地震力计算表

地震力计算表
地震力计算表

柱重力荷载标准值表

注:表中KZ1为框架柱,T Z 为楼梯间柱

板重力荷载标准值

注:表中楼梯部分的g k 按楼面的1.2倍考虑

土石坝地震永久变形计算方法_李湛

土石坝地震永久变形计算方法 李 湛1,3,栾茂田2,3 (11中国建筑科学研究院,北京 100013; 21大连理工大学海岸和近海工程国家重点实验室,辽宁大连 116024; 31大连理工大学土木水利学院岩土工程研究所,辽宁大连 116024) 摘 要:对于土石坝的地震永久变形,本文提出等效结点力-逐步软化有限元计算模型。首先根据坝体地震动力响应的 非线性有限元分析确定各时段坝体单元可能发生的残余应变、振动孔隙水压力增量及累积振动孔隙水压力,以此对静变 形模量和强度及静应力-应变关系进行修正,并应用于下一时段计算中;同时基于所确定的与上一时段地震作用所产生 的潜在残余应变增量和静应力-应变关系确定地震作用相应的等效结点力。在每一时段末根据上述所确定的等效结点 力和应力-应变关系,运用整体有限元分析确定坝休的残余变形增量,将各个时段计算所确定的残余位移累加得到地震 作用后坝体的残余变形量。这种方法能够同时考虑地震惯性力效应和土的软化效应对土石坝地震永久变形的影响。 关键词:水工结构;地震永久变形;等效结点力-逐步软化有限元模型;土石坝;抗震稳定性 中图分类号:TV312文献标识码:A 收稿日期:2008-03-03 基金项目:国家自然科学基金(50179006),教育部跨世纪优秀人才培养计划研究基金和中国科学院武汉岩土力学研究所前沿领域基础研究基金 (Q110305) 作者简介:李湛(1975)),男,博士.E -mail:lz -xj@https://www.360docs.net/doc/e19131842.html, Computation method for seismically -induced permanent deformation of earth -rock dams LI Zhan 1,3,LUAN Maotian 2,3 (1.China Academy o f Building Research ,Beijing 100013; 2.State Key Laboratory o f Coastal and O ffshore Engineering ,Dalian University o f Technology ,Dalian 116024; 3.Institute o f Geotechnical Engineering ,School o f Civil and Hydraulic Engineering , Dalian University o f Technology ,Dalian 116024) Abstract :This paper presents a finite element procedure for evaluating seismically -induced permanent deformation of earth -rock da ms.In the proposed procedure,both concepts of equivalent nodal forces and step -by -step gradually softening moduli are integrated together.The earthquake duration is divided into a certain number of time incre ments.And for each time increment the residual strain and dyna mic pore water pressure which is likely induced during previous time increments under undrained condition are estimated on the basis of the stress condition obtained by the dyna mic analysis and the empirical patterns of both residual strain and pore water pressure achieved e xperimentally.Then,the computed accumulative pore -water pressure at the end o f each time increment is used directly to modify the static hyperbolic relationship between stress and strain which is to be used for the next time period.And at the same time,the equivalent nodal forces equivalent to incremental residual strain potential are defined.B y using the modified stress -strain relationship,the incremental deformations are computed when the nodal forces equivalent to earthquake effect on the dam defined as above are imposed on the earth -rock dam.The computed incremental displacements of the earth -rock dam for each time incre ment are accumulated and the accumulative displacements can be regarded as approximation of the residual deformation which is to be initiated by earthquake shaking.In fact,the proposed numerical procedure has taken into c onsideration both the inertia effect 第28卷第4期 2009年8月水 力 发 电 学 报JOURNAL OF HYDROELEC TRIC ENGINEERING Vol.28 No.4Aug.,2009

