产品展开计算标准(1)

产品展开计算标准(1)
产品展开计算标准(1)

产品展开计算标准

一.目的

统一公司内部标准,使产品展开快速标准,使公司内部产品制作,测量标准统一.

二.适用范围

本标准适用于各类薄板的展开计算.

三.展开计算原理

板料在弯曲过程中外层受到拉应力,内层受到压应力,理论上内外层之间有一既不受拉也不受压的过渡层------中性层.中性层为一假想层,在弯曲过程中中性层被假想为与弯曲前状态保持一致,即长度始终不变,所以中性层是计算弯曲件长度的基准.中性层位置与变形程度有关,当弯曲半径较大,折弯角度较小时,变形程度较小,中性层位置靠近板料厚度的中心处;当弯曲半径变小,折弯角度增大时,变形程度随之增大.中性层位置逐渐向弯曲中心的内侧移动.中性层到板料内侧的距离用A表示。(图1)

四.折弯方法的确定

折弯方法有单发冲床模具折弯和折弯机模具折弯两种方法.

单发冲床模具折弯的方式及精度是由模具来实现的.因此只要做出合格的模具,就能够生产出合格的折弯产品.而采用折弯机折弯不仅需要选用合适的折弯模,还必须调试折弯参数.因此,如采用折弯机折弯,计算展开尺寸时就必须考虑折弯机的折弯方法.

1.一次一道弯.此种折弯由普通通用折弯模来完成.包括折直角,钝角和锐角.(如图2)

2. 一次折两道弯--------压锻差.此种折弯由专用特殊模来完成,但折弯难度比普通折弯大.(如图3)

3. 压死边.此种折弯也须用特殊模来完成.(如图4)

4.大R圆弧折弯。些种折弯如R在一定范围内,可用专用R模压成形,如R值过大,则须用小R模多次压制成形。(如图5)

图5

这四种折弯的展开计算是不同的。因此在看图时,要根据零件的折弯尺寸来确定使用何种折弯方法。一般使用的NC数控折弯设备都是日本AMADA(天田)公司所生产的。其折弯机所配套的普通通用折弯模具V形槽宽度通常为适用该折弯模的板厚的5-6倍.如采用一次折一道弯的方

法,必须考虑到折弯模的V形槽的宽度W1及V形槽一边到模具外侧的宽度L1。如图6:

折弯高度H的经验值根据产品形状有如下三种(以90度为例,钝角和锐角与直角相近相似):

1.简单的90度单边折弯。(如图7)

如图7,此种折弯只需考虑下模V形槽中心到折弯机定位挡块的距离即可确定.通常H值为

H≥3.5 T + R (R 在1mm 以下)

2.U形折弯.

如图8此种折弯的尺寸如过小,极易因无合适折弯模具而形成干涉.因此两竖边的宽度L不能太小。其一边竖边高度H也不能太大。实际中可根据使用折弯模的形状做模拟确定,L,H值参考如下:

3.Z形折弯

如图9.第一道弯曲后,折第二道弯曲时,折弯线到折弯机定位挡块的距离须大于等于V形槽中心到模具外侧距离L1和板厚t之和.故H值为:

H≥5t+R(R在1mm 以下)

五.展开计算方法

1.90°折弯(一般折弯)

展开的长度为:L=LL+LS-2t +系数a

系数a的经验值如下表

折弯系数

材料t0.81 1.2 1.52 2.534

钢板系数a0.20.20.30.40.50.650.8 1.4

铝板系数a0.20.30.40.50.60.81 1.5

铜板系数a0.20.20.30.40.50.81 1.52.压死边

图11

如图11.压死边是两层重叠在一起的折弯形状,通常用来起加强作用,因此2.0mm以上的板很少见压死边。它也需要用特殊折弯模具成形,而且要分为两道以上的工序才能成形,压死边折弯的展开长度计算公式为:

3.压筋

1)倾斜压筋

图12

如图12.此压筋为一斜面,一般H值较小,其展开长的计算式为:

L = A+B+C+0.2

注:

A、B、C = 内尺寸

0.2=补偿值2)直角压筋

C

B

T

图13

如图13压筋边为直立边,一般其C值较大,展开长的计算式为:

L = A+B+C-4T+2a+0.5

注:

A、B = 外尺寸

C = 包括两层板厚的高度

a = 90°折弯的系数

0.5 = 补偿值

3)平行压筋

图14

如图14,压筋最大值仅为H=2t,其展开长度的计算式为:

L = A+B+H+0.2

注:

A、 B = 内尺寸;

H = 压筋高度;

0.2=补偿值。

*由于压筋高度主要靠增减压筋模具的调整片来保证,并且操作员各自的经验不尽相同,因此有时会出现折弯后虽然高度达到要求,但整体展开尺寸过大或过小的情况,这时要根据实际的偏差来调整。

4.锐角折弯

如图15,经验公式是一种内径算法,但此处的内径是折弯边内侧两面的虚交点到另一端的距离.展开系数计算式如下:

K= 0.4t x δ/90° (t<2.5)

但当t≥2.5时,应用下列公式:

K= 0.5t x δ/90° (t≥2.5)

故展开计算式为:

L= L1+L2+K

注:

L = 展开长度

L1、L2 = 内径尺寸

K= 展开系数

5.钝角折弯

图16

如图16,外尺寸b实际上等于内尺寸a 加上内侧角顶点到外侧顶点的一段平行距离l 。

根据三角函数,l 的计算式为:

l = tg θ/2x t

故外径为:b = a + l

展开系数K的计算式为:

内径:K =θ/90°x 0.4t (t<2.5)

外径:K =δ/90°x 0.4t (t<2.5)

但当t≥2.5时,应用下列公式:

内径:K =θ/90°x 0.5t (t≥2.5)

外径:K =δ/90°x 0.5t (t≥2.5) 6.圆弧R折弯

图17

如图17,R折弯的三种形状,其展开系数K的计算式如下:

K= (2R·tanθ/2)-[лθ·( 2R - t)/360°]注:

R= 折弯外径(外侧半径)

θ= 外侧角(180°-折弯角度)

л= 圆周率(取3.14)

t = 板厚

当θ=90°时,tanθ/2=l,因此上述公式可以简化如下:

K= 2R –л(2R-t)/4

求得展开系数K后,圆弧折弯的展开长度L计算公式为:

L=L1+L2+(L3+L4+···)-K

注:

L1、L2、L3、L4 =外径(到外侧虚交点的距离,切点到虚交点的距离可通过三角定律算出)

R折弯中有一种U形折弯,如下图,其形状我们可以将其看成两个90°R 折弯的组合,

图18

因此,U形折弯的展开长度L的计算公式为:

