空间几何二面角解题技巧练习

空间几何二面角解题技巧练习
空间几何二面角解题技巧练习

知识点: 二面角的求法

一、思想方法

求二面角的大小,是立体几何计算与运用中的一个重点和难点. 直接法的核心是作(或找)出二面角的平面角,间接法可利用投影、异面直线、空间向量等。常用的方法有以下几种:

方法一(定义法)即从二面角棱上一点在两个面内分别引棱的垂线如图1。

方法二(三垂线法)在二面角的一个面上一点P 棱及另一个面分别引垂线PA 、PB ,连接AB ,根据三垂线定理(或逆定理),∠PAB 为所求的二面角的平面角.如图2。

方法三(作垂面法)作棱的垂直平面,则这个垂面与二面角两个面的交线所夹的角就是二面角的平面角(图3中∠MAN ).

方法四(投影面积法)一个平面α上的图形面积为S ,它在另一个平面β上的投影面积为S',这两个平面的夹角为θ,则S'=Scos θ或cos θ=/

S S

.

方法五(异面直线法)如图4中,平面α、β相交成θ角,AC 、BD 分别在α、β上,且与棱垂直.若AC=m ,

BD=n, CD=d ,则有AB 2=m 2+n 2+d 2

-2mncos θ,故cos θ=2

2

2

2

2m n d AB mn

++- (1)

在已知二面角两个面上两点间距离(即|AB|)的情况下,可以用此公式来求θ. 说明:原来的公式中θ理解为两异面直线间的夹角,只取锐角(或直角),故根据A 、B 的位置情况公式是AB 2=m 2+n 2+d 2

±2mncos θ.但二面角可以取钝角,故只需取“-”号得出公式(1).

方法六(空间向量法)如图5,设12,,n n 是二面角l αβ--的两个半平面的法向量,其方向一个指向内.侧,另一个指向外.

侧,则二面角l αβ--的平面角α=12

12arccos ||||

n n n n ?。

二、例题:

例1.在棱长为1的正方体1AC 中,(1)求二面角11A B D C --的大小;

(2)求平面1C BD 与底面ABCD 所成二面角1C BD C --的平面角大小

例2.如果二面角l αβ--的平面角是锐角,点P 到,,l αβ的距离分别为22,4,42,求二面角的大小(垂面法)。

例3.在正方体AC 1中,E 是BC 中点,F 在AA 1上,且A 1F∶FA=1∶2,求平面B 1EF 与底面A 1B 1C 1D 1所成的二面角.

D

H

B

A

例4.矩形ABCD 的两边AB=1,AD=

3,以BD 为棱折成二面角,使AC=

72

.求二面角A-BD-C 的大小.

例5.正三棱柱111ABC A B C -的所有棱长均为2,P是侧棱1AA 上任意一点.当11BC B P ⊥时,求二面角11C B P C --的大小.

例6.如图,AB ⊥平面BCD ,BD CD ⊥,若2AB BC BD ==,求二面角B AC D --

的正弦值

例7.如图,在空间四边形ABCD 中,BCD ?是正三角形,ABD ?是等腰直角三角形,且90BAD ∠=,又二面角A BD C --为直二面角,求二面角A CD B --的大小

图12

三、课堂练习题

1. 如图,ABCD-A 1B 1C 1D 1是正方体,E 、F 分别是AD 、DD 1的中点,则面EFC 1B 和面BCC 1所成二面角的正切值等于( C )

2. 在立体图形P -ABCD 中,底面ABCD 是正方形,PA ⊥底面ABCD ,PA =AB ,Q 是PC 中点.

AC ,BD 交于O 点.

(Ⅰ)求二面角Q -BD -C 的大小:90° (Ⅱ)求二面角B -QD -C 的大小.60°

3. 已知平面α⊥平面β,交线为AB ,C ∈α,D ∈β,34===BC AC AB ,E 为BC 的中点,AC ⊥BD ,BD =8. ①求证:BD ⊥平面α; ②求证:平面AED ⊥平面BCD ;

③求二面角B -AC -D 的正切值.3

4tg ==∠BF

BD BFD

4. 如图,△ABC 和△DBC 所在的两个平面互相垂直,且AB =BC =BD ,∠ABC =

∠DBC =120°,求

(1) A 、D 连线和直线BC 所成角的大小; (2) 二面角A -BD -C 的大小

D

A

B

C

90°.π-arctg2.

5. 正方形ABCD 中,以对角线BD 为折线,把ΔABD 折起,使二面角A ˊ-BD-C 为60°,求二面角B-A ˊC-D 的余弦值。-7

1

6. 如图平面SAC ⊥平面ACB ,ΔSAC 是边长为4的等边三角形,ΔACB 为直角三角形,∠ACB=90°,BC=24,求二面角S-AB-C 的余弦值。11

22

课后练习:

1. 三棱柱ABC-A 1B 1C 1中,∠BAC=900

,AB=BB 1=1,直线B 1C 与平面ABC 成300

角,求二面角B-B 1C-A 的正弦值。

二面角B-B 1C-A 的正弦值为

3

6。 2. 已知菱形ABCD 边长为a ,且其一条对角线BD =a ,沿对角线BD 将?A B D 折起与?B C D 所在平面成直二面角,点E 、F 分别是BC 、CD 的中点。

(1)求AC 与平面AEF 所成的角的余弦值 (2)求二面角A -EF -B 的正切值。

A

B

C

B 1

C 1

A 1 N

Q

3. 如图,在梯形ABCD 中,AD//BC ,∠ABC=900

,AB=a,AD=3a,sin ∠ADC=5

5

,又PA ⊥平面ABCD ,PA=a ,求二面角P-CD-A 的大小。(答案:arctg

3

5)

4. 在直三棱柱ABC —A ′B ′C ′中,∠BAC =90°,AB =BB ′=1,直线B ′C 与平面ABC 成30°的角.(如图所示) (1)求点C ′到平面AB ′C 的距离;(2)求二面角B -B ′C —A 的余弦值.