水平地震作用计算

上海市工程建设规范《建筑抗震设计规程》(DGJ08-9-2013)强制性条文 3 抗震设计的基本要求 3.1.1 抗震设防的所有建筑应按现行国家标准《建筑工程抗震设防分类标准》GB 50223 确定其抗震设防类别及其抗震设防标准。 3.3.1选择建筑场地时,应根据工程需要和地震活动情况、工程地质和地震地质的有关资料,对抗震有利、一般、不利和危险地段做出综合评价。对不利地段,应提出避开要求,当无法避开时应采取有效的措施。对危险地段,严禁建造甲、乙类的建筑,不应建造丙类的建筑。 3.4.1建筑设计应根据抗震概念设计的要求明确建筑形体的规则性。不规则的建筑应按规定采取加强措施;特别不规则的建筑应进行专门研究和论证,采取特别的加强措施;严重不规则的建筑不应采用。 注:形体指建筑平面形状和立面、竖向剖面的变化。 3.5.2结构体系应符合下列各项要求: 1应具有明确的计算简图和合理的地震作用传递途径。 2应避免因部分结构或构件破坏而导致整个结构丧失抗震能力或对重力荷载的承载能力。 3应具备必要的抗震承载力,良好的变形能力和消耗地震能量的能力。 4对可能出现的薄弱部位,应采取措施提高其抗震能力。 3.7.1 非结构构件,包括建筑非结构构件和建筑附属机电设备,自身及其与结构主体的连接,应进行抗震设计。 3.7.4框架结构的围护墙和隔墙,应估计其设置对结构抗震的不利影响,避免不合理设置而导致主体结构的破坏。 3.9.1抗震结构对材料和施工质量的特别要求,应在设计文件上注明。 3.9.2 结构材料性能指标,应符合下列要求: 1 砌体结构材料应符合下列规定: 1)普通砖和多孔砖的强度等级不应低于MU10,其砌筑砂浆强度等级不应低于 M5; 2)混凝土小型空心砌块的强度等级不应低于MU7.5,其砌筑砂浆强度等级不应 低于Mb7.5。 2混凝土结构的材料应符合下列规定: 1) 混凝土的强度等级,框支梁、框支柱及抗震等级为一级的框架梁、柱、节点核 芯区,不应低于C30;构造柱、芯柱、圈梁及其它各类构件不应低于C20; 2) 抗震等级为一级、二级、三级的框架和斜撑构件(含梯段),其纵向受力钢筋采 用普通钢筋时,钢筋的抗拉强度实测值与屈服强度实测值的比值不应小于 1.25;钢筋的屈服强度实测值与屈服强度标准值的比值不应大于1.3,且钢筋 在最大拉力下的总伸长率实测值不应小于9%。 3钢结构的钢材应符合下列规定: 1) 钢材的屈服强度实测值与抗拉强度实测值的比值不应大于0.85; 2) 钢材应有明显的屈服台阶,且伸长率不应小于20%; 3) 钢材应有良好的焊接性和合格的冲击韧性。

水平地震作用计算

上海市工程建设规《建筑抗震设计规程》(DGJ08-9-2013)强制性条文 3 抗震设计的基本要求 3.1.1 抗震设防的所有建筑应按现行标准《建筑工程抗震设防分类标准》GB 50223 确定其抗震设防类别及其抗震设防标准。 3.3.1选择建筑场地时,应根据工程需要和地震活动情况、工程地质和地震地质的有关资料,对抗震有利、一般、不利和危险地段做出综合评价。对不利地段,应提出避开要求,当无法避开时应采取有效的措施。对危险地段,禁建造甲、乙类的建筑,不应建造丙类的建筑。 3.4.1建筑设计应根据抗震概念设计的要求明确建筑形体的规则性。不规则的建筑应按规定采取加强措施;特别不规则的建筑应进行专门研究和论证,采取特别的加强措施;重不规则的建筑不应采用。 注:形体指建筑平面形状和立面、竖向剖面的变化。 3.5.2结构体系应符合下列各项要求: 1应具有明确的计算简图和合理的地震作用传递途径。 2应避免因部分结构或构件破坏而导致整个结构丧失抗震能力或对重力荷载的承载能力。 3应具备必要的抗震承载力,良好的变形能力和消耗地震能量的能力。 4对可能出现的薄弱部位,应采取措施提高其抗震能力。 3.7.1 非结构构件,包括建筑非结构构件和建筑附属机电设备,自身及其与结构主体的连接,应进行抗震设计。 3.7.4框架结构的围护墙和隔墙,应估计其设置对结构抗震的不利影响,避免不合理设置而导致主体结构的破坏。 3.9.1抗震结构对材料和施工质量的特别要求,应在设计文件上注明。 3.9.2 结构材料性能指标,应符合下列要求: 1 砌体结构材料应符合下列规定: 1)普通砖和多砖的强度等级不应低于MU10,其砌筑砂浆强度等级不应低于M5; 2)混凝土小型空心砌块的强度等级不应低于MU7.5,其砌筑砂浆强度等级不应 低于Mb7.5。 2混凝土结构的材料应符合下列规定: 1) 混凝土的强度等级,框支梁、框支柱及抗震等级为一级的框架梁、柱、节点核 芯区,不应低于C30;构造柱、芯柱、圈梁及其它各类构件不应低于C20; 2) 抗震等级为一级、二级、三级的框架和斜撑构件(含梯段),其纵向受力钢筋采 用普通钢筋时,钢筋的抗拉强度实测值与屈服强度实测值的比值不应小于 1.25;钢筋的屈服强度实测值与屈服强度标准值的比值不应大于1.3,且钢筋 在最大拉力下的总伸长率实测值不应小于9%。 3钢结构的钢材应符合下列规定: 1) 钢材的屈服强度实测值与抗拉强度实测值的比值不应大于0.85; 2) 钢材应有明显的屈服台阶,且伸长率不应小于20%; 3) 钢材应有良好的焊接性和合格的冲击韧性。 3.9.4 在施工中,当需要以强度等级较高的钢筋替代原设计中的纵向受力钢筋时,应按照钢筋受拉承载力设计值相等的原则换算,并应满足最小配筋率要求。