L=L1+L2-2K

说明:

R折弯的计算式只适用于铁板。

二.公制螺纹钻孔用钻头直径尺寸表

说明:

目前常见的普通螺纹有三种制式:公制,英制,统一制(也称美制)。

公制是以毫米为单位,齿形角60度的螺纹。例如:M8X1-6H表示直径8毫米的公制细牙螺纹,螺距1毫米,6H的内螺纹公差带。

英制是以英寸为单位,齿形角55度的螺纹。例如:BSW 1/4-20表示

直径1/4英寸,粗牙螺距每英寸20牙,这种螺纹目前已很少使用。另统一制是以英寸为单位,齿形角60度的螺纹。直径小于1/4英寸,

常用编号表示,由0号至12号分别表示0.06英寸至1/4英寸的直径规格。美国目前主要使用的仍是统一制螺纹。

目前我公司常用的是公制螺纹。在加工中有以下事项需注意。

1、钻孔

用规定的钻头钻孔,钻孔深度大于或等于T3,注意不要将孔钻成锥形,钻孔后允许去毛刺性质的鍯孔,鍯孔不应超过0.4p深度,鍯孔过大不利于螺套的安装。

2、攻丝

用相应规格的钢丝螺套专用丝锥攻丝,攻丝的长度必须超过螺套长度,对于通孔要全部攻丝,用户可根据内螺纹孔的精度,适当选择攻丝方法和润滑方式,盲孔攻丝时要用力适当,以防丝锥折断。

攻丝后应清理螺纹孔,可用压缩空气喷枪吹,盲孔还应使用带径向孔的长喷枪向下而上清理,也可以用清洗的方法清理。螺纹孔精度高时,应用专用钢丝螺套底孔塞规进行检查。

三.一般线性公差

根据国际标准,以下为线性尺寸未注公差的公差表。

这个未注公差适用于金属切削加工的尺寸,也适用于一般的冲压加工尺寸。这些极限偏差适用于:

?线性尺寸:例如外尺寸、内尺寸、阶梯尺寸、直径、半径、距离、倒圆半径和倒角高度;

?角度尺寸:包括通常不标出角度值的角度尺寸,例如直角(90°);

?机加工组装件的线性和角度尺寸。

这些极限偏差不适用于:

?已有其他一般公差标准规定的线性和角度尺寸;

?括号内的参考尺寸;

?矩形框格内的理论正确尺寸。

角度尺寸的长度按角度的短边长度确定,对于圆锥角按圆锥素线长度确定。

基本定义:

尺寸:用特定单位表示线性尺寸值的数值。(用特定单位表示长度值的数值)。

基本尺寸:在设计时给定的尺寸。通过它应用上、下偏差可算出极限尺寸。分别用“D”、“d”表示。

实际尺寸:是通过测量获得的尺寸。

极限尺寸:是指允许尺寸变化的两个极限值。

注: 原《GB/1804-92 一般公差:未注公差的线性和角度尺寸的公差》于2000年废止,同时使用新的

《GB/T1804-2000 一般公差:未注公差的线性和角度尺寸的公差》。

四.形位公差

零件在加工过程中,由于机床-夹具-刀具系统存在几何误差,以及加工中出现受力变形、热变形、振动和磨损等影响,使被加工零件的几何要素不可避免地产生误差。这些误差包括尺寸偏差、形状误差(包括宏观几何误差、波度和表面粗糙度)及位置误差。

形状公差

形状公差是指单一实际要素的形状所允许的变动全量。

形状公差用形状公差带表达。形状公差带包括公差带形状、方向、位置和大小等四要素。

形状公差项目有:直线度、平面度、圆度、圆柱度、线轮廓度、面轮

廓度等6项。

位置公差

位置公差是指关联实际要素的位置对基准所允许的变动全量。

?定向公差

定向公差是指关联实际要素对基准在方向上允许的变动全量。这类公

差包括平行度、垂直度、倾斜度3项。

?定位公差

定位公差是关联实际要素对基准在位置上允许的变动全量。这类公差

包括同轴度、对称度、位置度3项。

?跳动公差

跳动公差是以特定的检测方式为依据而给定的公差项目。跳动公差可

分为圆跳动与全跳动。

零件的形位公差共14项,其中形状公差6个,位置公差8个,列于下

表。

直线度直线度是表示

零件上的直线

要素实际形状

保持理想直线

的状况。也就是

通常所说的平

直程度。

直线度公差是

实际线对理想

直线所允许的

最大变动量。也

就是在图样上

所给定的,用以

限制实际线加

工误差所允许

的变动范围。

平面度是表示

零件的平面要

素实际形状,保

持理想平面的

状况。也就是通

常所说的平整

五金钣金展开计算参数

1. 目的:为完善作业标准,制订本文件。 2. 范围:适用于本公司设计部门之作业。 3. 职责:针对设计计算展开统一计算参数。 4. 内容: 展开计算原理 板料在弯曲过程中外层受到拉应力,内层受到压应力,从拉到压之间有一既不受拉力又不受压力的过渡层一中性层,中性层在弯曲过程中的长度和弯曲前一样,保持不变,所以中性层是计算弯曲件展开长度的基准。中性层位置与变形程度有关,当弯曲半径较大,折弯角度较小时,变形程度较小,中性层位置靠近板料厚度的中心处,当弯曲关径弯小,折弯角度增大时,变形程度随之增大,中性层位置逐渐向弯曲中收的内侧移动,中性层到板料内侧的距离用入表示 展开的基本公式: 展开长度=料内+料内+补偿量 4.1中性层系数 注明:K1适用于有顶底的V形或U形弯曲,K2适用于无顶底的V形弯曲?但通常我们习惯取K2值。 4.2压弯90度角的修正系数a值 注明:此数据可单独用于90度角的折弯修正,也可与中性层系数互相检查核对。 4.3其余图形展开计算方法:

r/t W0.5时,均可按90度清角计算展开长度展开注意事项为了防止产品展开过程中的失误,造成下料模的多次修改,特制定下料模的制作方式. (1) .凡对一些展开存在不确定因素的产品,例如,有拉伸性质的展开,多次折弯,Z折,有拉料现象 等产品的下料模,经工程分析有必要先试模的,其制作方式如下: A. 下料模的模板先不完全加工完毕,先完成机加及热处理部分,线割部分暂缓加工. B. 成型模先做,试模时先镭射(按下料模展开尺寸)试模,产品先做实测,不合格时修正展开尺寸再镭射,一直 修到合格为止,合格样品送客户先承认. C. 样品经客户承认后,按修正展开尺寸整理下料模,进行下料模的线割加工. (2) .对展开较直观的,可基本控制的产品,一般只要经俩人展开核对无误,下料模可按正常方式加工