高中立体几何典型题及解析

高中立体几何典型500题及解析(二)(51~100题) 51. 已知空间四边形ABCD 中,AB=BC=CD=DA=DB=AC,M 、N 分别为BC 、AD 的中点。 求:AM 及CN 所成的角的余弦值; 解析:(1)连接DM,过N 作NE∥AM 交DM 于E ,则∠CNE 为AM 及CN 所成的角。 ∵N 为AD 的中点, NE∥AM 省 ∴NE=2 1AM 且E 为MD 的中点。 设正四面体的棱长为1, 则NC=21·23= 4 3且ME=2 1MD= 4 3 在Rt△MEC 中,CE 2=ME 2+CM 2= 163+41=16 7 ∴cos ∠CNE= 324 3 432167)43()43( 2222 22-=??-+=??-+NE CN CE NE CN , 又∵∠CNE ∈(0, 2 π) ∴异面直线AM 及CN 所成角的余弦值为3 2. 注:1、本题的平移点是N ,按定义作出了异面直线中一条的平行线,然后先在△CEN 外计算CE 、CN 、EN 长,再回到△CEN 中求角。 2、作出的角可能是异面直线所成的角,也可能是它的邻补角,在直观图中无法判定,只有通过解三角形后,根据这个角的余弦的正、负值来判定这个角是锐角(也就是异面直线所成的角)或钝角(异面直线所成的角的邻补角)。最后作答时,这个角的余弦值必须为正。

52. .如图所示,在空间四边形ABCD 中,点E 、F 分别是BC 、AD 上的点,已知AB=4,CD=20,EF=7, 3 1 ==EC BE FD AF 。求异面直线AB 及CD 所成的角。 解析:在BD 上取一点G ,使得3 1 =GD BG ,连结EG 、FG 在ΔBCD 中,GD BG EC BE = ,故EG//CD ,并且4 1==BC BE CD EG , 所以,EG=5;类似地,可证FG//AB ,且 4 3 ==AD DF AB FG , 故FG=3,在ΔEFG 中,利用余弦定理可得 cos ∠ FGE= 2 1 5327532222222- =??-+=??-+GF EG EF GF EG ,故∠FGE=120°。 另一方面,由前所得EG//CD ,FG//AB ,所以EG 及FG 所成的锐角等于AB 及CD 所成的角,于是AB 及CD 所成的角等于60°。 53. 在长方体ABCD -A 1B 1C 1D 1中,AA 1=c ,AB=a ,AD=b ,且a >b .求AC 1及BD 所成的角的余弦. A B C D E F G E D 1 C 1 B 1 A 1 A B D C O

小学数学常用解题技巧(解几何题技巧)

小学数学常用解题技巧:解几何题技巧 解几何题技巧 1.等分图形 【均分整体】有些几何问题,只要把大图形均分为若干个小图形,就能找到问题的答案。 例如,下面两图中的正方形分别内接于同一个等腰直角三角形(内接指四个顶点全在三角形的边上)。已知左图(图4.11)中正方形面积为72平方厘米,求右图( 4.12)中正方形的面积。 由于左右两个三角形完全相同,我们不妨把这两个图形进行等分,看看这两个正方形分别与同一个等腰直角三角 形有什么样的关系。等分后的情况见图 4.13和图 4.14。 积是 图4.12的正方形面积是 【均分局部】有些几何问题,整体的均分不太方便,或不能够办到,这时可以考虑把它的局部去均分,然后从整 体上去观察,往往也能使问题获得解决。 例如图 4.15,在正方形ABCD中,画有甲、乙、丙三个小正方形。问:乙、丙面积之和与甲相比,哪一个大些? 大家由前面的“均分整体”已经知道,像甲、乙这样的两个正方形,面积不是相等的。如图 4.16,经过等分,正方形甲的面积等于△ABC面积的一半;正方形丙的面积等于△EDF的一半,正方形乙的面积等于梯形ACFE面积的一半。这样,一个大正方形ABCD,就划分成了三个局部:等腰直角△ABC;等腰梯形ACFE;等腰直角△EDF。其中甲、乙、丙的面积分别为各自所在图形的一半,而△EDF的面积加梯形ACFE的面积等于△ADC的面积,即等于△ABC的面积。所以,乙、丙面积之和等于甲的面积。

2.平移变换 【平移线段】有些几何问题,通过线段的上、下、左、右平移以后,能使问题很快地得到正确的解答。 例如,下面的两个图形(图 4.17和图4.18)的周长是否相等? 单凭眼睛观察,似乎图 4.18的周长比图 4.17的要长一些。但把有关线段平移以后,图 4.18就变成了图 4.19,其中的线段,有的上移,有的左移,有的右移,它可移成一个正方形。于是,不难发现两图周长是相等的。 【平移空白或阴影部分】有些求阴影部分或空白部分面积的几何题,采用平移空白部分或平移阴影部分的办法, 往往能化难为易,很快使问题求得解答。例如,计算图 4.20中阴影部分的面积。 圆面积”,然后相加,得整个阴影部分的面积。这显然是很费时费力的。但认真观察一下就会发现,图 4.20左半左上部的空白部分,与右半左上部的阴影部分大小一样,只需将右半左上部的阴影部分,平移到左半左上部的空白部分,所 有的阴影部分便构成一个正方形了(如图 4.21)。所以,阴影部分的面积很快就可求得为5×5=25。 又如,一块长30米,宽24米的草地,中间有两条宽2米的走道,把草地分为四块,求草地的面积(如图 4.22)。 这只要把丙向甲平移靠拢,把丁向乙平移靠拢,题目也就很快能解答出来了。(具体解法略) 3.旋转变换 【旋转成定角】例如下面的题目: “在图 4.23中,半径为8厘米的圆的内外各有一个正方形,圆内正方形顶点都在圆周上,圆外正方形四条边与圆 都只有一个接触点。问:“大正方形的面积比小正方形的面积大多少?”

