求积分几种常规方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
合肥学院论文
求积分的若干方法
姓名:陈涛
学号: 1506011005
学院:合肥学院
专业:机械设计制造及其自动化老师:左功武
完成时间: 2015年12月29日
求积分的几种常规方法
陈涛
摘要:数学分析中,不定积分是求导问题的逆运算,而且是联系微分学和积分学的一条纽带。为灵活运用积分方法求不定积分,本文介绍了求积分的几种重要方法和常用技巧,讨论和分析了求积分的几种方法:直接积分法,换元积分法,分部积分法以及有理函数积分的待定系数法,对于快速求不定积分有重要意义,适当的运用积分方法求不定积分,才可以简捷,准确。
关键词:定积分、不定积分、换元积分法、分部积分法、待定系数法
引言
数学分析是师范大学数学专业必修专业课,微分和积分都是数学分析的重
点,而不定积分是积分学的基础,更是关键,直接关系到学习数学的重点。其任务是掌握逻辑思维方法和提高使用数学手段解决问题的能力。一般地,求不定积分要比求导数难很多,运用积分法则和积分公式只能解决一些简单的积分,更多的不定积分要因函数的不同形式和不同类型选用不同的方法,巧妙运用恰当的方法,可以化难为易,从而简单、快捷、准确的求出不定积分。本文为解决求积分的困难问题给出了相应的解决方法,帮助理解不定积分。
1 积分的概念
设F(x)为函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分(indefinite integral)。
记作∫f(x)dx。其中∫叫做积分号(integral sign),f(x)叫做
被积函数(integrand),x叫做积分变量,f(x)dx叫做被积式,
C叫做积分常数,求已知函数的不定积分的过程叫做对这
个函数进行积分。
1.1 不定积分
积分还可以分为两部分。第一种,是单纯的积分,也就是已知导数求原函数,而若F(x)的导数是f(x),那么F(x)+C(C是常数)的导数也是f(x),也就是说,把f(x)积分,不一定能得到F(x),因为F(x)+C的导数也是f(x),C是任意的常数,所以f(x)积分的结果有无数个,是不确定的,我们一律用F(x)+C代替,这就称为不定积分。
用公式表示是:f'(x)=g(x)->∫g(x)dx=f(x)+c
不定积分是为解决和微分的逆运算而提出的。例如:已知定义在区间I上的函数f(x),求一条曲线y=F(x),x∈I,使得它在每一点的切线为F′(x)= f(x)。函数f(x)的不定积分是f(x)的全体原函数(见原函数),记作。如果F(x)是f(x)的一个原函数,则,其中C为任意常数。
1.2 定积分
相对于不定积分,还有定积分。所谓定积分,其形式为∫[a:b]f(x)dx 。之所以称其为定积分,是因为它积分后得出的值是确定的,是一个数,而不是一个函数。
的最初发展中,定积分即黎曼积分。用自己的话来说,就是把直角坐标系上的函数的图象用平行于y轴的直线和x轴把其分割成无数个矩形,然后把某个区间[a,b]上的矩形的面积累加起来,所得到的就是这个函数的图象在区间[a,b]的面积。实际上,定积分的上下限就是区间的两个端点a、b。而实变函数中,可以利用测度论将黎曼积分推广到更加一般的情况,如勒贝格积分.
用公式表示是:∫ [a,b]f(x)dx=lim(n->∞)∑(0-n)a+f(ti)*(b-a)/n
定积分是以平面图形的面积问题引出的。y=f(x)为定义在[a,b]上的函数,为求由x=a,x=b ,y=0和y=f(x)所围图形的面积S,采用古希腊人的穷竭法,先在小范围内以直代曲,求出S的近似值,再取极限得到所求面积S,为此,先将[a,b]分成n等分:
a=x0 1.3 定积分与不定积分的联系 我们可以看到,定积分的本质是把图象无限细分,再累加起来,而积分的本质是求一个函数的原函数。它们看起来没有任何的联系,那么为什么定积分写成积分的形式呢? 定积分与积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。这个重要理论就是大名鼎鼎的牛顿-莱布尼兹公式,它的内容是: 若F'(x)=f(x) 那么∫[a:b]f(x)dx =F(a)-F(b) 但是这里x出现了两种意义,一是表示积分上限,二是表示被积函数的自变量,但定积分中被积函数的自变量取一个定值是没意义的。虽然这种写法是可以的,但习惯上常把被积函数的自变量改成别的字母如t,这样意义就非常清楚了: Φ(x)=∫[a:b]f(t)dt 牛顿-莱布尼兹公式用文字表述,就是说一个定积分式的值,就是上限在原函数的值与下限在原函数的值的差。 正这个理论揭示了与黎曼积分本质的联系,可见其在微积分学乃至整个上的重要地位,因此,牛顿-莱布尼兹公式也被称作基本定理。 1.4相关公式 2求积分的常见方法 2.1求不定积分的方法 2.1.1直接积分法 直接积分法就是利用积分公式和积分的基础性质求不定积分的方法。该方法是求不定积分的基本方法,是其它积分方法的基础,熟练地掌握基本的公式,在记忆基本积分公式时,一定要把公式的两边一起记,这样就清楚被积函数变形到怎样的式子简便。 (1) 利用二项式定理将二项式变为多项式,从而变为多个单项式求积分;