产品展开计算标准

产品展开计算标准 一.目的 统一公司部标准,使产品展开快速标准,使公司部产品制作,测量标准统一. 二.适用围 本标准适用于各类薄板的展开计算. 三.展开计算原理 板料在弯曲过程中外层受到拉应力,层受到压应力,理论上外层之间有一既不受拉也不受压的过渡层------中性层.中性层为一假想层,在弯曲过程中中性层被假想为与弯曲前状态保持一致,即长度始终不变,所以中性层是计算弯曲件长度的基准.中性层位置与变形程度有关,当弯曲半径较大,折弯角度较小

时,变形程度较小,中性层位置靠近板料厚度的中心处;当弯曲半径变小,折弯角度增大时,变形程度随之增大.中性层位置逐渐向弯曲中心的侧移动.中性层到板料侧的距离用A表 示。(图1) 四.折弯方法的确定 折弯方法有单发冲床模具折弯和折弯机模具折弯两种方法. 单发冲床模具折弯的方式及精度是由模具来实现的.因此只要做出合格的模具,就能够生产出合格的折弯产品.而采用折弯机折

弯不仅需要选用合适的折弯模,还必须调试折弯参数.因此,如采用折弯机折弯,计算展开尺寸时就必须考虑折弯机的折弯方法. 1.一次一道弯.此种折弯由普通通用折弯模来完成.包括折直角,钝角和锐角.(如图2) 2. 一次折两道弯--------压锻差.此种折弯由专用特殊模来完成,但折弯难度比普通折弯大.(如图3)

3. 压死边.此种折弯也须用特殊模来完成.(如图4) 4.大R圆弧折弯。些种折弯如R在一定围,可用专用R模 压成形,如R值过大,则须用小R模多次压制成形。(如图5) 图5 这四种折弯的展开计算是不同的。因此在看图时,要根据零件的折弯尺寸来确定使用何种折弯方法。一般使用的NC数控折弯设备都是日本AMADA(天田)公司所生产的。其折弯机所配套

产品展开计算标准(doc 34页)

产品展开计算标准(doc 34页)

产品展开计算标准 一.目的 统一公司内部标准,使产品展开快速标准,使公司内部产品制作,测量标准统一. 二.适用范围 本标准适用于各类薄板的展开计算. 三.展开计算原理 板料在弯曲过程中外层受到拉应力,内层受到压应力,理论上内外层之间有一既不受拉也不受压的过渡层------中性层.中性层为一假想层,在弯曲过程中中性层被假想为与弯曲前状态保持一致,即长度始终不变,所以中性层是计算弯曲件长度的基准.中性层位置与变形程度有关,当弯曲半径较大,折弯角度较小时,变形程度较小,中性层位置靠近板料厚度的中心处; 当弯曲半径变小,折弯角度增大时,变形程度随之增大.中性层位置逐渐向弯曲中心的内侧移动.中性层到板料内侧的距离用A表示。(图1)

四.折弯方法的确定 折弯方法有单发冲床模具折弯和折弯机模具折弯两种方法. 单发冲床模具折弯的方式及精度是由模具来实现的.因此只要做出合格的模具,就能够生产出合格的折弯产品.而采用折弯机折弯不仅需要选用合适的折弯模,还必须调试折弯参数.因此,如采用折弯机折弯,计算展开尺寸时就必须考虑折弯机的折弯方法. 1.一次一道弯.此种折弯由普通通用折弯模来完成.包括折直角,钝角和锐角.(如图2)

2. 一次折两道弯--------压锻差.此种折弯由专用特殊模来完成,但折弯难度比普通折弯大.(如图3) 3. 压死边.此种折弯也须用特殊模来完成.(如图4) 4.大R圆弧折弯。些种折弯如R在一定范围内,可用专用 R模压成形,如R值过大,则须用小R模多次压制成形。(如

图5) 图5 这四种折弯的展开计算是不同的。因此在看图时,要根据零件的折弯尺寸来确定使用何种折弯方法。一般使用的NC数控折弯设备都是日本AMADA(天田)公司所生产的。其折弯机所配套的普通通用折弯模具V形槽宽度通常为适用该折弯模的板厚的5-6倍.如采用一次折一道弯的方法,必须考虑到折弯模的V形槽的宽度W1及V形槽一边到模具外侧的宽度L1。如图6: 折弯高度H的经验值根据产品形状有如下三种(以90度为

产品展开计算方法

青华模具有限公司文件编号RS98W009 产品展开计算方法页次 1 / 7

一、目的: 统一展开计算方法,做到展开的快速准确。 二、适用范围: 青华模具有限公司。 三、展开计算原理: 板料在弯曲过程中外层受到拉应力,内层受到压应力,从拉到压之间有一既不受拉力又不受压力的过渡层--中性层,中性层在弯曲过程中的长度和弯曲前一样,保持不变,所以中性层是计算弯曲件展开长度的基准.中性层位置与变形程度有关, 当弯曲半径较大,折弯角度较小时,变形程度较小,中性层位置靠近板料厚度的中心处,当弯曲半径变小, 折弯角度增大时,变形程度随之增大,中性层位置逐渐向弯曲中心的内侧移动.中性层到板料内侧的距离用λ表示。 计算方法: 展开的基本公式: 展开长度=料内+料内+补偿量

=0, θ=90° λ=1/4T 中性層 T 9 0.0°A 1 /4T B ≠0 θ=90° L=(A-T-R)+(B-T-R)+(R+λ)*π/2 当R ≧5T 时λ=1/2T 核 准 校 对 编 制 日期更正原因签名 青华模具有限公司文件编号RS98W009 产品展开计算方法页次 2 / 7

=0 θ≠90° λ=T/3 L=(A-T* tan(a/2))+(B-T ≠0 θ≠90° L=(A-(T+R)* tan(a/2))+(B -(T+R)*tan(a/2))+(R+λ)*a 折1. 当C≧5T时,一般分两次成型,按两 个90°折弯计算. 6. Z折2. C≦3T时<一次成型>: L=A-T+C-T+B+D+K 核校编