立体几何新题型的解题技巧

立体几何新题型的解题技巧 立体几何新题型的解题技巧 【命题趋向】 在高考中立体几何命题有如下特点: 1.线面位置关系突出平行和垂直,将侧重于垂直关系. 2.多面体中线面关系论证,空间“角”与“距离”的计算常在解答题中综合出现. 3.多面体及简单多面体的概念、性质多在选择题,填空题出现. 4.有关三棱柱、四棱柱、三棱锥的问题,特别是与球有关的问题将是高考命题的热点. 此类题目分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题. 【考点透视】 (A)版.掌握两条直线所成的角和距离的概念,对于异面直线的距离,只要求会计算已给出公垂线时的距离.掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念.掌握二面角、二面角的平面角、两个平行平面间的距离的概念. (B)版. ①理解空间向量的概念,掌握空间向量的加法、减法和数乘. ②了解空间向量的基本定理,理解空间向量坐标的概念,掌握空间向量的坐标运算. ③掌握空间向量的数量积的定义及其性质,掌握用直角坐标计算空间向量数量积公式. ④理解直线的方向向量、平面的法向量,向量在平面内的射影等概念. ⑤了解多面体、凸多面体、正多面体、棱柱、棱锥、球的概念. ⑥掌握棱柱、棱锥、球的性质,掌握球的表面积、体积公式. ⑦会画直棱柱、正棱锥的直观图. 空间距离和角是高考考查的重点:特别是以两点间距离,点到平面的距离,两异面直线的距离,直线与平面的距离以及两异面直线所成的角,直线与平面所成的角,二面角等作为命题的重点内容,高考试题中常将上述内容综合在一起放在解答题中进行考查,分为多个小问题,也可能作为客观题进行单独考查.考查空间距离和角的试题一般作为整套试卷的中档题,但也可能在最后一问中设置有难度的问题. 不论是求空间距离还是空间角,都要按照“一作,二证,三算”的步骤来完成,即寓证明于运算之中,正是本专题的一大特色. 求解空间距离和角的方法有两种:一是利用传统的几何方法,二是利用空间向量。

高中空间立体几何典型例题

高中空间立体几何典型 例题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

1 如图所示,正方体ABCD —A 1B 1C 1D 1中,侧面对角线AB 1,BC 1上分别有两点E ,F ,且B 1E=C 1F. 求证:EF ∥平面ABCD. 证明 方法一 分别过E ,F 作EM ⊥AB 于M ,FN ⊥BC 于N ,连接MN. ∵BB 1⊥平面ABCD , ∴BB 1⊥AB ,BB 1⊥BC , ∴EM ∥BB 1,FN ∥BB 1, ∴EM ∥FN. 又∵B 1E=C 1F ,∴EM=FN , 故四边形MNFE 是平行四边形,∴EF ∥MN. 又MN ?平面ABCD ,EF ?平面ABCD , 所以EF ∥平面ABCD. 方法二 过E 作EG ∥AB 交BB 1于G , 连接GF ,则B B G B A B E B 1111=, ∵B 1E=C 1F ,B 1A=C 1B , ∴B B G B B C E C 1111=,∴FG ∥B 1C 1∥BC , 又EG ∩FG =G ,AB ∩BC =B , ∴平面EFG ∥平面ABCD ,而EF ?平面EFG , ∴EF ∥平面ABCD . 2 已知P 为△ABC 所在平面外一点,G 1、G 2、G 3分别是△PAB 、△PCB 、△PAC 的重心.

(1)求证:平面G 1G 2G 3∥平面ABC ; (2)求S △3 21G G G ∶S △ABC . (1)证明 如图所示,连接PG 1、PG 2、PG 3并延长分别与边AB 、BC 、AC 交于点D 、E 、F , 连接DE 、EF 、FD ,则有PG 1∶PD =2∶3, PG 2∶PE =2∶3,∴G 1G 2∥DE . 又G 1G 2不在平面ABC 内, ∴G 1G 2∥平面ABC .同理G 2G 3∥平面ABC . 又因为G 1G 2∩G 2G 3=G 2, ∴平面G 1G 2G 3∥平面ABC . (2)解 由(1)知PE PG PD PG 21 =32,∴G 1G 2=32DE . 又DE =21AC ,∴G 1G 2=31 AC . 同理G 2G 3=31AB ,G 1G 3=3 1BC . ∴△G 1G 2G 3∽△CAB ,其相似比为1∶3, ∴S △3 21G G G ∶S △ABC =1∶9. 3如图所示,已知S 是正三角形ABC 所在平面外的一点,且SA =SB =SC ,SG 为△SAB 上的高, D 、 E 、 F 分别是AC 、BC 、SC 的中点,试判断S G 与平面DEF 的位置关系,并给予证明. 解 SG ∥平面DEF ,证明如下: 方法一 连接CG 交DE 于点H , 如图所示.