重力坝抗滑稳定与应力计算

项目名称:几内亚凯勒塔(KALETA)水电站工程项目阶段:复核阶段 计算书名称:重力坝抗滑稳定及应力计算 审查: 校核: 计算: 黄河勘测规划设计有限公司 Yellow River Engineering Consulting Co. ,Ltd. 二〇一二年四月

目录 1.计算说明..................................................................................... 错误!未定义书签。 目的与要求 ......................................................................... 错误!未定义书签。 基本数据 ............................................................................. 错误!未定义书签。 2.计算参数和研究方法................................................................. 错误!未定义书签。 荷载组合 ............................................................................. 错误!未定义书签。 计算参数及控制标准 ......................................................... 错误!未定义书签。 计算理论和方法 ................................................................. 错误!未定义书签。 3.计算过程..................................................................................... 错误!未定义书签。 荷载计算 ............................................................................. 错误!未定义书签。 自重 ............................................................................. 错误!未定义书签。 水压力 ......................................................................... 错误!未定义书签。 扬压力 ......................................................................... 错误!未定义书签。 地震荷载 ..................................................................... 错误!未定义书签。 安全系数及应力计算 ......................................................... 错误!未定义书签。 4.结果汇总..................................................................................... 错误!未定义书签。

第八章水平地震作用下的内力和位移计算

第8章 水平地震作用下的内力和位移计算 8.1 重力荷载代表值计算 顶层重力荷载代表值包括:屋面恒载:纵、横梁自重,半层柱自重,女儿墙自重,半层墙体自重。其他层重力荷载代表值包括:楼面恒载,50%楼面活荷载,纵、横梁自重,楼面上、下各半层柱及纵、横墙体自重。 8.1.1第五层重力荷载代表值计算 层高H=3.9m ,屋面板厚h=120mm 8.1.1.1 半层柱自重 (b ×h=500mm ×500mm ):4×25×0.5×0.5×3.9/2=48.75KN 柱自重:48.75KN 8.1.1.2 屋面梁自重 ()()kN m m m kN m m m kN m m m kN 16.1472 )25.06.6(/495.145.06.616.3)3.03(/495.123.06.7/16.3=?-?+?-?+ +?+?-? 屋面梁自重:147.16KN 8.1.1.3 半层墙自重 顶层无窗墙(190厚):()KN 25.316.66.029.3202.02019.025.14=??? ? ??-???+? 带窗墙(190厚): ()()KN 98.82345.002.02019.025.1428.15.16.66.029.3202.02019.025.14=??? ??? ???????-?+???-???? ??-???+? 墙自重:114.23 KN 女儿墙:()KN 04.376.66.1202.02019.025.14=????+? 8.1.1.4 屋面板自重 kN m m m m kN 78.780)326.7(6.6/5.62=+???

8.1.1.5 第五层重量 48.75+147.16+114.23+37.04+780.78=1127.96 KN 8.1.1.6 顶层重力荷载代表值 G 5 =1127.96 KN 8.1.2 第二至四层重力荷载代表值计算 层高H=3.9m ,楼面板厚h=100mm 8.1.2.1半层柱自重:同第五层,为48.75 KN 则整层为48.75×2=97.5 KN 8.1.2.2 楼面梁自重: ()()kN m m m kN m m m kN m m m kN 3.1542)25.06.6(/6.145.06.63.3)3.03(/6.123.06.7/3.3=?-?+?-?+ +?+?-? 8.1.2.3半墙自重:同第五层,为27.66KN 则整层为2×27.66×4=221.28 KN 8.1.2.4楼面板自重:4×6.6×(7.6+3+7.6)=480.48 KN 8.1.2.5第二至四层各层重量=97.5+154.3+221.28+480.48=953.56 KN 8.1.2.6第二至四层各层重力荷载代表值为: ()KN G 61.111336.65.326.76.65.2%5056.9534-2=??+????+= 活载:Q 2-4=KN 05.160%5036.65.326.76.65.2=???+???)( 8.1.3 第一层重力荷载代表值计算 层高H=4.2m ,柱高H 2=4.2+0.45+0.55=5.2m ,楼面板厚h=100mm 8.1.3.1半层柱自重: (b ×h=500mm ×500mm ):4×25×0.5×0.5×5.2/2=65 KN 则柱自重:65+48.75=113.75 KN 8.1.3.2楼面梁自重:同第2层,为154.3 KN 8.1.3.3半层墙自重(190mm ): ()()KN 14.3145.002.02019.025.142 8 .15.16.66.02 2.4202.02019.025.14=-?+???-??? ? ??-???+? 二层半墙自重(190mm ):27.66 KN 则墙自重为:(31.14+27.66)×4=235.2 KN