日期更正原因签名准对制 青华模具有限公司文件编号RS98W009产品展开计算方法页次 3 / 7

折弯展开计算标准

一.产品展开计算标准 一.目的 统一公司内部标准,使产品展开快速标准,使公司内部产品制作,测量标准统一. 二.适用范围 本标准适用于各类薄板的展开计算. 三.展开计算原理 板料在弯曲过程中外层受到拉应力,内层受到压应力,理论上内外层之间有一既不受拉也不受压的过渡层------中性层.中性层为一假想层,在弯曲过程中中性层被假想为与弯曲前状态保持一致,即长度始终不变,所以中性层是计算弯曲件长度的基准.中性层位置与变形程度有关,当弯曲半径较大,折弯角度较小时,变形程度较小,中性层位置靠近板料厚度的中心处;当弯曲半径变小,折弯角度增大时,变形程度随之增大.中性层位置逐渐向弯曲中心的内侧移动.中性层到板料内侧的距离用A表示。(图1) 折弯方法的确定 折弯方法有单发冲床模具折弯和折弯机模具折弯两种方法. 单发冲床模具折弯的方式及精度是由模具来实现的.因此只要做出合格的模具,就能够生产出合格的折弯产品.而采用折弯机折弯不仅需要选用合适的折弯模,还必须调试折弯参数.因此,如采用折弯机折弯,计算展开尺寸时就必须考虑折弯机的折弯方法. 1.一次一道弯.此种折弯由普通通用折弯模来完成.包括折直角,钝角和锐角.(如图2) 2. 一次折两道弯--------压锻差.此种折弯由专用特殊模来完成,但折弯难度比普通折弯大.(如图3) 3. 压死边.此种折弯也须用特殊模来完成.(如图4)

4.大R圆弧折弯。些种折弯如R在一定范围内,可用专用R模压成形,如R值过大,则须用小R模多次压制成 形。(如图5) 图5 这四种折弯的展开计算是不同的。因此在看图时,要根据零件的折弯尺寸来确定使用何种折弯方法。一般使用的NC数控折弯设备都是日本AMADA(天田)公司所生产的。其折弯机所配套的普通通用折弯模具V形槽宽度通常为适用该折弯模的板厚的5-6倍.如采用一次折一道弯的方法,必须考虑到折弯模的V形槽的宽度W1及V形槽一边到模具外侧的宽度L1。如图6: 折弯高度H的经验值根据产品形状有如下三种(以90度为例,钝角和锐角与直角相近相似):1.简单的90度单边折弯。(如图7) 如图7,此种折弯只需考虑下模V形槽中心到折弯机定位挡块的距离即可确定.通常H值为H≥3.5 T+R (R 在1mm 以下) 2.U形折弯.

钣金产品展开尺寸计算

钣金产品展开计算方法 经本人测试检验,本材料的CNC轧形展开部分算法适合一般性展开计算7.1 90?无内R轧形展开 K值取值标准: a.t≦0.8mm,K=0.45 b.0.8mm3.0mm材料展开长度不易准确计算,应先试轧,得出展开系数后再调整展开尺寸. e.软料t≦1.6mm,K=0.5(主要有铝料,铜料). 注意:无内R是指客户对内R无要求,或要求不高时,为便于材料的折弯成形,我们的下模做成尖角的形式.有时客户的部品图中有内R,一般客户没有特别指出的条件下我们均以尖角起模. 7.2 非90?无内R轧形展开 L=A+B+Kt(C?/90?) K值取值标准: a. t≦0.8mm,K=0.45 b. 0.8mm

c. 1.2mm3.0mm材料展开长度不易准确计算,应先试轧,得出展开系数后再调整展开尺寸. e.软料t≦1.6mm,K=0.5(主要有铝料,铜料). 注意:无内R是指客户对内R无要求,或要求不高时,为便于材料的折弯成形,我们的下模做成尖角的形式.有时客户的部品图中有内R,一般客户没有特别指出的条件下我们均以尖角起模. 7.3有内R轧形展开 备注:当客户部品图中没有特别要求做轧形内R时,我们尽量按尖角设计.有要求时按以上方式进行展开. 中性层系数确定: 弯曲处的中性层是假设的一个层面.首先将材料延厚度方向划分出无穷多个厚度趋于0的层面,那么在材料弯曲的过程中长度方向尺寸不变的层面即为材料弯曲处的中性层.由上述可知中性层的尺寸等于部品的展开尺寸. 铝料/ Al料中性层系数 角度( 0?180?) R内/T S(从弯曲内侧往外) R内/T S(从弯曲内侧往外) R内/T S(从弯曲内侧往外) 5.00 0.5t 5.00 0.5t 2.80 0.5t 4.00 0.475t 4.00 0.49t 2.60 0.49t 3.00 0.47t 3.00 0.48t 2.40 0.48t 2.00 0.455t 2.00 0.47t 2.20 0.46t 1.80 0.45t 1.80 0.46t 2.00 0.44t 1.50 0.44t 1.50 0.45t 1.80 0.42t 1.00 0.42t 1.00 0.44t 0.80 0.405t 0.80 0.43t 0.60 0.385t 0.60 0.42t 0.50 0.38t 0.50 0.41t 角度( 0?180?) R内/T S(从弯曲内侧往外) R内/T S(从弯曲内侧往外) R内/T S(从弯曲内侧往外) 0.30 0.42t 0.30 0.38t 0.20 0.41t 0.20 0.36t 0.10 0.31t 0.10 0.35t 0.01 0.255t

钢材折弯计算公式

1目的 统一展开计算方法,做到展开的快速准确. 2 适用范围 五金模厂 3 展开计算原理 板料在弯曲过程中外层受到拉应力,内层受到压应力,从拉到压之间有一既不受拉力又不受压力的过渡层--中性层,中性层在弯曲过程中的长度和弯曲前一样,保持不变,所以中性层是计算弯曲件展开长度的基准.中性层位置与变形程度有关,当弯曲半径较大,折弯角度较小时,变形程度较小,中性层位置靠近板料厚度的中心处,当弯曲半径变小,折弯角度增大时,变形程度随之增大,中性层位置逐渐向弯曲中心的内侧移动.中性层到板料内侧的距离用λ表示. 4 计算方法 展开的基本公式: 展开长度=料内+料内+补偿量 ***************************************** 4.1 R=0,折弯角θ=90°(T<1.2,不含1.2mm) L=(A-T)+(B-T)+K =A+B-2T+0.4T

上式中取:λ=T/4K=λ*π/2=T/4*π/2=0.4T 图一 ***************************************** 4.2 R=0, θ=90° (T≧1.2,含1.2mm) L=(A-T)+(B-T)+K =A+B-2T+0.5T 上式中取:λ=T/3 K=λ*π/2 =T/3*π/2 =0.5T