数学几何解题技巧

初中数学教学中几何解题思路分析 【摘要】平面几何在初中数学中一直占据着很重要的位置。而学生在对几何知识进行学习和掌握的过程中,最重要的一个部分就是能够应用到实践中进行解题。正像美国一位著名的数学家曾经所说过的那样:“数学这门学科,真正的组成部分就是问题和解题,在问题与解题中,解题就是数学的心脏所在。”学生在学习的过程中是否会解题,能否对一定的解题技巧与方法进行掌握对学生学习效果有直接的影响。对教师来说,学生对基本的解题能力进行掌握,也是“双基”教学的一个方面。在数学中对基本的解题方法和技巧进行注意,对学生的学习能力的提高无疑有着重要的促进作用,与此同时还能够对学生良好学习习惯的形成有推动作用。 【关键词】初中数学;教学;几何;解题思路; 对初中的几何教学来说,初中几何中的重要部分是解题技巧与规律教学。尤其是在初中几何的后期与复习阶段,通过对学生的几何解题技巧的培养,能够使学生对知识有系统性的掌握,同时能够培养其对知识进行灵活应用的能力。当然,处了解题技巧与规律的培养,还应该注意对学生思维能力的培养。只有思维能力得到提高,才能更好地掌握解题技巧与规律。下面我们通过具体的实例进行详细分析初中数学几何题的解题思路, 一、初中数学几何的解题技巧 1、对常见的题型与解题方法进行归纳总结 初中的几何题中,其实常见的题型并不多,所以这对经常见的几何题型与解题方法进行归纳与总结,是初中几何解题一个和实用的解题技巧。初中几何,证明题是最常见的,而证明题中,又以线段或角的一些关系的证明最为常见。对线段的关系的证明通常包括相等及其和差关系等的证明。在这些中,相等关系的证明是学生应该进行的基本掌握,对线段相等关系的证明,在思路与方法上常用的包括“三角形全等”、“比例线段”以及“等角对等边”和对中间量的过渡进行选取等思路。在这些方法中,“三角形全等”是最常用的,也是应该掌握的基本解题方法。对线段不等关系则一般常用“线段公理”,而对线段的和差及其它(如倍、分)关系,在解题过程中要注意使用截长、补短等技巧。对常见技巧进行掌握,能有效提高学生的解题效率。 2、注意对辅助线进行添加和使用 在对初中几何进行解题的过程中,除了要对常用的解题方法与规律进行掌握外,还要对辅助线的添加与使用加以关注。在初中几何题中,当直接解题出现障碍使,添加辅助线是常见的解题技巧,往往会让人产生一种“柳暗花明又一村”的感觉。对常见技巧进行掌握,能有效提高学生的解题效率。下面我们通过一道例题详细进行分析几何证明题的解题方法及技巧: 如下图所示,已知:在ABC ?中,?=∠90C ,BC AC =,DB AD =,BF AE =,求证:DF DE =,

立体几何解题方法总结

1.判定两个平面平行的方法: (1)根据定义——证明两平面没有公共点; (2)判定定理——证明一个平面内的两条相交直线都平行于另一个平面; (3)证明两平面同垂直于一条直线。 2.两个平面平行的主要性质: ⑴由定义知:“两平行平面没有公共点”。 ⑵由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。 ⑶两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交,那么它们的交线平行”。 ⑷一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 ⑸夹在两个平行平面间的平行线段相等。 ⑹经过平面外一点只有一个平面和已知平面平行。 3.空间的角和距离是空间图形中最基本的数量关系,空间的角主要研究射影以及与射影有关的定理、空间两直线所成的角、直线和平面所成的角、以及二面角和二面角的平面角等.解这类问题的基本思路是把空间问题转化为平面问题去解决. 空间的角,是对由点、直线、平面所组成的空间图形中各种元素间的位置关系进行定量 分析的一个重要概念,由它们的定义,可得其取值范围,如两异面直线所成的角θ∈(0,2 π ], 直线与平面所成的角θ∈0,2π?? ????,二面角的大小,可用它们的平面角来度量,其平面角θ∈[0, π ]. 对于空间角的计算,总是通过一定的手段将其转化为一个平面内的角,并把它置于一个平面图形,而且是一个三角形的内角来解决,而这种转化就是利用直线与平面的平行与垂直来实现的, 如求异面直线所成的角常用平移法(转化为相交直线)与向量法;求直线与平面所成的角常利用射影转化为相交直线所成的角;而求二面角-l -的平面角(记作)通常有以 下几种方法: (1) 根据定义; (2) 过棱l 上任一点O 作棱l 的垂面 ,设 ∩ =OA , ∩ =OB ,则∠AOB = ; (3) 利用三垂线定理或逆定理,过一个半平面内一点A ,分别作另一个平面的垂线 AB (垂足为B ),或棱l 的垂线AC (垂足为C ),连结AC ,则∠ACB = 或∠ACB =-; (4) 设A 为平面外任一点,AB ⊥ ,垂足为B ,AC ⊥ ,垂足为C ,则∠BAC = 或 ∠BAC =-; (5) 利用面积射影定理,设平面 内的平面图形F 的面积为S ,F 在平面 内的射影图形

立体几何空间直角坐标系解法典型例题

立体几何坐标解法典型例题 1、如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点. (Ⅰ)求证:1AB ⊥平面1A BD ; (Ⅱ)求二面角1A A D B --的大小; (Ⅲ)求点C 到平面1A BD 的距离. 2、如图,在Rt AOB △中, π6 OAB ∠=,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C --的直二面角.D 是AB 的中点. (1)求证:平面COD ⊥平面AOB ; (2)求异面直线AO 与CD 所成角的大小. A B C D

3.(2010·上海松江区模拟)设在直三棱柱ABC -A 1B 1C 1中,AB =AC =AA 1=2,∠BAC =90°,E ,F 依次为C 1C ,BC 的中点. (1)求异面直线A 1B 、EF 所成角θ的正弦值; (2)求点B 1到平面AEF 的距离. 4.四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD .已知45ABC =o ∠, 2AB = ,BC = SA SB == (Ⅰ)证明SA BC ⊥; (Ⅱ)求直线SD 与平面SAB 所成角的大小. D B C A S

