各种植物代谢途径介绍

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等植物呼吸代谢的特点,一是复杂性,呼吸作用的整个过程是一系列复杂的酶促反应;二是物质代谢和能量代谢的中心,它的中间产物又是合成多种重要有机物的原料,起到物质代谢的枢纽作用;三是呼吸代谢的多样性,表现在呼吸途径的多样性。

如植物呼吸代谢并不只有一种途径,不同的植物、同一植物的不同器官或组织在不同的生育时期、不同环境条件下,呼吸底物的氧化降解可以走不同的途径。

此外,表现在电子传递系统的多样性和末端氧化酶的多样性。

1糖酵解
在无氧条件下酶将葡萄糖降解成丙酮酸,并释放能量的过程,称为糖酵解(glycolysis)。

为纪念在研究糖酵解途径方面有突出贡献的三位德国生物化学家Embden,Meyerhof和Parnas,又把糖酵解途径称为Embden-Meyerhof-Parnas途径(EMPPathway)。

糖酵解普遍存在于动物、植物、微生物的所有细胞中,是在细胞质中进行的。

虽然糖酵解的部分反应可以在质体或叶绿体中进行,但不能完成全过程。

糖酵解过程中糖分子的氧化分解是没有氧分子的参与下进行的,其氧化作用所需的的氧是来自水分子和被氧化的糖分子,故又称为分子内氧化。

以葡萄糖为例,糖酵解的反应式如下:
C6H12O6+2NAD++2ADP+2Pi→2C3H4O3+2NADH+2H++2ATP+2H2O
糖酵解具有多种功能。

(1)糖酵解的一些中间产物(如甘油醛-3-磷酸等)是合成其他有机物质的重要原料,其终产物丙酮酸在生化上十分活跃,可通过各种代谢途径,产生不同物质。

(2)糖酵解中生成的A TP和NADH,可使生物体获得生命活动所需要的部分能量和还原力。

(3)糖酵解普遍存在生物体中,是有氧呼吸和无氧呼吸经历的共同途径。

(4)糖酵解有三个不可逆反应,但其它反应均是可逆的,它为糖异生作用提供基本途径。

糖酵解的调控。

糖酵解过程中有3个不可逆反应,分别由已糖激酶,磷酸果糖激酶,丙酮酸激酶所催化.
磷酸果糖激酶(PFK):ADP和AMP为它的别构激活剂,ATP为抑制剂。

该酶的活性中心对ATP有低的Km,别构中心对A TP有高的Km。

当ATP浓度高时,与别构中心结合引起构象变化而抑制酶的活性。

受柠檬酸、NADH、脂肪酸的别构抑制.EMP过快时TCA途径生成的柠檬酸过多抑制PFK活性,使EMP减缓.此外,还受到F-2,6-BP的调节及氢离子的抑制。

丙酮酸激酶:受高浓度ATP,Ala,乙酰辅酶A等的反馈抑制。

已糖激酶:G6P为其别构抑制剂。

3-磷酸甘油醛脱氢酶:被NAD+激活.过快的EMP使NAD+浓度降低,脱氢作用减速,限制EMP。

2无氧呼吸
生活细胞在无氧条件下进行戊糖磷酸途径、酒精发酵和乳酸发酵。

糖酵解实际上是丙酮酸的无氧降解,反应在细胞质中进行。

高等植物无氧呼吸,包括了从己糖经糖酵解形成丙酮酸,随后进一步产生乙醇或乳酸的全过程。

植物在无氧条件下通常是发生酒精发酵(alcohol fermentation)。

在无氧条件下,通过酒精发酵或乳酸发酵,实现了NAD+的再生,这就使糖酵解得以继续进行。

无氧呼吸过程中葡萄糖分子的大部分能量仍保存在丙酮酸、乳酸或乙醇分子中。

可见,发酵作用的能量利用效率是很低的,有机物质耗损大,而且发酵产物酒精和乳酸的累积,对细胞原生质有毒害作用。

因此,长期进行无氧呼吸的植物会受到伤害,甚至会死亡。

参与发酵作用的酶都存在于细胞质中,所以发酵作用是在细胞质中进行的。

3三羧酸循环
糖酵解的产物丙酮酸,在有氧条件下进入线粒体,通过一个包括三羧酸和二羧酸循环而
逐步氧化分解,最终形成水和二氧化碳并释放能量的过程,称为三羧酸循环(tricarboxylic acid cycle,简称TCA或TCAC)。

这个循环首先由英国生物化学家HansKrebs发现的,所以又称Krebs环(Krebs cycle)。

三羧酸循环普遍存在于动物、植物、微生物细胞中,整个反应都在细胞线粒体衬质(matrix)中进行。

TCA循环的总反应式:
2CH3COCOOH+8NAD++2FAD+2ADT+2Pi+4H2O→6CO2+8NADH++8H++2FADH2
+2A TP
参与各反应的酶包括:丙酮酸脱氢酶复合体、柠檬酸合成酶、顺乌头酸酶、异柠檬酸脱氢酶、脱羧酶、α-酮戊二酸脱氢酶复合体、琥珀酸硫激酶、琥珀酸脱氢酶、延胡索酸酶、苹果酸脱氢酶。