图二 ***************************************** 4.3 R≠0θ=90° L=(A-T-R)+(B-T-R)+(R+λ)*π/2 (=A+B-2T-2R+(R+T/3)*π/2)当R ≧5T时λ=T/2 1T≦ R <5Tλ=T/3 0 < R

产品展开计算标准

产品展开计算标准 Document number:BGCG-0857-BTDO-0089-2022

一.产品展开计算标准 一.目的 统一公司内部标准,使产品展开快速标准,使公司内部产品制作,测量标准统一. 二.适用范围 本标准适用于各类薄板的展开计算. 三.展开计算原理 板料在弯曲过程中外层受到拉应力,内层受到压应力,理论上内外层之间有一既不受拉也不受压的过渡层------中性层.中性层为一假想层,在弯曲过程中中性层被假想为与弯曲前状态保持一致,即长度始终不变,所以中性层是计算弯曲件长度的基准.中性层位置与变形程度有关,当弯曲半径较大,折弯角度较小时,变形程度较小,中性层位置靠近板料厚度的中心处;当弯曲半径变小,折弯角度增大时,变形程度随之增大.中性层位置逐渐向弯曲中心的内侧移动.中性层到板料内侧的距离用A表示。(图1) 四.折弯方法的确定 折弯方法有单发冲床模具折弯和折弯机模具折弯两种方法. 单发冲床模具折弯的方式及精度是由模具来实现的.因此只要做出合格的模具,就能够生产出合格的折弯产品.而采用折弯机折弯不仅需要选用合适的折弯模,还必须调试折弯参数.因此,如采用折弯机折弯,计算展开尺寸时就必须考虑折弯机的折弯方法. 1.一次一道弯.此种折弯由普通通用折弯模来完成.包括折直角,钝角和锐角.(如图2)

2. 一次折两道弯--------压锻差.此种折弯由专用特殊模来完成,但折弯难度比普通折弯大.(如图3) 3. 压死边.此种折弯也须用特殊模来完成.(如图4) 4.大R圆弧折弯。些种折弯如R在一定范围内,可用专用R模 压成形,如R值过大,则须用小R模多次压制成形。(如图5) 图5 这四种折弯的展开计算是不同的。因此在看图时,要根据零件的折弯尺寸来确定使用何种折弯方法。一般使用的NC数控折弯设备都

冲压件展开计算方法

冲压件展开计算方法 冲压件是常件的金属件,在冲压前,要对冲压件下料,这时,往往要对冲压件展开计算: 1 90?无内R轧形展开 K值取值标准: a. t≦,K= b. c. d. t>材料展开长度不易准确计算,应先试轧,得出展开系数后再调整展开尺寸. e. 软料t≦,K=(主要有铝料,铜料). 注意:无内R是指客户对内R无要求,或要求不高时,为便于材料的折弯成形,我们的下模做成尖角的形式.有时客户的部品图中有内R,一般客户没有特别指出的条件下我们均以尖角起模.

2 非90?无内R轧形展开 L=A+B+Kt(C?/90?) K值取值标准: a. t≦,K= b. c. d. t>材料展开长度不易准确计算,应先试轧,得出展开系数后再调整展开尺寸. e.软料t≦,K=(主要有铝料,铜料). 注意:无内R是指客户对内R无要求,或要求不高时,为便于材料的折弯成形,我们的下模做成尖角的形式.有时客户的部品图中有内R,一般客户没有特别指出的条件下我们均以尖角起模. 3 有内R轧形展开

备注:当客户部品图中没有特别要求做轧形内R时,我们尽量按尖角设计.有要求时按以上方式进行展开. 中性层系数确定: 弯曲处的中性层是假设的一个层面.首先将材料延厚度方向划分出无穷多个厚度趋于0的层面,那么在材料弯曲的过程中长度方向尺寸不变的层面即为材料弯曲处的中性层.由上述可知中性层的尺寸等于部品的展开尺寸. 1)铝料/ Al料中性层系数 角度( 0?角度( 90?角度 ( >180? ) R内/T S(从弯曲内 侧往外) R内/T S(从弯曲内 侧往外) R 内 /T S(从弯曲内 侧往外)

钣金件展开计算方法

(工艺设计部) 页次:1 OF 9 工程展开计算方法 一. 目的: 统一展开计算方法, 做到展开的快速准确. 二. 适用范围: 君雄钣金部 三. 展开计算原理: 1. 板料在弯曲过程中外层受到拉应力, 内层受到压应力, 从拉到压之间有一既不受拉力又不受 压力的过渡层称为中性层; 中性层在弯曲过程中的长度和弯曲前一样, 保持不变, 所以中性层是计算弯曲件展开长度的基准. 2. 中性层位置与变形程度有关, 当弯曲半径较大, 折弯角度较小时, 变形程度较小, 中性层位 置靠近板料厚度的中心处; 当弯曲半径变小, 折弯角度增大时, 变形程度随之增大, 中性层位置逐渐向弯曲中心的内侧移动. 中性层到板料内侧的距离用λ表示. 四. 展开计算方法: 展开计算的基本公式: 展开长度= 料内+ 料内+ 补偿量 一般折弯1 (R=0, θ=90°): L=A+B+K 1. 当0

(工艺设计部) 页次:2 OF 9 工程展开计算方法 一般折弯2 (R≠0, θ=90°): L=A+B+K (K值取中性层弧长) 1. 当T<1.5时, λ=0.5T 2. 当T≧1.5时, λ=0.4T 注: 当用折刀加工时: 1. 当R≦ 2.0时, 按R=0处理. 2. 当2.0

五金钣金展开计算参数

1.目的:为完善作业标准,制订本文件。 2.范围:适用于本公司设计部门之作业。 3.职责:针对设计计算展开统一计算参数。 4.内容: 展开计算原理 板料在弯曲过程中外层受到拉应力,内层受到压应力,从拉到压之间有一既不受拉力又不受压力的过渡层—中性层,中性层在弯曲过程中的长度和弯曲前一样,保持不变,所以中性层是计算弯曲件展开长度的基准。中性层位置与变形程度有关,当弯曲半径较大,折弯角度较小时,变形程度较小,中性层位置靠近板料厚度的中心处,当弯曲关径弯小,折弯角度增大时,变形程度随之增大,中性层位置逐渐向弯曲中收的内侧移动,中性层到板料内侧的距离用λ表示. 展开的基本公式: 展开长度=料内+料内+补偿量 4.1中性层系数 注明:K1适用于有顶底的V形或U形弯曲,K2适用于无顶底的V形弯曲.但通常我们习惯取K2值。 4.2压弯90度角的修正系数a值 注明:此数据可单独用于90度角的折弯修正,也可与中性层系数互相检查核对。

