基于BP神经网络的自适应PID控制器设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于BP 神经网络的自适应PID 控制器设计
一.基于BP 神经网络的自适应PID 控制器的原理
PID 控制是最早发展起来的、 应用领域至今仍然广泛的控制策略之一,它是基于对象数学模型的方法,尤其适用于可建立精确数学模型的确定性控制系统。其优点是算法简单、 鲁棒性好和可靠性高。但是,由于实际工业生产过程往往具有非线性,许多非线性系统难以确定精确的数学模型,常规的PID 控制器就不能达到理想的控制效果,由于受到参数整定方法烦杂的困扰,参数往往整定不良、 性能欠佳。神经网络所具有的任意非线性表达能力,可以通过对系统性能的学习来实现具有最佳组合的PID 控制。基于BP 网络的自适应PID 控制器,通过BP 神经网络调整自身权系数,对PID 控制参数进行调节,以达到某种性能指标的最优。
二.基于BP 神经网络的自适应PID 控制器的控制器结构
基于BP 神经网络的PID 控制系统结构图如图1所示:
此控制器由两部分组成:
(1)经典的PID 控制器,直接对被控对象进行闭环控制,并且三个参数p K ,i K ,d K 为在线调整方式;
图1 BP 网络结构
p k
i k
d k
i
(2)神经网路,根据系统的运行状态,调节PID 控制器的参数,以期达到某种性能指标的最优化,是输出层神经元的输出状态对应于PID 控制器的一个可调参数p K ,i K ,d K 。通过神经网络的自学习、加权系数调整,使神经网络输出对应于某种最优控制率下的PID 控制器参数。
基于BP 神经网络的自适应PID 控制器的控制器如图2所示:
该控制器的算法如下:
(1)确定BP 神经网络的结构,即确定输入节点数M 和隐含层节点数Q ,并给
各层加权系数的初值)0(1ij w 和)0(2ij w ,选定学习速率η和惯性系数α,此时k=1; (2)采样得到rin(k)和yout(k),计算该时刻误差error(k)=rin(k)-yout(k);
(3)计算神经网络NN 各层神经元的输入、输出,NN 输出层的输出即为PID 控制器的三个可调参数p K ,i K ,d K ;
(4)根据经典增量数字PID 的控制算法(见下式)计算PID 控制器的输出u(k); ))
2()1(2)(()())1()(()1()(-+--++--+-=k error k error k error K k error K k error k error K k u k u d i p (5)进行神经网络学习,在线调整加权系数)(1k w ij 和)(2k w ij 实现PID 控制参数
的自适应调整;
(6)置k=k+1,返回到(1)。
图2 基于BP 神经网络的自适应PID 控制器的控制器结构
三.仿真程序
%BP based PID Control
clear all;
close all;
xite=0.25;
alfa=0.05;
S=1; %Signal type
IN=4;H=5;Out=3; %NN Structure
if S==1 %Step Signal
wi=[-0.6394 -0.2696 -0.3756 -0.7023; -0.8603 -0.2013 -0.5024 -0.2596; -1.0749 0.5543 -1.6820 -0.5437; -0.3625 -0.0724 -0.6463 -0.2859;
0.1425 0.0279 -0.5406 -0.7660]; %wi=0.50*rands(H,IN);
wi_1=wi;wi_2=wi;wi_3=wi;
wo=[0.7576 0.2616 0.5820 -0.1416 -0.1325; -0.1146 0.2949 0.8352 0.2205 0.4508;
0.7201 0.4566 0.7672 0.4962 0.3632]; %wo=0.50*rands(Out,H);
wo_1=wo;wo_2=wo;wo_3=wo;
end
if S==2 %Sine Signal
wi=[-0.2846 0.2193 -0.5097 -1.0668; -0.7484 -0.1210 -0.4708 0.0988; -0.7176 0.8297 -1.6000 0.2049;
-0.0858 0.1925 -0.6346 0.0347;
0.4358 0.2369 -0.4564 -0.1324];
%wi=0.50*rands(H,IN);
wi_1=wi;wi_2=wi;wi_3=wi;
wo=[1.0438 0.5478 0.8682 0.1446 0.1537;
0.1716 0.5811 1.1214 0.5067 0.7370;
1.0063 0.7428 1.0534 0.7824 0.6494]; %wo=0.50*rands(Out,H);
wo_1=wo;wo_2=wo;wo_3=wo;
end
x=[0,0,0];
u_1=0;u_2=0;u_3=0;u_4=0;u_5=0;
y_1=0;y_2=0;y_3=0;
Oh=zeros(H,1); %Output from NN middle layer
I=Oh; %Input to NN middle layer
error_2=0;
error_1=0;
ts=0.001;
for k=1:1:6000
time(k)=k*ts;
if S==1
rin(k)=1.0;
elseif S==2
rin(k)=sin(1*2*pi*k*ts);
end
%Unlinear model