附录三 用材料力学方法计算坝体应力

附录三 用材料力学方法计算坝体应力 一、说明 混凝土重力坝一般均用材料力学方法计算坝的应力指标并设计断面,所以本附录仍列入该法的有关计算公式,至于电子计算机的程序另见本规范参考资料。 本法假定坝体各水平截面上的垂直正应力σy 呈直线分布, 因此,可以按材料力学中的偏心 受压公式来确定 σy ,然后依次应用平衡条件确定剪应力τ,水平正应力σx 以及主应力σz 1, σz 2和其方向。 作用在计算截面上的扬压力,通常呈折线形分布(附图6a ),这个图形,可分解为一个在全 截面上呈梯形(或三角形)分布的图形(附图6b )和一些在上游部分呈局部三角形或矩形分布的图形,如附图6c 、d 、e 。当扬压力沿全截面呈直线分布时(即附图6b 所示情况),其所产生的应力为: =-==τσσv y x p 附图6 v p 为计算点的扬压力,因此,这种扬压力所产生的应力可以不必专门计算,只须先不考虑扬压力的影响,确定各点上的应力σx , σy 及τ,然后在正应力中扣去扬压力v p 即可,对于仅 作用在截面局部部分上的扬压力(渗透压力),则必须作专门计算,以确定其所产生的应力。 用材料力学方法计算坝体应力时,以压应力为正,拉应力为负,y 为垂直轴,以向下为正,x 为水平轴,以向上游为正,原点取在计算截面与下游坝面的交点上(附图7),其余所用符号如下:

T ——坝体计算截面沿上、下游方向的长度; n ——上游坝坡,n =tg φs ; m ——下游坝坡,m =tg φxi ; γh ——混凝土容重; γ、'γ——上、下游水的容重('γ在数值上常等于γ); p 、'p ——计算截面在上、下游坝面所受的水压力(如有泥沙压力时应计入在内); p y 、'p y ——计算截面在上、下游坝面所受地震动水压力; λ——地震惯性力总系数,λ=k H C z F 以入乘混凝土重量W ,即为地震惯性力,应按《水工建筑物抗震设计规范》计算; vs p 、vxi p ——计算截面在上、下游坝面处的扬压力; ηγH ——在上游的渗透压力(H 为计算截面以上的上游水深,η为扬压力系数); ΣW ——计算截面上全部垂直力的总和(包括坝体自重、水重、泥沙重及计算的扬压力等),以向下为正,对于实体重力坝,均切取单位宽度坝体为准(下同); ΣP ——计算截面上全部水平推力的总和(包括水压力、泥沙压力和地震水压力等),以指向上游为正; ΣM ——计算截面上全部垂直力及水平力对于计算截面形心的力矩的总和,以使上游面产生压应力者为正; 其他符号将在宽缝重力坝计算中再加说明。 二、实体重力坝的计算 1.计算实体重力坝应力的基本公式 (1)实体重力坝坝面应力公式: 上游面垂直正应力 26T M T W s y ∑∑+= σ (附29) 下游面垂直正应力 26T M T W xi y ∑∑-= σ (附30) 上游面剪应力 n p p s y y s )(στ-+= (附31) 下游面剪应力 m p p y xi y xi )('+'-=στ (附32) 上游面水平正应力 σσx s y y y s p p p p n =+-+-()()2

绪论及重力坝习题

第一章绪论习题 1.何谓水利工程? 何谓水工建筑物? 何谓水利枢纽? 何谓蓄水枢纽? 何谓取水枢纽? 2.水工建筑物有哪几类? 3.为什么要对水利枢纽工程分等和对水工建筑物分级? 4.水利工程有哪些特点? 5.学好水工建筑物课程应注意掌握教材的哪些内容? 绪论习题答案 1、何谓水利工程? 何谓水工建筑物? 何谓水利枢纽? 何谓蓄水枢纽? 何谓取水枢纽? 1、答案: 为了对自然界的水进行有效的控制和合理的调配,达到兴利除害目的而修建的各项工 程措施通称为水利工程。 为了达兴利除害目的而采取的工程措施中,修建的各种建筑物称为水工建筑物。 在水域的适当地点,为了一种或多种目标而集中布置若干个水工建筑物,各自发挥不同作用并协调工作,构成的有机综合体,称为水利枢纽。 为了满足防洪、灌溉、发电等各种需要,在河流上修建拦河坝形成水库,抬高水位,调节径流的水利枢纽称为蓄水枢纽。 为了从河流、湖泊等水源取水以满足灌溉和其它用水部门的需要,而在渠首河段修建的对河道来水不起调蓄作用的水利枢纽称为取水枢纽。 2、水工建筑物有哪几类? 2、答案: 按使用期限可分为:永久性建筑物和临时性建筑物。 永久性建筑物——枢纽工程运行期间使用的建筑物; 临时性建筑物——枢纽工程施工期间使用的建筑物; 按永久性建筑物的重要性又可分为:主要建筑物和次要建筑物。 3、为什么要对水利枢纽工程分等和对水工建筑物分级? 3、答案: 安全和经济是水利水电工程建设中必须妥善解决的矛盾。为此,按枢纽工程的规模、效益、重要性等将其分为不同的等别,按重要性对其中的建筑物分为不同的级别,并据此规定不同的技术要求和安全要求,以达到既安全又经济之目的。 4、水利工程有哪些特点? 4、答案: 水利工程的特点:规模大、投资多、建设周期长、受自然条件影响大、涉及的因素多、影响范围广。因此,其设计、施工和运行管理均必须严格按照程序和规定进行。 5、学好水工建筑物课程应注意掌握教材的哪些内容? 5、答案: ①建筑物的形式和特点、适用范围与工作条件、基本尺寸和工程布置、构造及材料; ②作用于建筑物上的荷载及其组合、设计条件的选择; ③水力、渗流计算和建筑物的稳定和强度分析;

