有限元综述.(优选)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有限元综述

蔡璟、吕丹丹、李川

摘要:有限元法(Finite Element Method)是一种高效能、常用的数值计算方法。1965年“有限元”这个名词第一次出现,经历了三十多年的发展历史,理论和算法都已经日趋完善。如今,有限元在工程上得到广泛应用。本文首先介绍了有限元的研究背景和意义,其次从它的诞生、主要特点以及解题步骤三方面阐述相关概念,再讨论传统有限元算法及优化算法、有限元与其他算法结合得到的混合算法两个方面来分类阐述各自的研究现状与特点,最后总结有限元算法的应用以及发展趋势。

关键词:有限元法,FEM,经典算法,优化算法,网格优化,Herrmann算法,时域有限元,混合算法,矩量法,时域有限差分,应用研究,边界元法,光滑粒子法,发展趋势

前言

有限元法(Finite Element Method)是一种高效能、常用的数值计算方法,其基本思想是由解给定的泊松方程化为求解泛函的极值问题。有限元法在早期是以变分原理为基础发展起来的,所以它广泛地应用于以拉普拉斯方程和泊松方程所描述的各类物理场中(这类场与泛函的极值问题有着紧密的联系)。自从1969年以来,某些学者在流体力学中应用加权余数法中的迦辽金法(Galerkin)或最小二乘法等同样获得了有限元方程,解决了物理场应用中的限制。经历几十年的发展,有限元法已经被广泛用于各个领域。

1.研究背景和意义

有限元法的思想首先由 R. Courant 在 1943 年提出,十九世纪六十年代数值分析科学家认识了有限元基本思想,建立了有限元方法的数学基础。其中,我国数学家冯康独立地提出了有限元方法,将其命名为“基于变分原理的差分格式”,对有限元方法的创始及奠基工作做出了重要贡献。

以变分原理为基础建立起来的有限元法,因其理论依据的普遍性,不仅广泛地被应用于各种结构工程,而且作为一种声誉很高的数值分析方法已被普遍推广并成功地用来解决其他工程领域中的问题,例如热传导!渗流!流体力学、空气动力学、土壤力学、机械零件强度分析、电磁场工程问题等等。

有限元法由于可以模拟任意几何模型和各种特性的复杂材料而且具有的适应性强、程序较为通用等优势而得到了长足的发展。同时,结合其他方法和理论呈现出广阔的应用前景,如自适应网格剖分、三维场建模求解、耦合问题、开放域问题等领域取得较多成果。现阶段,为了进一步拓宽求解问题的广泛性以及适应求解问题对高精度,高复杂程度的要求,有限元还需要进行突破性的工作。2.有限元研究概况

2.1有限元的诞生

1943年,数学家库朗德第一次提出了可在定义域内分片地使用展开函数来表达其上的未知函数,最早提出有限元法基本思想。20世纪50年代,飞机设计师们发现无法用传统的力学方法分析飞机的应力、应变等问题。波音公司的一个技术小组,首先将连续体的机翼离散为三角形板块的集合来进行应力分析,经过一番波折后获得前述的两个离散的成功。20世纪50年代,大型电子计算机投入了解算大型代数方程组的工作,这为实现有限元技术准备好了物质条件。1960

年前后,美国的R.W.Clough教授及我国的冯康教授分别独立地在论文中提出了“有限单元”这样的名词。此后,这样的叫法被大家接受,有限元技术从此正式诞生。

2.2有限元的概念及特点

有限元法是以变分原理为基础,将要求解的微分方程型数学模型——边值问题,首先转化为相应的变分问题,即泛函求极值问题;然后,利用剖分插值将变分问题离散化为普通多元函数的极值问题,最终归结为一组多元的代数方程组,求解该方程组,从而获得边值问题的数值解,巧妙的将函数逼近理论、偏微分方程、变分与泛函分析结合到一起。其主要特点有:

一、离散化过程保持了明显的物理意义。因为变分原理描述了支配物理现象的物理学中的最小作用原理(如力学中的最小势能原理、静电学中的汤姆逊定理等)。因此,基于问题固有的物理特性而予以离散化处理,列出计算公式,可保证方法的正确性、数值解的存在与稳定性等前提要素。