TCA是多步可逆,但柠檬酸的合成,α-酮戊二酸脱氢脱羧上不可逆的,故整个循环是单方向的。

TCA循环可以通过产物调节和底物调节,调节的关键因素是:[NADH]/[NAD]、[ATP]/[TDP]、OAA和乙酰CoA浓度等代谢物的浓度。

酶的调控主要在三个调控酶,包括:柠檬酸合成酶:关键限速酶,NAD+为别构激活剂,NADH和ATP为别构抑制剂。

OAA,乙酰CoA浓度高时可激活,琥珀酰CoA抑制此酶。

异柠檬酸脱氢酶:NAD+为别构激活剂,NADH和ATP为别构抑制剂。

ADP激活,琥珀酰CoA抑制。

α-酮戊二酸脱氢酶:NAD+为别构激活剂,NADH和A TP为别构抑制剂,受琥珀酰CoA抑制。

TCA循环的生理意义:
(1)生命活动所需能量来源的主要途径。

丙酮酸经过TCA循环有5步氧化反应脱下5对氢,其中4对氢用于还原NAD+,形成NADH+H+,另一对从琥珀酸脱下的氢,是将膜可溶性的泛醌(UQ)还原为UQH2,它们再经过呼吸链将H+和电子传给分子氧结合成水,同时发生氧化磷酸化生成A TP。

由琥珀酰CoA形成琥珀酸时发生底物水平磷酸化直接生成1molATP。

这些ATP可为植物生命活动提供能量。

(2)体内各类有机物相互转变的中心环节。

TCA循环不仅是糖代谢的重要途径,也是脂肪、蛋白质和核酸代谢的最终氧化成CO2和H2O的重要途径。

(3)发酵产物重新氧化的途径。

如糖酵解中形成的磷酸烯醇式丙酮酸(PEP)可不转变为丙酮酸,而是在PEP羧化酶催化下形成草酰乙酸(OAA),草酰乙酸再被还原为苹果酸,苹果酸可经线粒体内膜上的二羧酸传递体与无机磷酸(Pi)进行交换进入线粒体衬质,可直接进入TCA循环;苹果酸在衬质中,也可在苹果酸酶的作用下脱羧形成丙酮酸,或在苹果酸脱氢酶的作用下生成草酰乙酸,再进入TCA循环,可起到补充草酰乙酸和丙酮酸的作用。

实验证实,苹果酸比丙酮酸更容易进入线粒体,并参加TCA循环。

(4)影响果实品质的形成。

4磷酸戊糖途径
Racker(1954)、Gunsalus(1955)等人发现植物体内有氧呼吸代谢除EMP-TCA途径以外,还存在戊糖磷酸途径(Pentose phosphate pathway,PPP),又称已糖磷酸途径(hexose monophosphate pathway,HMP)。

磷酸戊糖途径的总反应式为:
6G6P+12NADP+ +7H2O→6CO2 +12NADPH+12H++5G6P+Pi
这是个由葡萄糖-6-磷酸直接氧化的过程,经历了氧化阶段(不可逆)和非氧化阶段(可逆)。

氧化阶段将6碳的6-磷酸葡萄糖(G6P)转变成5碳的5-磷酸核酮糖Ru5P,释放1分子CO2,产生2分子NADPH。

非氧化阶段,也称为葡萄糖再生阶段,由Ru5P经一系列转化,形成6-磷酸果糖(F6P)和3-磷酸甘油醛(PGALd),再转变为6-磷酸果糖(F6P),最
后又转变为6-磷酸葡萄糖(G6P),重新循环。

意义:
(1)该途径是一个不需要通过糖酵解,而对葡萄糖进行直接氧化的过程,生成的NADPH也可能进入线粒体,通过氧化磷酸化作用生成A TP。

(2)产生大量的NADPH,为细胞的各种合成反应提供主要的还原力。

NADPH作为主要的供氢体,为脂肪酸、固醇、四氢叶酸等的合成,非光合细胞中硝酸盐、亚硝酸盐的还原以及氨的同化,由丙酮酸羧化还原成苹果酸等反应所必需。

(3)为合成代谢提供原料。

5-磷酸核糖是合成核苷酸的原料,也是NAD、FAD、NADP 等辅酶的组分,4-磷酸赤藓糖与PEP可合成莽草酸,这个途径可分成木质素、生长素和抗病性有关的物质。

植物在感病或受伤情况下该途径明显加强。

在逆境条件下,即不良环境中,植物体内的PPP途径加强,如受伤和感病的组织,干旱的植物PPP途径都加强,因为PPP途径中的中间产物E-4-P可以合成莽草酸,莽草酸继续合成氯原酸,多酚类的氯原酸可以起到抗病和抵抗不良环境的作用。