计算书

1非溢流坝段设计计算 1.1设计校核洪水位的确定 由堰流公式 相应洪水位= 堰顶高程+ H0 H0=1.05H d B=Q/q n=B/b 式中:Q--流量m3/s B--溢流堰孔口宽m H0--堰顶以上作用水头 G--重力加速度9.8m3/s m—流量系数 n—孔口数 H d—堰面曲线定型设计水头 B—溢流孔的净宽 b—孔口净宽 q—单宽流量 --侧收循系数,根据闸墩厚度及墩头形状而定, =1, =0.95,m=0.502,q=60㎡/s,b=5m,堰顶高程=1057.00m 计算成果见表: 表5.2 堰顶高程 1.2坝顶高程的确定 坝顶高程分别按设计和校核两种情况,用以下公式进行计算:

波浪要素按官厅公式计算。公式如下: 1/3 1/121022000.0076gh gD v v v -??= ???...............................① 1/3.75 1/2.15022000.331gL gD v v v -??= ??? ...............................② 2 12z h H h cth L L ππ= ...............................③ 库水位以上的超高h ?: 1c z h h h h ?=++ 式中1h --波浪高度,m z h --波浪中心线超出静水位的高度,m c h --安全超高,m(查规范得,设计情况取0.3m,校核情况取0.2m) o v --计算风速。水库为正常蓄水位和设计洪水位时,宜用相应洪水期多年 平均最大风速的1.5~2.0倍,取19m/s ,校核洪水位时,宜用相应洪水期多年平均最大风速,15 m/s D-风区长度;取800m L--波长;M H--坝前水深 1.2.1.1 设计情况下 gD/v 02=9.8×800/192=21.72,在20—250之间,故h 的累积频率为5%的波高,带入①中, 9.8×h 5%/192=0.0076×19-1/12×(9.81×800/192)1/3 得h 5%=0.55m 查《混凝土重力坝设计规范》表B.6.3得 h 5%/hm=1.95 hm=0.55/1.95=0.282m h 1%/hm=2.42 h 1%=0.282×2.42=0.682m 将各值带入②得

坝体地震惯性力计算

坝体地震惯性力计算 采用拟静力法计算,由《水工建筑物抗震设计规范》知,一般情况下,水工建筑物可只考虑水平向地震作用。沿水平面的地震惯性力代表值: g a G a F i Ei h i ξ= (1) 式中:i F ——作用在质点i 的水平向地震惯性力代表值,KN ; h a ——水平向设计地震加速度代表值,m/s 2; ξ——地震作用的效应折减系数; Ei G ——集中在质点i 的重力作用标准值,KN ; i a ——质点i 的动态分布系数,由下式计算: ∑=++=n j j E Ej i i H h G G H h a 14 4 )/(41)/(414.1 (2) 式中:n ——坝体计算质点总数; H ——坝高,m ; i h 、j h ——分别为质点i 、j 相对坝基面的高度,m ; E G ——产生地震惯性力的建筑物总重力作用标准值,KN 由《水工建筑物抗震设计规范,DL5073-2000》知,一般情况下,水工建筑物可只考虑水平向地震作用。根据设计资料,本设计可取设计烈度等于基本烈度,即为7度,由《水工建筑物抗震设计规范,DL5073-2000》表4.3.1查得:水平向设计地震加速度代表值h a =0.1g ,地震作用的效应折减系数ξ=0.25,则i Ei i a G F 025.0= 关于分块,可以参照下图分成3块,n=3,H=坝高, 第一块:坝顶至1-1剖面为矩形;GE1,h1为第一块矩形形心至坝基面(3-3)的高度。 第二块:1-1剖面至2-2剖面为梯形;GE2, h2为第二块梯形形心至坝基面(3-3)的高度。 第三块:2-2剖面至3-3剖面为梯形;GE3, h3为第三块梯形形心至坝基面(3-3)的高度。 i a ——质点i 的动态分布系数,由下式计算: 43134 114(/)1.414(/)Ej j j E h H a G h H G =+=+∑