5.如图,点P 是单位正方体ABCD -A 1B 1C 1D 1中异于A 的一个顶点,则AP →·AB → 的值为( ) A .0 B .1 C .0或1 D .任意实数 5.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 、N 分别为A 1B 1和BB 1的中点,那么直线AM 与CN 所成角的余弦值等于( ) A.32 B.1010 C.35 D.25 <二>选择题辨析 [注]: ①两条异面直线在同一平面内射影一定是相交的两条直线.(×) ②直线在平面外,指的位置关系:平行或相交 ③若直线a 、b 异面,a 平行于平面,b 与的关系是相交、平行、在平面内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点. ⑤在平面内射影是直线的图形一定是直线.(×) ⑥在同一平面内的射影长相等,则斜线长相等.(×) ⑦是夹在两平行平面间的线段,若,则的位置关系为相交或平行或异面. [注]: ①直线与平面内一条直线平行,则∥. (×) ②直线与平面内一条直线相交,则与平面相交. (×) ③若直线与平面平行,则内必存在无数条直线与平行. (√) ④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×) ⑤平行于同一直线的两个平面平行.(×) ⑥平行于同一个平面的两直线平行.(×) ⑦直线与平面、所成角相等,则∥.(×) [注]: ①垂直于同一平面....的两个平面平行.(×) ②垂直于同一直线的两个平面平行.(√) ③垂直于同一平面的两条直线平行.(√) αααb a ,b a =b a ,a αa αa αa αa ααa l αβαβ

高中数学立体几何解题技巧

高中数学立体几何解题技巧 高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。 知识整合 1、有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。 2、判定两个平面平行的方法: (1)根据定义--证明两平面没有公共点; (2)判定定理--证明一个平面内的两条相交直线都平行于另一

个平面; (3)证明两平面同垂直于一条直线。 3、两个平面平行的主要性质: (1)由定义知:“两平行平面没有公共点”。 (2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。 (3)两个平面平行的性质定理:”如果两个平行平面同时和第三个平面相交,那么它们的交线平行“。 (4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 (5)夹在两个平行平面间的平行线段相等。 (6)经过平面外一点只有一个平面和已知平面平行。 以上性质(2)、(3)、(5)、(6)在课文中虽未直接列为”性质定理“,但在解题过程中均可直接作为性质定理引用。 解答题分步骤解决可多得分 01、合理安排,保持清醒。 数学考试在下午,建议中午休息半小时左右,睡不着闭闭眼睛也好,尽量放松。然后带齐用具,提前半小时到考场。 02、通览全卷,摸透题情。 刚拿到试卷,一般较紧张,不宜匆忙作答,应从头到尾通览全卷,尽量从卷面上获取更多的信息,摸透题情。这样能提醒自己先易后难,也可防止漏做题。

初二数学几何解题技巧

初二数学几何解题技巧 【知识梳理】 1、几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。 2、掌握分析、证明几何问题的常用方法: (1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决; (2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止; (3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。 3、掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。

【专题一】证明线段相等或角相等 两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。 【专题二】证明直线平行或垂直 在两条直线的位置关系中,平行与垂直是两种特殊的位置。证两直线平行,可用同位角、内错角或同旁内角的关系来证,也可通过边对应成比例、三角形中位线定理证明。证两条直线垂直,可转化为证一个角等于90°,或利用两个锐角互余,或等腰三角形“三线合一”来证。 【专题三】证明线段和的问题 (一)在较长线段上截取一线段等一较短线段,证明其余部分等于另一较短线段。(截长法) (二)延长一较短线段,使延长部分等于另一较短线段,则两较短线段成为一条线段,证明该线段等于较长线段。(补短法)

高考中常见的立体几何题型和解题方法

高考中常见的立体几何题型和解题方法 黔江中学高三数学教师:付 超 高考立体几何试题一般共有2——3道(选择、填空题1——2道, 解答题1道), 共计总分18——23分左右,考查的知识点在20个以内. 选择填空题考核立几中的 逻辑推理型问题, 而解答题着重考查立几中的计算型问题, 当然, 二者均应以正 确的空间想象为前提. 随着新的课程改革的进一步实施,立体几何考题正朝着“多 一点思考,少一点计算”的方向发展.从历年的考题变化看, 以简单几何体为载体 的线面位置关系的论证,角与距离的探求是常考常新的热门话题. 一、知识整合 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过 程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与 距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行 与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能, 通过对问题的分析与概括,掌握立体几何中解决问题的规律——充分利用线线平 行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能 力和空间想象能力. 2. 判定两个平面平行的方法: (1)根据定义——证明两平面没有公共点; (2)判定定理——证明一个平面内的两条相交直线都平行于另一个平面; (3)证明两平面同垂直于一条直线。 3.两个平面平行的主要性质: ⑴由定义知:“两平行平面没有公共点”。 ⑵由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平 面。 ⑶两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交, 那 么它们的交线平行”。 ⑷一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 ⑸夹在两个平行平面间的平行线段相等。 ⑹经过平面外一点只有一个平面和已知平面平行。 以上性质⑵、⑷、⑸、⑹在课文中虽未直接列为“性质定理”,但在解题过 程中均可直接作为性质定理引用。 4.空间角和距离是空间图形中最基本的数量关系,空间角主要研究射影以 及与射影有关的定理、空间两直线所成的角、直线和平面所成的角、以及二面角 和二面角的平面角等.解这类问题的基本思路是把空间问题转化为平面问题去解 决. 空间角,是对由点、直线、平面所组成的空间图形中各种元素间的位置关系 进行定量分析的一个重要概念,由它们的定义,可得其取值范围,如两异面直线 所成的角θ∈(0,2π],直线与平面所成的角θ∈0,2π?????? ,二面角的大小,可用它们的平面角来度量,其平面角θ∈[0,π].对于空间角的计算,总是通过一定 的手段将其转化为一个平面内的角,并把 它置于一个平面图形,而且是一个三