二、优异的解题能力。与其他数值方法相比较,有限元法在适应场域边界几何形状及媒质物理性质变异情况的复杂问题求解上,有突出优点:不受几何形状和媒质分布的复杂程度限制;不同媒质分界面上的边界条件是自动满足的;不必单独处理第二、三类边界条件;离散点配置比较随意,通过控制有限单元剖分密度和单元插值函数的选取,可以充分保证所需的数值计算精度

三、可方便地编写通用计算程序,使之构成模块化的子程序集合,并且从数学理论意义上讲,有限元作为应用数学的一个分支,它使微分方程的解法与理论面目一新,推动了泛函分析与计算方法的发展。

2.3有限元的解题步骤

对于有限元方法,其解题步骤可归纳为:

1)建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边值问题等价的积分表达式,这是有限元法的出发点。

2)区域单元剖分,根据求解区域的形状及实际问题的物理特点,将区域剖分为若干相互连接、不重叠的单元。区域单元划分是采用有限元方法的前期准备工作,这部分工作量比较大,除了给计算单元和节点进行编号和确定相互之间的关系之外,还要表示节点的位置坐标,同时还需要列出自然边界和本质边界的节点序号和相应的边界值。

3)确定单元基函数,根据单元中节点数目及对近似解精度的要求,选择满足一定插值条件的插值函数作为单元基函数。有限元方法中的基函数是在单元中选取的,由于各单元具有规则的几何形状,在选取基函数时可遵循一定的法则。

4)单元分析:将各个单元中的求解函数用单元基函数的线性组合表达式进行逼近;再将近似函数代入积分方程,并对单元区域进行积分,可获得含有待定系数(即单元中各节点的参数值)的代数方程组,称为单元有限元方程。

5)总体合成:在得出单元有限元方程之后,将区域中所有单元有限元方程按一定法则进行累加,形成总体有限元方程。

6)边界条件的处理:一般边界条件有三种形式,分为本质边界条件(狄里克雷边界条件)、自然边界条件(黎曼边界条件)、混合边界条件(柯西边界条件)。对于自然边界条件,一般在积分表达式中可自动得到满足。对于本质边界条件和混合边界条件,需按一定法则对总体有限元方程进行修正满足。

7)解有限元方程:根据边界条件修正的总体有限元方程组,是含所有待定未知量的封闭方程组,采用适当的数值计算方法求解,可求得各节点的函数值。3有限元的研究现状

3.1经典有限元算法及优化算法

3.1.1传统有限元法与矢量有限元算法

传统的有限元方法(Node-based FEM)又称节点有限元法,是通过插值节点数值而获得的节点基函数来表示各离散单元内电磁场的分量及其位函数,称为标量有限元方法或基于节点的有限元方法。它是以变分原理和剖分插值为基础的方法, 即将定解区域划分成许多小单元,然后按单元分别插值并合并起来得到总的插值,再以求泛函极值的方法来得到我们所需要的近似解答。

矢量有限元法(Edge-based FEM)是一种分析电磁场问题的新型数值方法,是对标量有限元法的大胆改进,它区别于标量有限元方法之处在于,Edge-based FEM将自由度赋予剖分单元的棱边而不是单元结点,即使用的是所谓矢量基或者矢量元,这种方法使得强加边界条件非常容易;在尖劈顶点不会出现奇点;合理选择基函数,直接模拟离散单元内矢量场而非位函数或矢量场的分量,保证矢量场的散度为零,剔除了伪解,从而克服了上述传统有限元方法所存在的缺点。相对于经典的标量有限元法,矢量有限元法还有如下优点:(l)它自然满足电场或磁场在介质分界面上的切向连续性条件;(2)由于棱边与棱边的祸合弱于节点的祸合,因而所得到的总体矩阵具有较少的非零元和较大的稀疏度,从而减少了计算量。3.1.2 有限元网格优化算法

在采用有限元法进行结构分析或者结构优化时,由于数值算法的精度与单元分布的合理程度及单元形状的质量有着十分密切的关系,网格过度不均匀或单元畸变会大大增加计算误差。因此,为了消除单元畸变和合理调整网格均匀度,需

相关文档
最新文档