有关惯性力的论述

20406080一月 二月 三月四月 亚洲区欧洲区北美区

20406080一月 二月 三月四月 亚洲区欧洲区北美区 有关惯性力以及科里奥利力的论述 【摘要】: 惯性力是指当物体加速时,惯性会使物体有保持原有运动状态的倾向,若是以该物体为坐标原点,看起来就仿佛有一股方向相反的力作用在该物体上,因此称之为惯性力,而科里奥利力也不存在,是惯性的结果。 【关键词】: 惯性,惯性力,科里奥利力,惯性参考系,非惯性参考性。 【引言】: 惯性力实际上并不存在,实际存在的只有原本将该物体加速的力,因此惯性力又称为假想力。它概念的提出是因为非惯性系中,牛顿运动定律并不适用。但是为了思维上的方便,可以假象在这个非惯性系中,除了相互作用所引起的力之外还受到一种由于非惯性系而引起的力——惯性力。 如果物体相对于匀角速度转动的参考系而言,不是静止的,而是在做相对运动,那么在该转动参考系中的观测者看来,物体除了受到惯性离心力的作用外,还将受到另外一种附加的力——科里奥利力的作用。 【内容】: 一、首先论述一下惯性力 1、 举个例子,当我们乘坐汽车时,如果汽车急刹车,我们会不自主的向前倾,感觉仿佛有一个力把你向前推,但是这个力并不真正存在,人们把这个力认为是惯性力。

20406080一月 二月 三月四月 亚洲区欧洲区北美区 事实是:汽车刹车时轮胎与地面摩擦而使汽车减速,实际上并没有力推乘 客,这只是惯性在不同坐标系统下的现象。 2、 假如这里脱离了任何天体的引力,飞船在靠惯性飞行。那么飞船里的人和一切物体都处于“失重”状态,可以飘在空中,从手里松开的任何东西也不会往下落。如果飞船又开动了火箭,以一定的加速度 向前飞行,那么飞船里的人又感到有了“重量”,原来在空中漂浮的东西又纷纷加速下落,这说的是物体受到惯性力加速下落的情形。 3、 惯性力的引入是牛顿力学的一大耻辱,它是为了弥补在非惯性参考系中物体的运动不满足牛顿运动定律而引入的假想力。 4、 设想有一静止的火车,车厢内一光滑桌子上放有一个小球,小球本来是静止的;现在火车开始加速启动,在地面上的人(显然他选用了一个惯性参考系——地面)看来,小球并没有运动,但是在火车上的人看

2.7水平地震作用内力计算

2.7 水平地震作用内力计算 设计资料: 根据《建筑抗震设计规范》(GB50011—2001)第5.1.3条: 屋面重力荷载代表值Gi =屋面恒载+屋面活荷载+纵横梁自重+楼面下半层的柱及纵横墙 自重; 各楼层重力荷载代表值G i =楼面恒荷载+50%楼面活荷载+纵横梁自重+楼面上下各半层的 柱及纵横墙自重; 总重力荷载代表值∑== n i i G G 1 。 主梁与次梁截面尺寸估算: 主梁截面尺寸的确定:当跨度取8000L mm =,主梁高度应满足: 1111 (~)(~)8000667~1000812812 h L mm mm ==?=,考虑到跨度较大,取700h mm =, 则:1111 (~)(~)700233~3502323 b h mm mm ==?=,取350b mm =。 当跨度取6000L mm =,主梁高度应满足: 1111 (~)(~)6000500~750812812 h L mm mm ==?=,考虑到跨度较大,取500h mm =, 则:1111 (~)(~)500167~2502323 b h mm mm ==?=,取250b mm =。 一级次梁截面尺寸的确定:跨度取4800L mm =,次梁高度应满足: 1111 (~)(~)4800320~40012181218h L mm mm ==?=,考虑到跨度较大,取350h mm =,则: 1111 (~)(~)350117~1752323 b h mm mm ==?=,取200b mm =。 二级次梁截面尺寸的确定:跨度取3000L mm =,次梁高度应满足: 1111 (~)(~)3000167~25012181218h L mm mm ==?=,考虑到跨度较大,取300h mm =,则: 1111 (~)(~)300100~1502323 b h mm mm ==?=,取200b mm =。

坝体稳定计算书

1坝顶高程及护坡计算 根据《碾压式土石坝设计规范》(SL274-2001),坝顶高程等于水库静水位与坝顶超高之和,应分别按以下运用条件计算,取其最大值:①正常蓄水位加正常运用条件的坝顶超高;②设计洪水位加正常运用条件的坝顶超高; ③校核洪水位加非常运用条件的坝顶超高。考虑坝前水深、风区长度、坝坡等因素的不同,分别计算安全加固前后主坝及一、二、三副坝的坝顶高程。 计算波浪要素所用的设计风速的取值:正常运用条件下,采用多年平均年最大风速的1.5倍;对于非常运用条件下,采用多年平均年最大风速。根据水库所处的地理位置,多年平均年最大风速值采用15.2m/s计算。主坝风区长度为886m,西营副坝风区长度为200m,马尾副坝风区长度为330m 采用公式法进行计算。 1.1坝顶超高计算 根据《碾压式土石坝设计规范》SL274—2001,坝顶在水库静水位的超高应按下式计算: y=R+e+A 式中:R——最大波浪在坝坡上的爬高(m); e ——最大风壅水面高度(m); A——安全超高(m),对于3级土石坝,设计工况时A=0.7m,校核工况时A=0.4m; 1.2加固前坝顶超高的计算 1.2.1计算参数 各大坝计算采用的参数见表1.2.1.1~2。

