法 (一)
构造的思想方法
所谓构造的思想方法,就是指在对问题进行透彻 地分析,对其实质进行深刻地了解的基础上,借 助于逻辑分析或长期积累的经验,发挥高度的想 象和创造性,将原来的问题从原来的模式转化为 更能反映其本质特征的新模式的思想方法. 用构造的思想方法解题,其核心就是要发现深藏 在问题表面形式后面的深层次的东西,
(五)构造数列 五 构造数列
思路分析 这种类型的问题通常用数学归纳法来证.下面试 用构造数列的方法求解.
所以{xn}是公差为零的等差数列.于是xn=x1=0.原恒等式获 证
(六)构造复数 六 构造复数 例7 已知sinA+sin3A+sin5A=a,cosA+cos3A+cos5A=b. (2)(1+2cos2A)2=a2+b2. 思路分析 巳知条件构成三角对偶形式,可构造复数z=cosA+