高中数学立体几何知识点与解题方法技巧

立体几何知识点 & 例题讲解 高考时如果图形比较规则且坐标也比较好计算时就用坐标法(向量法)解决,但平时传统方法和向量法都要熟练。并且要多用传统方法,这样才能把自己的空间想象能力培养上去。 一、知识点 <一>常用结论 1.证明直线与直线的平行的思考途径:(1)转化为判定共面二直线无交点;(2)转化为二直线同与第三条直线 平行;(3)转化为线面平行;(4)转化为线面垂直;(5)转化为面面平行. 2.证明直线与平面的平行的思考途径:(1)转化为直线与平面无公共点;(2)转化为线线平行;(3)转化为面 面平行. 3.证明平面与平面平行的思考途径:(1)转化为判定二平面无公共点;(2)转化为线面平行;(3)转化为线面 垂直. 4.证明直线与直线的垂直的思考途径:(1)转化为相交垂直;(2)转化为线面垂直;(3)转化为线与另一线的 射影垂直;(4)转化为线与形成射影的斜线垂直. 5.证明直线与平面垂直的思考途径:(1)转化为该直线与平面内任一直线垂直;(2)转化为该直线与平面内相交二直线垂直;(3)转化为该直线与平面的一条垂线平行;(4)转化为该直线垂直于另一个平行平面;(5)转化为该直线与两个垂直平面的交线垂直. 6.证明平面与平面的垂直的思考途径:(1)转化为判断二面角是直二面角;(2)转化为线面垂直. 7.夹角公式 :设a =123(,,)a a a ,b =123(,,)b b b ,则cos 〈a ,b 〉 . 8.异面直线所成角:cos |cos ,|a b θ== 21 |||||| a b a b x ?= ?+ (其中θ(090θ<≤)为异面直线a b , 所成角,,a b 分别表示异面直线a b ,的方向向量) 9.直线AB 与平面所成角:sin |||| AB m arc AB m β?=(m 为平面α的法向量). 10、空间四点A 、B 、C 、P 共面z y x ++=?,且 x + y + z = 1 11.二面角l αβ--的平面角 cos ||||m n arc m n θ?=或cos |||| m n arc m n π?-(m ,n 为平面α,β的法向量). 12.三余弦定理:设AC 是α内的任一条直线,且BC ⊥AC ,垂足为C ,又设AO 与AB 所成的角为1θ,AB 与AC 所 成的角为2θ,AO 与AC 所成的角为θ.则12cos cos cos θθθ=. 13.空间两点间的距离公式 若A 111(,,)x y z ,B 222(,,)x y z ,则,A B d =||AB AB AB = ?=14.异面直线间的距离: || || CD n d n ?= (12,l l 是两异面直线,其公垂向量为n ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离). 15.点B 到平面α的距离:|| || AB n d n ?= (n 为平面α的法向量,AB 是经过面α的一条斜线,A α∈). 16.三个向量和的平方公式:2 2 2 2()222a b c a b c a b b c c a ++=+++?+?+? 222 2||||cos ,2||||cos ,2||||cos ,a b c a b a b b c b c c a c a =+++?+?+? 17. 长度为l 的线段在三条两两互相垂直的直线上的射影长分别为123l l l 、、,夹角分别为123θθθ、、,则有 2222123l l l l =++222123cos cos cos 1θθθ?++=222123sin sin sin 2θθθ?++=. (立体几何中长方体对角线长的公式是其特例).

初中数学代数几何解题技巧

如何用好题目中的条件暗示 有一类题目,我们在解前面几小题时,其解题思路和方法往往对解后面问题起着很好的暗示作用,现以一次函数中出现的两道题目为例予以说明,供同学们在学习过程中参考。 【例1】直线与x轴、y轴分别交于B、A两点,如图1。 图1 (1)求B、A两点的坐标; (2)把△AOB以直线AB为轴翻折,点O落在平面上的点C处,以BC为一边作等边△BCD。求D点的坐标。 解析:(1)容易求得,A(0,1)。 (2)如图2, 图2 ∵,A(0,1), ∴OB=,OA=1。 ∴在Rt△AOB中,容易求得∠OBA=30° ∵把△AOB以直线AB为轴翻折, ∴∠OBC=2∠OBA=60°,BO=BC。 ∴△OBC是等边三角形 以BC为一边作等边△BCD,则D的落点有两种情形,可分别求得D的坐标为(0,0),。 反思:在求得第(1)小题中B、A两点的坐标分别为B(,0),A(0,1),实质上暗示着Rt△AOB中,OA=1,OB=,即暗示着∠OBA=30°,为解第(2)小题做了很好的铺垫。

【例2】直线与x轴、y轴分别交于A、B,以线段AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90°,且点P(1,a)为坐标系中的一个动点,如图3。 图3 (1)求三解形ABC的面积。 (2)证明不论a取任何实数,三角形BOP的面积是一个常数; (3)要使得△ABC和△ABP的面积相等,求实数a的值。 解析:(1)容易求得:A(,0),B(0,1), ∴。 (2)如图4,连接OP、BP,过点P作PD垂直于y轴,垂足为D,则三角形BOP的面积为,故不论a取任何实数,三角形BOP的面积是一个常数。 图4 (3)如图4,①当点P在第四象限时由第(2)小题中的结果:,和第(3)小题的条件可得: ∴, ∵,

立体几何及解题技巧以及空间距离专题复习

立体几何及解题技巧以及空间距离专题复习

知识点整理 (一)平行与垂直的判断 ⑴平行:设,的法向量分别为U,V ,贝U 直线l,m 的方向向量分 别为a,b ,平面 线线平行i // m a 〃 b a 诂;线面平行i // a u a u 0 ; 面面平行// u // v u J. ⑵ 垂直:设直线l ,m 的方向向量分别为a,b ,平面,的法向量 分别为u,v ,则 线线垂直I 丄m a 丄b ab 0 ;线面垂直I 丄 a // u a ku 「; 面面垂直丄 u 丄v u v 0. (二)夹角与距离的计算 注意:以下公式可以可以在非正交 基底下用,也可以在正交基底下用坐标运算 (1)夹角:设直线l ,m 的方向向量分别为,平面,的法向量 分别为u ,v ,则 ①两直线I ,m 所成的角为 (2)空间距离 ②直线I 与平面 ③二面角一I 的大小为(0< < ),cos cos (0< =2),sin 所成的角为