表1.2.1.1 主坝加固前波浪护坡计算参数表 表1.2.1.2 西营副坝加固前波浪护坡计算参数表 1.2.2加固前坝顶高程复核 各坝坝顶高程计算成果见表1.2.2.1~2 表1.2.2.1 主坝加固前坝顶高程计算成果表 从表1.2.2.1可以看出,校核工况下主坝坝顶高程最大,所以坝顶高程取17.39m,小于现状防浪墙顶高程17.41~17.63m ,现坝顶高程满足现行规

单质点地震作用计算计算方法

单质点地震作用计算的计算方法 主要内容:1.单自由度弹性体系地震反应分析,主要是运动方程解的一般形式及水 平地震作用的基本公式及计算方法。 2.计算水平地震作用关键在于求出地震系数k 和动力系数β。 一、地震概述 地震是一种地质现象,就是人们常说的地动,它主要是由于地球的内力作用而产生的一种地壳振动现象。据统计,地球上每年约有15万次以上或大或小的地震。人们能感觉到的地震平均每年达三千次,具有很大破坏性的达100次。每次中等程度的地震就会造成重大损失和人员伤亡,研究地震的危害和抗震的方法极有必要,目前已经研究到了多质点体系地震作用和整体结构的地震作用,但这些研究都离不开单质点地震作用的计算,我们组准备理论研究并在现有的计算基础上做一点拓展。 二.地震危害直接 2005年2月15日新疆乌什发生6.2级地震,经济损失达15757.43万元,主要是土木结构的房屋破坏严重。近期,云南普洱发生严重的地震,震中位于人口稠密的县城,造成严重的财产损失和人员伤亡。目前,因灾受伤群众为300余人,其中3人死亡。全县各乡(镇)房屋受损严重,土木结构房屋墙体倒塌较多,砖混结构房屋普遍出现墙体开裂,承重柱移位。 作为将来的结构工程师,抗震是我们拦路虎,必须加以重视,那我们先从基础理论着手。 三、单质点弹性体系的地震反应 目前,我国和其他许多国家的抗震设计规范都采用反应谱理论来确定地震作用。这种计算理论是根据地震时地面运动的实测纪录,通过计算分析所绘制的加速度(在计算中通常采用加速度相对值)反应谱曲线为依据的。所谓加速度反应谱曲线,就是单质点弹性体系在一定地震作用下,最大反应加速度与体系自振周期的函数曲线。如果已知体系的自振周期,那么利用加速度反应谱曲线或相应公式就可以很方便地确定体系的反应加速度,进而求出地震作用。 应用反应谱理论不仅可以解决单质点体系的地震反应计算问题,而且,在一定假设条件下,通过振型组合的方法还可以计算多质点体系的地震反应。 1.运动方程的建立 为了研究单质点弹性体系的地震反应,我们首先建立体系在地震作用下的运动方程。图2-1表示单质点弹性体系的计算简图。 由结构动力学 方法可得到单质点弹 性体系运动方程: )()()()(t x m t kx t x c t x m g ?????=++ (2-3) 其中g x (t)表示地面水平位移,是时间t 的函数,它的变化规律可自地震时地面运动实测记录求得;x (t)表示质点对于地面的相对弹性位移或相对位移反应,它也是时间t 的函数,是待求的未知量。 若将式(2-3)与动力学中单质点弹性体系在动荷载)(t F 作用下的运动方程 )()()()(t F t kx t x c t x m =++??? (2-4) 进行比较,不难发现两个运动方程基本相同,其区别仅在于式(2-3)等号右边为地震时地面运动加速度与质量的乘积;而式(2-4) 等号右边为作用在质点上的动荷载。由此可见,地面

淤地坝、拦沙坝、拦渣堤(坝、堰)以及挡渣墙等水土保持工程稳定计算

稳定计算 D.0.1 对于淤地坝、拦沙坝、拦渣堤(坝、堰)以及挡渣墙等水土保持工程,应进行稳定计

图D.0.2-2 改良圆弧滑动法计算简图

图D.0.2-3摩根斯顿-普赖斯法(改进方法)计算简图 0d )()(=? x x s x p b a (D.0.2-5) (D.0.2-6) )cos(d dQ cos sec sin sec )sin(d d d d )(α??α?αα?-'-''+'--'?? ????+±=e e e e x c u q x V x W x p (D.0.2-7) ?? ????+-'-+-'=?ζζββα?βα?d d d )tan(exp )sec()(x a e e x s (D.0.2-8) ????????+-'-=x a a e x s ζζζββα?αββd d d )tan(exp )tan cos (sin )( (D.0.2-9) x h x M b a d d dQ e e ?= (D.0.2-10) K c C '=e (D.0.2-11) K ??'='tan tan e (D.0.2-12) 式中:dx —土条宽度; dW —土条重量; q —坡顶外部的垂直荷载; M e —水平地震惯性力对土条底部中点的力矩; dQ 、dV —土条的水平和垂直地震惯性力(向上为负,向下为正); α—条块底面与水平面的夹角; β—土条侧面的合力与水平方向的夹角; h e —水平地震惯性力到土条底面中点的垂直距离。 土的抗剪强度指标可用三轴剪力仪测定,亦可用直剪仪测定。采用的试验方法和强度指标按表D.0.2的规定进行,抗滑稳定计算时,可根据各种运用情况选用。 表D.0.2 土的强度指标 0d )()()(=-?e b a M x x t x s x p