(4)PPP与光合作用的C3途径的大多数中间产物和酶相同,两者可联系起来并实现某些单糖间的互变。

如该途径中的一些中间产物丙糖、丁糖、戊糖、已糖及庚糖的磷酸酯也是光合作用卡尔文循环的中间产物;因而呼吸作用和光合作用可以联系起来,相互沟通。

PPP的调节主要通过6-磷酸葡萄糖脱氢酶调节:因为6-磷酸葡萄糖脱氢酶是PPP的限速酶。

[NADPH]/[NADP+]调节该酶活性,NADPH+H+竞争性抑制6-磷酸葡萄糖脱氢酶和6-磷酸葡萄糖酸脱氢酶。

5乙醛酸循环
油料种子萌发时,贮藏的脂肪会分解为脂肪酸和甘油。

脂肪酸经β-氧化分解为乙酰CoA,在乙醛酸体(glyoxysome)内生成琥珀酸、乙醛酸、苹果酸和草酰乙酸的酶促反应过程,称为乙醛酸循环(glyoxylic acid cycle, GAC)素有“脂肪呼吸”之称。

该途径中产生的琥珀酸可转化为糖。

在乙醛酸循环中,异柠檬酸裂解酶与苹果酸合成酶是GAC中两种特有的酶类。

该途径每循环一次向线粒体输送1mol琥珀酸,并参与TCA循环的部分反应转变为延胡索酸、苹果酸,然后进入细胞质,被氧化为草酰乙酸,在磷酸烯醇式丙酮酸羧激酶(PEP carboxykinase)催化下脱羧生成磷酸烯醇式丙酮酸(phosphenol pruvate,PEP),PEP再通过糖酵解的逆转而转变为葡萄糖6-磷酸并形成蔗糖。

油料种子在发芽过程中,细胞中出现许多乙醛酸体,贮藏脂肪首先水解为甘油和脂肪酸,然后脂肪酸在乙醛酸体氧化分解为乙酰CoA,并通过乙醛酸循环转化为糖类,淀粉种子萌发时不发生乙醛酸循环。

可见,乙醛酸循环是富含脂肪的油料种子所特有的一种呼吸代谢途径。

Mettler和Beevers等在研究蓖麻种子萌发时脂肪向糖类的转化过程中,对上述乙醛酸循环转化为蔗糖的途径做了重要修改。

一是在乙醛酸体内乙醛酸与乙酰CoA结合所形成的苹果酸不发生脱氢,而是直接进入细胞质后再脱氢、逆着糖酵解途径转变为蔗糖。

二是在乙醛酸体和线粒体之间有“苹果酸穿梭”发生。

三是在线粒体中苹果酸脱氢变成草酰乙酸,草酰乙酸与谷氨酸进行转氨基反应,生成天冬氨酸与α-酮戊二酸,并同时透膜进入乙醛酸体,再次发生转氨基反应,所产生的谷氨酸透膜返回线粒体,而草酰乙酸,可继续参与乙醛酸循环。

通过“苹果酸穿梭”和转氨基反应解决了乙醛酸体内NAD+的再生和不断补充OAA途径问题,这对保证GAC的正常运转是至关重要的。

6乙醇酸氧化途径
乙醇酸氧化途径(glycolic acid oxidate pathway,GAP)是水稻根系特有的糖降解途径。

它的主要特征是具有关键酶—乙醇酸氧化酶(glycolate oxidase)。

水稻一直生活在供氧不足
的淹水条件下,当根际土壤存在某些还原性物质时,水稻根中的部分乙酰CoA不进入TCA 循环,而是形成乙酸,然后,乙酸在乙醇酸氧化酶及多种酶类催化下依次形成乙醇酸、乙醛酸、草酸和甲酸及CO2,并且每次氧化均形成H2O2,而H2O2又在过氧化氢酶(catalase,CA T)催化下分解释放氧,可氧化水稻根系周围的各种还原性物质(如H2S、Fe2+等),从而抑制土壤中还原性物质对水稻根的毒害,以保证根系旺盛的生理机能,使水稻能在还原条件下的水田中正常生长发育。

7植物呼吸代谢途径具有多样性
这是植物在长期进化过程中对多变环境的适应表现。

然而,植物体内存在着的多条化学途径并不是同等运行的。

随着不同的植物种类、不同的发育时期、不同的生理状态和环境条件而有很大的差异。

在正常情况下以及在幼嫩的部位,生长旺盛的组织中均是TCA途径占主要地位。

在缺氧条件下,植物体内丙酮酸有氧分解被抑制而积累,并进行无氧呼吸,其产物也是多种多样的。

而在衰老,感病、受旱、受伤的组织中,则戊糖磷酸途径加强。

富含脂肪的油料种子在吸水萌发过程中,则会通过乙醛酸循环将脂肪酸转变为糖。

水稻根系在淹水条件下则有乙醇酸氧化途径运行。

相关文档
最新文档