点、直线、平面间的距离有种.点到平面的距离是重点,两异面直线间的距离是难 ①点到平面的距离h:(定理)如图,设n是是平 面的法向量,AP是平面的一条斜线,其中A 则点P到平面的距离 uuu uu ②h 1 Auur n |(实质是AP在法向量n 方向上的投影的绝对值) |n| uuu ur ③异面直线l i,l2间的距离d: d AB JC』1( 11,12的公垂向量为 |n| ' n, C、D分别是h,l2上任一点). 题型一:非正交基底下的夹角、的计算 例1.如图,已知二面角-I - 点 A , B , A C I于点C, 且 AC=CD=DB=1. 求:(1) A、B两点间的距离; (2)求异面直线AB和CD勺所成的角(3) AB与CD勺距 离. 解:设AC a,CD b,DB c,则 |a| |b| |c| 1, a,b b,c 900, a,c 60°, 2 ? ? 2 ?? 2 ■■ 2 |AB | a b c . a b c 2a b 2b c 2c a 2 A、B两点间的距离为2. (2)异面直线AB和CD的所成的角为60°

初中数学几何证明题解题方法--

初中数学几何证明题解题方法--

————————————————————————————————作者:————————————————————————————————日期:

浅谈初中数学几何证明题解题方法 内容摘要:几何证明题的一般结构由已知条件和求证目标组成。做几何证明题的一般步骤:审题,寻找证明的思路,书写证明过程 关键词:几何证明 条件 结论 .执因索果 执果索因 辅助线 初中学生正处于自觉形象思维向逻辑思维的过度阶段,几何证明,是学生逻辑思维的起步。这种思维方式学生刚接触,会遇到一些困难。许多学生在几何证明这里“跌倒了”,丧失了信心,以至于几何越学越糟。为此,我根据自己几年的数学教学实践,就初中数学中几何证明题的一般结构,解题思路进行初步探讨。 学好几何证明,起步要稳,要求学生在学习几何时要扎扎实实,一步一个脚印,在掌握好几何基础知识的同时,还要培养学生的逻辑思维能力。 一、几何证明题的一般结构 初中几何证明题的一般结构由已知条件和求证目标两部分(即前提和结论)组成。已知条件是几何证明的前提,指题目中用文字和符号直接给出的明确条件,也包括所给图形中暗含的条件。求证指题目要求的经过推理最终得出的结论。已知条件是题目既定成立的、毋庸置疑而且必然正确的。求证是几何证明题的最终目标,就是根据题目给出的已知条件,利用数学中的公理、定理、性质,用合理的推理形式推导出的最后结果,而且只能出现在证明过程的最后。 例如:如图,在△ABC 和△DCB 中,AB = DC ,AC = DB ,AC 与DB 交于点M . 求证:△ABC ≌△DCB ; 已知条件:文字给出的有:△ABC 和△DCB ,AB = DC ,AC = DB ,AC 与DB 交于点M 图形给出的有:BC=CB,∠BMA 与∠CMD 是对顶角等等 求证目标是:△ABC ≌△DCB 注意,已知条件除了上面列出的,就没有其它的了,不可随意出现AM=DM ,BN=CN 等等 二、做几何证明题的一般步骤 (一)、审题 审题就是读题,这一步是解决几何证明题的关键,非常重要。许多学生读几何证明题时讲快,常常忽略了题目中蕴含的重要信息。和读其它类型的题有所不同,读几何证明题要求 B A M N

高中数学《必修》立体几何知识点及解题思路

第一章 空间几何体 一、常见几何体的定义 能说出棱柱、棱锥、棱台、圆柱、圆锥、圆台、球的定义和性质。 二、常见几何体的面积、体积公式 1.圆柱:侧面积rl cl S π2==侧 (其中c 是底面周长,r 是底面半径,l 是圆柱的母线,也是高) 表面积)(2222l r r r rl S S S +=?+=+=πππ底侧表 h r sh V 2π==柱体 2.圆锥:侧面积rl cl S π== 2 1侧 (其中c 是底面周长,r 是底面半径,l 是圆锥的母线) 表面积)(2l r r r rl S S S +=+=+=πππ底侧表 h r sh V 23 131π==椎体 3.圆台:侧面积l R r l R r S )(2 )22(+=+=πππ侧 (其中r 、R 是上下底面半径,l 是圆台的母线) 表面积)()(2222R r Rl rl R r l R r S S S +++=+++=+=ππππ底侧表 h S S S S V )(3 1''++=台体 (其中'S 、S 是上下底面面积,h 是圆台的高) 4.球:表面积24R S π=表,体积33 4R V π=球 三、直观图:会用斜二侧画法画出平面图形的直观图。 画法步骤:①在原图中画一个直角坐标系,在新图中画一个夹角为45°的坐标系; ②与x 轴平行的线段仍然与x 轴平行,长度不变; 与y 轴平行的线段仍然与y 轴平行,但是长度减半。 四、三视图 1.投影:光线照射物体留在屏幕上的影子。 ①中心投影:光由一点向外散射形成的投影。 ②平行投影:在平行光线照射下形成的投影。 ③正投影:光线正对着投影面时的平行投影。 2.三视图:正视图:光线从前向后的正投影; 侧视图:光线从左向右的正投影; 俯视图:光线从上向下的正投影。 三视图的性质: 侧视图和正视图的高相同;俯视图和正视图的长相同;侧视图和俯视图的宽相同。 第二章:点、直线、平面之间的位置关系 一、立体几何中的公理与基本关系 1.平面公理: 公理1:如果一条直线上有两个点在一个平面内,那么这条直线在此平面内。 公理2:过不在一条直线上的三个点,有且只有一个平面。 推论1:一条直线和直线外一点确定一个平面。 推论2:两条相交直线确定一个平面。 推论3:两条平行直线确定一个平面。 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的平面。 公理4:平行于同一条直线的两条直线互相平行。【本公理也称为平行直线的传递性】