4.3其余图形展开计算方法:

展开注意事项 为了防止产品展开过程中的失误,造成下料模的多次修改, 特制定下料模的制作方式. (1). 凡对一些展开存在不确定因素的产品, 例如, 有拉伸性质的展开, 多次折弯, Z折,有拉料现象等产品的下料模, 经工程分析有必要先试模的, 其制作方式如下: A.下料模的模板先不完全加工完毕,先完成机加及热处理部分,线割部分暂缓加工. B.成型模先做, 试模时先镭射(按下料模展开尺寸)试模, 产品先做实测, 不合格时修正展开尺寸再镭射,一直修到合格为止, 合格样品送客户先承认. C. 样品经客户承认后, 按修正展开尺寸整理下料模, 进行下料模的线割加工. (2). 对展开较直观的, 可基本控制的产品, 一般只要经俩人展开核对无误,下料模可按正常方式加工

五金钣金展开计算参数

五金钣金展开计算参数 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】

1.目的:为完善作业标准,制订本文件。 2.范围:适用于本公司设计部门之作业。 3.职责:针对设计计算展开统一计算参数。 4.内容: 展开计算原理 板料在弯曲过程中外层受到拉应力,内层受到压应力,从拉到压之间有一既不受拉力又不受压力的过渡层—中性层,中性层在弯曲过程中的长度和弯曲前一样,保持不 变,所以中性层是计算弯曲件展开长度的基准。中性层位置与变形程度有关,当弯曲半径较大,折弯角度较小时,变形程度较小,中性层位置靠近板料厚度的中心处,当弯曲关径弯小,折弯角度增大时,变形程度随之增大,中性层位置逐渐向弯曲中收的内侧移动,中性层到板料内侧的距离用λ表示. 展开的基本公式: 展开长度=料内+料内+补偿量 4.1中性层系数 注明:K1适用于有顶底的V形或U形弯曲,K2适用于无顶底的V形弯曲.但通常我们习惯取K2值。 4.2压弯90度角的修正系数a值 注明:此数据可单独用于90度角的折弯修正,也可与中性层系数互相检查核对。

展开注意事项 为了防止产品展开过程中的失误,造成下料模的多次修改, 特制定下料模的制作方式.

(1). 凡对一些展开存在不确定因素的产品, 例如, 有拉伸性质的展开, 多次折弯, Z折,有拉料现象 等产品的下料模, 经工程分析有必要先试模的, 其制作方式如下: A.下料模的模板先不完全加工完毕,先完成机加及热处理部分,线割部分暂缓加工. B.成型模先做, 试模时先镭射(按下料模展开尺寸)试模, 产品先做实测, 不合格时修正展 开尺寸再 镭射,一直修到合格为止, 合格样品送客户先承认. C. 样品经客户承认后, 按修正展开尺寸整理下料模, 进行下料模的线割加工. (2). 对展开较直观的, 可基本控制的产品, 一般只要经俩人展开核对无误,下料模可按正常方式加工

常用包装材料计算公式

采购必须要精通的公式 纸箱价格:(长+宽+2)*(宽+高+1)*单价*2 /1000 纸板价格:(长+1)*(宽+1)*单价/1000 保力龙:长*宽*高*单价/648000 胶袋价格:长*宽*厚度*0。262*单价/1000 玻璃价格:长*宽*单价/10000(正规)(长+1)*(宽+1)*单价/10000 汽泡袋价格:长*宽*2*单价/10000 收缩袋价格:长*宽*3。8*厚度*每磅单价 /22000 纸箱材积预算:长*宽*高/1728(英寸)长*宽*高/35。31(立方米) 天地盖计算公式:(高*2+长+1)*(高*2+宽+1)*单价/1000 刀卡计算公式:长*宽*单价/1000+0.01(打刀费) 平卡计算公式:长*宽*单价/1000单价为每千平方英寸材质的价格. PE袋:長(英吋)x寬(英吋)x厚(mm)x2.63x單價(3.15/磅)/1000 印刷費:30cm以下10.00/千個 30cm以上200cm以下15.00/千個 單面汽泡袋: 長x寬x平方單價(0.48㎡)x2 雙面汽泡袋: 長x寬x平方單價(0.68㎡)x2 珍珠棉袋(1mm厚): 長x寬x平方單價(0.6㎡)x2 珍珠棉袋(2mm厚): 長x寬x平方單價(1.2㎡)x2 收縮膜: 厚0.035mmx長x寬x3.75/2.2/1000x單價(13.0㎡) 包材物料計算公式: PE袋單價計算公式: 長(英吋)x寬(英吋)x厚(mm)x2.63(密度)x單價 (3.15HK/磅)/1000﹢印刷費 PE袋重量計算公式: 長(英吋)x寬(英吋)x厚(mm)x2.63/2.2/1000 印刷費: 30cm以下10.00HK/千個 30cm以上200cm以下15.00HK/千個 例如:PE4x30x30W單價計算: 11.81x11.81x0.04x2.63x3.15/1000+0.01=0.056HK/PCS

产品展开计算标准

一.目的 统一展开计算方法,做到展开的快速准确。 二.适用范围 本程序适于冲模部设计组 三.展开计算的原理 中性层在材料受力变形过程中即不受拉力又不受压力,它在材料变形前后的长度保持不变。所以在计算展开时,常用中性层长度来作为材料的展开长度。中性层到材料内侧面的距离用λ表示. 四.展开计算的方法 展开计算的基本公式: 展开长度=材料内侧长度+材料内侧长度+补偿值 4.1.当折弯内角为R=0,折弯角度θ=90°时(T<1.2) L=(A-T)+(B-T)+K 其中:K=1/4*2*π*λ ∵λ=T/4 ∴K=T/4*π /2 =0.4T ∴L=A+B-2T+0.4T (展开时除了使用尺寸计算方法求补偿值外, 也可在确定中性层位置后,通过偏移外R圆弧再 实际测量中性层R圆弧长度的方法求得,下同) 4.2.当折弯内角为R=0,折弯角度θ=90°时(T≧1.2) L=(A-T)+(B-T)+K 其中:K=1/4*2*π*λ ∵λ=T/3 ∴K=T/3*π/2 =0.5T ∴L=A+B-2T+0.5T 4.3.当折弯内角R﹟0,折弯角度θ=90°时 L=(A-T-R)+(B-T-R)+K 其中:K=1/4*2*π*λ ∵K=(R+λ)*π/2 ∴L=( A-T-R)+(B-T-R)+ (R+λ)*π/2 当R≧5T时λ=T/2 1T≦R<5T λ=T/3 0