扭转耦联振型与地震力计算的最经典解释。(精)

考虑扭转耦联振型的情况 首先,计算结构的耦联振型时,与后面要计算哪个方向的地震作用,是两个完全独立的过程,即便后面仅仅选择计算一个方向的地震作用,比如X方向,这时统计各层地震作用标准值时依然要采用考虑每层三个自由度的耦联振型,因为结构的耦联振型是结构的固有特性,不会因为要计算哪个方向的地震作用而发生改变。振型分解反应谱法的实质就是得到固有特性(振型),再利用求解得到的振型去统计地震作用,就是地震荷载当量,有了地震荷载当量,计算地震内力是一个静力求解过程,所以用振型分解反应谱法算地震内力,结构从来没真正的“振动”起来。真正振动起来的情况是动力时程分析。 结构的每阶振型都会对在各个自由度的各个方向上形成一个地震荷载当量,对结构施加该振型的所有地震荷载当量进行一个静力分析,就可以得到该振型造成的地震效应值(例如截面弯矩、剪力等)。依次类推,每阶振型都能得到其对应的效应值。而实际的地震效应值肯定要综合考虑各阶振型的耦合,这就有了高规中的3.3.11-5式,把各阶振型的地震效应值通过这种特定的方式累加起来,当然累加计算的方式主要涉及到各阶振型的周期和振型阻尼。从这个角度来说,通过振型分反应谱法计算地震内力,有两次涉及到“耦合”,第一次是计算振型的时候,考虑了各楼层的转角自由度,是一个考虑平动和扭转变形耦合的振型求解过程,第二次“耦合”就是确定了各阶振型的地震内力后,通过3.3.11-5式耦合得到实际的地震内力(地震效应值)。 综上所述,振型分解反应谱的特点就是求振型和求地震内力是两个几乎不关联的过程,方法是固定的,satwe也不例外,所以设置satwe参数时就知道了地震作用计算方法里面的“总刚”和“侧刚”的真实含义,就是用来做振型分解和统计地震当量荷载的,选择总刚算法,结构模型中的每个节点的每个自由度都会给统计一个当量荷载,选择侧刚算法,按照每个楼层三个自由度考虑。地震当量荷载确定之后,就是静力求解了,静力求解同样会涉及到结构的刚度矩阵,如果前面计算地震作用采用的是“总刚”算法,其实结构的刚度矩阵已经有了,甚至是完成矩阵分块的一个总刚,这样静力求解可以直接用它,加上位移边界,就可以求解节点位移,进而计算梁、柱、墙、弹性板内力。

地震荷载计算

地震荷载计算

4.6.1荷载的确定 a 恒载 屋面板重力值: 3.6 6.0710.8118.012 G kN =?? =屋面 楼 面板重力值:3.6 3.64.58.7 6.66 2.195.6522 G kN =?? +??=楼面 梁 重 力值 : 3.6 3.6 4.0210.8 4.023 2.204129.5422 G kN =?+? ?+?=梁 每层柱重力值: 5.3693348.32G kN =??=柱1 墙重力值: 3.6 3.6910.8+3.69253.142 G kN =?? ?=女儿墙 3.6 3.610.3510.8210.282186.0522G kN ? ?=?+?+??= ??? 标墙 b 活载 3.6 0.510.89.722Q kN =??=屋面 3.6210.838.892 Q kN =??=楼面 重力荷载代表值:6 G G G G G =+++屋面板 梁 柱 女儿墙 118.01129.5448.3253.14349kN =+++= 5 G G G G G =+++梁 柱 楼面板 标墙 95.65129.5448.32186.05459.56kN =+++= 125 459.56G G G G G kN =====34

1 各层水平地震作用力的确定 根据设计资料,设防烈度为7度,h<30m ,建筑场地类别为Ⅱ类,故地震特征周期0.4 g T =,框架结 构基本自振周期1 T 按下公式计算: 1(0.08~0.1)T N = 自振周期:1 0.10.160.6T N ==?=s 1 1.4 1.40.40.56g T T s >=?= 则有顶部附加地震作用 则水平地震影响系数最大值 max 0.08 α= 水平地震影响系数 2max 1 ( )g T T γαηα= 建筑结构的阻尼比取值 0.05 ξ= 则有0.9γ= 2 1.0 η = 0.9 2max 1 0.4( )( ) 1.00.080.0560.6 g T T γαηα==??= 各层水平地震作用力的确定 1 0.850.85(459.565349)2249.78eq i G G KN ==??+=∑ 0.0562249.78126.0EK eq F G KN α==?= 因为1 1.4g T T >所以顶部附加地震作用系数 n 1=0.08T +0.01=0.058? 6 1 459.563+6+9+12+15+3491826962i i G H kN =??=∑()

相关文档
最新文档