高中数学空间向量与立体几何典型例题

空间向量与立体几何典型例题 一、选择题: 1.(2008全国Ⅰ卷理)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( C ) A . 13 B C D .23 1.解:C .由题意知三棱锥1A ABC -为正四面体,设棱长为a ,则1AB = ,棱柱的高 1 3AO a ===(即点1B 到底面ABC 的距离),故1AB 与底面ABC 所成角的正弦值为113 AO AB =. 另解:设1,,AB AC AA u u u r u u u r u u u r 为空间向量的一组基底,1,,AB AC AA u u u r u u u r u u u r 的两两间的夹角为0 60 长度均为a ,平面ABC 的法向量为111133 OA AA AB AC =--u u u r u u u r u u u r u u u r ,11AB AB AA =+u u u r u u u r u u u r 211112,,33 OA AB a OA AB ?===u u u r u u u r u u u r u u u r 则1AB 与底面ABC 所成角的正弦值为11 1 13OA AB AO AB ?=u u u u r u u u r u u u r u u u r . 二、填空题: 1.(2008全国Ⅰ卷理)等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角 C AB D -- M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 6 1 . 1.答案: 1 6 .设2AB =,作CO ABDE ⊥面, OH AB ⊥,则CH AB ⊥,CHO ∠为二面角C AB D -- cos 1CH OH CH CHO ==?∠=,结合等边三角形ABC 与正方形ABDE 可知此四棱锥为正四棱锥,则AN EM ==11(),22AN AC AB EM AC AE =+=-u u u r u u u r u u u r u u u u r u u u r u u u r , 11()()22AN EM AB AC AC AE ?=+?-=u u u r u u u u r u u u r u u u r u u u r 12 故EM AN ,所成角的余弦值1 6 AN EM AN EM ?=u u u r u u u u r u u u r u u u u r 另解:以O 为坐标原点,建立如图所示的直角坐标系, 则点(1,1,0),(1,1,0),(1,1,0),A B E C ----,

高中立体几何中二面角经典求法

高中立体几何中二面角求法 摘要:在立体几何中,求二面角的大小是历届高考的热点,几乎每年必考,而对于求二面角方面的问题,同学们往往很难正确地找到作平面角的方法,本文对求二面角的方法作了一个总结,希望对学生有帮助。 (一)、二面角定义的回顾: 从一条直线出发的两个半平面所组成的图形就叫做二面角。二面角的大小是用二面角的平面角来衡量的。而二面角的平面角是指在二面角βα--l 的棱上任取一点O ,分别在两个半平面内作射线l BO l AO ⊥⊥,,则AOB ∠为二面角βα--l 的平面角。 α β (二)、二面角的通常求法 1、由定义作出二面角的平面角; * 2、利用三垂线定理(逆定理)作出二面角的平面角; 3、作二面角棱的垂面,则垂面与二面角两个面的交线所成的角就是二面角的平面角。 4、空间坐标法求二面角的大小 5、平移或延长(展)线(面)法 6、射影公式S 射影=S 斜面cos θ 7、化归为分别垂直于二面角的两个面的两条直线所成的角 1、利用定义作出二面角的平面角,并设法求出其大小。 例1、 如图,已知二面角α-а-β等于120°,PA ⊥α,A ∈α,PB ⊥β,B ∈β. 求∠APB 的大小. 解: 设平面∩PAB α=OA,平面PAB ∩β=OB 。 ∵PA ⊥α, аα ∴PA ⊥а 同理PB ⊥а ∴а⊥平面PAB 又∵OA 平面PAB ∴а⊥OA 同理а⊥OB. ∴∠AOB 是二面角α-а-β的平面角. 在四边形PAOB 中, ∠AOB=120°,. O A B ) A B l P . B A

∠PAO=∠POB=90°, 所以∠APB=60° 2、 ( 3、 三垂线定理(逆定理)法 由二面角的一个面上的斜线(或它的射影)与二面角的棱垂直,推得它位于二面角的另一的面上的射影(或斜线)也与二面角的棱垂直,从而确定二面角的平面角。 例2:如图,ABCD-A 1B 1C 1D 1是长方体,侧棱AA 1长为1,底面为正方体且边长为2,E 是棱BC 的中点,求面C 1DE 与面CDE 所成二面角的正切值. 解:在长方体ABCD —A 1B 1C 1D 1中 由三垂线定理可得: CD CE=1, DE= 5 3、找(作)公垂面法 由二面角的平面角的定义可知两个面的公垂面与棱垂直,因此公垂面与两个面的交线所成的角,就是二面角的平面角。 例5、如图,已知PA 与正方形ABCD 所在平面垂直,且AB =PA ,求平面PAB 与平面PCD 所成的二面角的大小。 \ 解: ∵PA ⊥平面ABCD ,∴PA ⊥CD .P 又CD ⊥AD ,故CD ⊥平面PAD . A D 而CD 平面PCD , B C 所以 平面PCD ⊥平面PAD . A B C D A 1 B 1 C 1 ( E O CO DE O C C ,连结,作过点⊥11DE CO ⊥的平面角 为二面角C DE C OC C --∠∴11的正方形 是边长为又2ABCD CO DE CE CD S CDE Rt CDE ?=?=??2 1 21中,在1 1=CC 又5 52tan 1= ∠∴OC C 5 52tan arg 1=∠∴OC C 5 5 2= ∴CO

相关文档
最新文档