*tan(a/2)}+(R+λ)*a R≧5T λ=T/2 T≦R<5T λ=T/3 0

五金钣金展开计算参数

五金钣金展开计算参数 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

1.目的:为完善作业标准,制订本文件。 2.范围:适用于本公司设计部门之作业。 3.职责:针对设计计算展开统一计算参数。 4.内容: 展开计算原理 板料在弯曲过程中外层受到拉应力,内层受到压应力,从拉到压之间有一既不受拉力又不受压力的过渡层—中性层,中性层在弯曲过程中的长度和弯曲前一样,保持不变,所以中性层是计算弯曲件展开长度的基准。中性层位置与变形程度有关,当弯曲半径较大,折弯角度较小时,变形程度较小,中性层位置靠近板料厚度的中心处,当弯曲关径弯 小,折弯角度增大时,变形程度随之增大,中性层位置逐渐向弯曲中收的内侧移动,中性层到板料内侧的距离用λ表示. 展开的基本公式: 展开长度=料内+料内+补偿量 4.1中性层系数 注明:K1适用于有顶底的V形或U形弯曲,K2适用于无顶底的V形弯曲.但通常我们习惯取K2值。 4.2压弯90度角的修正系数a值 注明:此数据可单独用于90度角的折弯修正,也可与中性层系数互相检查核对。 4.3其余图形展开计算方法:

4.4当折弯角度为90度,r=0(俗称“90度清角”)时,各材料厚度对应的经验值: r/t≦时,均可按90度清角计算展开长度. 展开注意事项 为了防止产品展开过程中的失误,造成下料模的多次修改, 特制定下料模的制作方式. (1). 凡对一些展开存在不确定因素的产品, 例如, 有拉伸性质的展开, 多次折弯, Z折,有拉料现象 等产品的下料模, 经工程分析有必要先试模的, 其制作方式如下: A.下料模的模板先不完全加工完毕,先完成机加及热处理部分,线割部分暂缓加工. B.成型模先做, 试模时先镭射(按下料模展开尺寸)试模, 产品先做实测, 不合格时修正展开尺 寸再 镭射,一直修到合格为止, 合格样品送客户先承认. C. 样品经客户承认后, 按修正展开尺寸整理下料模, 进行下料模的线割加工.

6.产品展开计算方法

六产品展开计算方法 6.1 90?无内R折弯形展开 6.2 非90?无内R折弯形展开 6.3 有内R折弯形展开 6.4 Z折弯展开 6.5 压平展开 6.6 CNC折弯形展开 6.7 U形弯曲的展开 6.8 弯曲拉伸复合结构展开 6.9方形抽孔 6.10翻孔抽芽 6.11 展开尺寸调整 6.12 弯曲件的工艺性 ●展开图设计标准 (1).图面要求 A.展开图中必须包含产品图中的所有圆孔和异形孔像素。内部成型和外围成型的展开的像素。 B展开图的毛边方向必须向下。 C.展开图中所有像素(除折弯线外)必须串接成复线。 D.产品图展开后,需冲切的尖角(产品图中特殊标注的除外)一律倒圆角R=0.3。 E.展开图中,有较小的折弯边和成型均应画局部剖视图(剖视的方向只能向左或向上)。剖视图应放在图 面右侧或下方且注明剖视方向,位置及剖视的比例和数量。 (2).折线书法 画折弯的原则:按视图方向,可见折线为实线,不可见折线为虚线。如下图所示 注:上模压线印、压字模用实线表示,下模压线印、压毛边、压字模用虚线表示。 (3).图层分布及颜色 A. 图层:所有产品图展开像素均放在MATER层,冲孔及外形用6号(紫)色,折线像素使用3号(绿)色。 B. DIM层,所有尺寸标注像素均放在DIM层,使用4号(蓝)色。 (4).标注 展开图必须使用国标标注形式。 (5).注意事项 产品展开时,应处理图面标示的配合尺寸单向公差。如:25.6 +0.05,取25.64当公差值为正向时,展开尺寸应尽量偏上限;当公差值为负向时,展开尺寸应尽量偏下限;若冲孔直径公差要求严格时,则无论产品图公差如何标示,展开图取值都应偏上限。 ●展开计算原理 板料在弯曲过程中外层受到拉应力,内层受到压应力,从拉到压之间必有不受拉力又不受压力的过渡

产品展开计算标准

文件名称产品展开计算标准版次V1.1 页次 1 /3 一.目的 统一展开计算方法,做到展开的快速准确。 二.适用范围 本程序适于冲模部设计组 三.展开计算的原理 中性层在材料受力变形过程中即不受拉力又不受压力,它在材料变形前后的长度保持不变。所以在计算展开时,常用中性层长度来作为材料的展开长度。中性层到材料内侧面的距离用λ表示. 四.展开计算的方法 展开计算的基本公式: 展开长度=材料内侧长度+材料内侧长度+补偿值 4.1.当折弯内角为R=0,折弯角度θ=90°时(T<1.2) L=(A-T)+(B-T)+K 其中:K=1/4*2*π*λ ∵λ=T/4 ∴K=T/4*π /2 =0.4T ∴L=A+B-2T+0.4T (展开时除了使用尺寸计算方法求补偿值外, 也可在确定中性层位置后,通过偏移外R圆弧再 实际测量中性层R圆弧长度的方法求得,下同) 4.2.当折弯内角为R=0,折弯角度θ=90°时(T≧1.2) L=(A-T)+(B-T)+K 其中:K=1/4*2*π*λ ∵λ=T/3 ∴K=T/3*π/2 =0.5T ∴L=A+B-2T+0.5T 4.3.当折弯内角R﹟0,折弯角度θ=90°时 L=(A-T-R)+(B-T-R)+K 其中:K=1/4*2*π*λ ∵K=(R+λ)*π/2 ∴L=( A-T-R)+(B-T-R)+ (R+λ)*π/2 当R≧5T时λ=T/2 1T≦R<5T λ=T/3 0

文件名称产品展开计算标准版次V1.1 页次 2 /3 4.4 当折弯内角R≠0,折弯角θ≠90°时 L=﹛A-(T+R)*tan(a/2)﹜+﹛B-(T+R) *tan(a/2)}+(R+λ)*a R≧5T λ=T/2 T≦R<5T λ=T/3 0

日本富士产品展开计算标准

统一展幵计算方法,做到展幵的快速准确? 2适用范围 富士公司冲模二厂? 3展开计算原理 板料在弯曲过程中外层受到拉应力,内层受到压应力,从拉到压之间有一既不受拉力又不受压力的过渡层--中性层,中性层在弯曲过程中的长度 和弯曲前一样,保持不变,所以中性层是计算弯曲件展开长度的基准?中性 层位置与变形程度有关,当弯曲半径较大,折弯角度较小时,变形程度较小,中性层位置靠近板料厚度的中心处,当弯曲半径变小,折弯角度增大时,变 形程度随之增大,中性层位置逐渐向弯曲中心的内侧移动.中性层到板料内 侧的距离用入表示. 4计算方法 展开的基本公式: 展开长度=料内+料内+补偿量 R=0,折弯角9 =90 ° (Tv,不含 1.2mm) L=(A-T)+(B-T)+K 二A+B-2T+ 上式中取:入=T/4 K=入* n /2 =T/4* n /2 R=0, 9 =90 ° (T 仝,含 1.2mm) L=(A-T)+(B-T)+K =A+B-2T+ 上式中取:入=T/3 K=入* n /2

=T/3* n /2

Z折1. 计算方法请示上级,以下几点原则仅供参考: (1)当CM 5时,一般分两次成型,按两个90°折弯计算.(要考虑到折弯冲子的强度) L二A-T+C+B+2K (2)当3T<C<5时<一次成型>: L=A-T+C+B+K ⑶当CW 3T时<一次成型>: L=A-T+C+B+K/2 Z折2. CW 3T时<一次成型>: L二A-T+C+B+D+K 抽芽 抽芽孔尺寸计算原理为体积不变原理,即抽孔前后材料体积不变;ABCD四边形面积二GFEA所围成的面积. 一般抽孔高度不深取H=3P(P为螺纹距离),R=EF见图 ??? T*AB=(H -EF)*EF+ n *(EF) 74 二AB={H*EF+( n /4-1)*EF 2}/T ???预冲孔孔径二D - 2AB TM时,取EF=60%T. 在料厚Tv时,EF的取值请示上级.

产品展开计算标准精编

产品展开计算标准精编 Document number:WTT-LKK-GBB-08921-EIGG-22986

一.产品展开计算标准 一.目的 统一公司内部标准,使产品展开快速标准,使公司内部产品制作,测量标准统一. 二.适用范围 本标准适用于各类薄板的展开计算. 三.展开计算原理 板料在弯曲过程中外层受到拉应力,内层受到压应 力,理论上内外层之间有一既不受拉也不受压的过渡层------中性层.中性层为一假想层,在弯曲过程中中性层被假想为与弯曲前状态保持一致,即长度始终不变,所以中性层是计算弯曲件长度的基准.中性层位置与变形程度有关,当弯曲半径较大,折弯角度较小时,变形程度较小,中性层位置靠近板料厚度的中心处;当弯曲半径变小,折弯角度增大时,变形程度随之增大.中性层位置逐渐向弯曲中心的内侧移 动.中性层到板料内侧的距离用A表示。(图1) 四.折弯方法的确定 折弯方法有单发冲床模具折弯和折弯机模具折弯两种方法.

单发冲床模具折弯的方式及精度是由模具来实现的.因此只要做出合格的模具,就能够生产出合格的折弯产 品.而采用折弯机折弯不仅需要选用合适的折弯模,还必须调试折弯参数.因此,如采用折弯机折弯,计算展开尺寸时就必须考虑折弯机的折弯方法. 1.一次一道弯.此种折弯由普通通用折弯模来完成.包括折直角,钝角和锐角.(如图2) 2. 一次折两道弯--------压锻差.此种折弯由专用特殊模来完成,但折弯难度比普通折弯大.(如图3) 3. 压死边.此种折弯也须用特殊模来完成.(如图4)

4.大R圆弧折弯。些种折弯如R在一定范围内, 可用专用R模压成形,如R值过大,则须用小R模多 次压制成形。(如图5) 图5 这四种折弯的展开计算是不同的。因此在看图时,要根据零件的折弯尺寸来确定使用何种折弯方法。一般使用的NC数控折弯设备都是日本AMADA(天田)公司所生产的。其折弯机所配套的普通通用折弯模具V形槽宽度通常为适用该折弯模的板厚的5-6倍.如采用一次折一道弯的方法,必须考虑到折弯模的V形槽的宽度W1及V形槽一边到模具外侧的宽度L1。如图6:

各类板材折弯展开计算公式

1 目的 统一展开计算方法,做到展开的快速准确. 2 展开计算原理 板料在弯曲过程中外层受到拉应力,内层受到压应力,从拉到压之间有一既不受拉力又不受压力的过渡层--中性层,中性层在弯曲过程中的长度和弯曲前一样,保持不变,所以中性层是计算弯曲件展开长度的基准.中性层位置与变形程度有关,当弯曲半径较大, 折弯角度较小时,变形程度较小, 中性层位置靠近板料厚度的中心处,当弯曲半径变小,折弯角度增大时,变形程度随之增大,中性层位置逐渐向弯曲中心的内侧移动.中性层到板料内侧的距离用λ表示. 3 计算方法 展开的基本公式: 展开长度=料内+料内+补偿量 3.1 R=0, 折弯角θ =90 °(T<1.2, 不含 1.2mm) L=(A-T)+(B-T)+K =A+B-2T+0.4T 上式中取: λ =T/4 K= λ * π/2 =T/4* π /2 =0.4T 3.2 R=0, θ =90 ° (T≧ 1.2,含 1.2mm) L=(A-T)+(B-T)+K =A+B-2T+0.5T 上式中取: λ =T/3 B K= λ * π/2 =T/3* π /2 90.0°T>=1.2mm 中性層 T T<1.2mm =0.5T B

3.3 R ≠ 0 θ =90 ° L=(A-T-R)+(B-T-R)+(R+ λ )* π/2 当R ≧ 5T 时λ=T/2 1T ≦ R <5T λ=T/3 中性層 0 < R

L=[A-T*tan(a/2)]+[B -T*tan(a/2)]+T/3*a (a 单 位 为 rad, 以 下 相 同 ) -(T+R)*tan(a/2)]+(R+ λ )*a 当 R ≧ 5T 时 λ =T/2 1T ≦ R <5T λ =T/3 0 < R : L=A-T+C+B+D+K 3.4 R=0 θ ≠ 90 ° λ =T/3 3.6 Z 折 1. 计算方法请示上级 ,以下几点原则仅供参考 : (1)当 C ≧ 5 时,一般分两次成型 ,按两个 90° 折弯计算 .(要考虑到折弯冲子的强度 ) L=A-T+C+B+2K (2)当 3T: L=A-T+C+B+K (3)当 C ≦ 3T 时<一次成型 >: L=A-T+C+B+K/2 中性層

相关文档
最新文档