第6章- 高效毛细管电泳

毛细管电泳的基本原理及应用

毛细管电泳的基本原理及应用 摘要:毛细管电泳法是以弹性石英毛细管为分离通道,以高压直流电场为驱动力,依据样品中各组分之间淌度和分配行为上的差异而实现分离的电泳分离分析方法。该技术可分析的成分小至有机离子、大至生物大分子如蛋白质、核酸等。可用于分析多种体液样本如血清或血浆、尿、脑脊液及唾液等,比HPLC 分析高效、快速、微量。 关键词:毛细管电泳原理分离模式应用 1概述 毛细管电泳(Caillary Electrophoresis)简称CE,是一类以毛细管为分离通道,以高压直流场为驱动力的新型液相分离分析技术。CE的历史可以追溯到1967年瑞典Hjerten最先提出在直径为3mm的毛细管中做自由溶液的区带电泳(Capillary Zone Electro-phoresis,CZE)。但他没有完全克服传统电泳的弊端[1]。现在所说的毛细管电泳(CE)是由Jorgenson和Lukacs在1981年首先提出,他们使用了75mm的毛细管柱,用荧光检测器对多种组分实现了分离。1984年Terabe将胶束引入毛细管电泳,开创了毛细管电泳的重要分支: 胶束电动毛细管色谱(MEKC)。1987年Hjerten等把传统的等电聚焦过程转移到毛细管内进行。同年,Cohen 发表了毛细管凝胶电泳的工作。近年来,将液相色谱的固定相引入毛细管电泳中,又发展了电色谱,扩大了电泳的应用范围。 毛细管电泳和高效液相色谱(HPLC)一样,同是液相分离技术,因此在很大程度上HPCE与HPLC可以互为补充,但是无论从效率、速度、样品用量和成本来说,毛细管电泳都显示了一定的优势毛细管电泳(C E)除了比其它色谱分离分析方法具有效率更高、速度更快、样品和试剂耗量更少、应用面同样广泛等优点外,其仪器结构也比高效液相色谱(HPLC)简单。C E只需高压直流电源、进样装置、毛细管和检测器。 毛细管电泳具有分析速度快、分离效率高、试验成本低、消耗少、操作简便等特点,因此广泛应用于分子生物学、医学、药学、材料学以及与化学有关的化工、环保、食品、饮料等各个领域[2]。

高效毛细管电泳实验

高效毛细管电泳实验 一、实验目的 1. 进一步理解毛细管电泳的基本原理; 2. 熟悉毛细管电泳仪器的构成; 3. 了解影响毛细管电泳分离的主要操作参数。 二、实验原理 1.电泳淌度 毛细管电泳(CE )是以电渗流 (EOF)为驱动力,以毛细管为分离通道,依据样品中组分之间淌度和分配行为上的差异而实现分离的一种液相微分离技术。离子在自由溶液中的迁移速率可以表示为: ν = μE (1) r 6 q πημ= (2) 式中ν是离子迁移速率,μ为电泳淌度,E 为电场强度。η为介质粘度,r 为离子的流体动力学半径,q 为荷电量。因此,离子的电泳淌度与其荷电量呈正比,与其半径及介质粘度呈反比。 2.电渗流和电渗淌度 电渗流(EOF )指毛细管内壁表面电荷所引起的管内液体的整体流动,来源于外加电场对管壁溶液双电层的作用。 在水溶液中多数固体表面根据材料性质的不同带有过剩的负电荷或正电荷。就石英毛细管而言,表面的硅羟基在pH 大于3以后就发生明显的解离,使表面带有负电荷。为了达到电荷平衡,溶液中的正离子就会聚集在表面附近,从而形成所谓双电层,如图1所示。这样,双电层与管壁之间就会产生一个电位差,叫做Zeta 电势。但毛细管两端施加一个电压时,组成扩散层的阳离子被吸引而向负极移动。由于这些离子是溶剂化的,故将拖动毛细管中的体相溶液一起向负极运动,这便形成了电渗流。 电渗流的大小可用速率和淌度来表示: ()E EO F ηεξν/= (3) 或者 ηεξμ/=EO F (4) 式中νEOF 为电渗流速率,μEOF 为电渗淌度,ξ为Zeta 电势,ε为介电常数。 3.毛细管电泳的分离模式 CE 有6种常用的分离模式,其中毛细管区带电泳(CZE )、胶束电动毛细管色谱(MEKC )和毛细管电色谱(CEC )最为常用。本实验的内容为CZE 。 4.毛细管电泳的基本参数

第五章 高效毛细管电泳分离技术

第五章高效毛细管电泳分离技术 第一节毛细管电泳技术发展简史及其特点 电泳是指带电粒子在电场作用下向电性相反的方向迁移的现象。据此对某些化学或生物化学组分进行分离的技术称为电泳技术。 从1930年瑞典科学家Arne Tiselius首次提出电泳法至今已有70年的历史。电泳法的发展大致可分为三个阶段。1950年以前属初创阶段,主要是界面移动自由电泳,一般在U型管内进行,无支持物。50年代至80年代中期出现了各种有支持物的电泳方法,如纸电泳、醋酸纤维电泳、琼脂糖电泳、聚丙烯酰胺凝胶电泳等,70年代后实现了仪器的自动化。80年代后期出现了毛细管电泳方法,实现了微型化、自动化、高效、快速分析,毛细管电泳技术已经成为同现代色谱技术相比的分析化学领域中的一个令人瞩目的分支。 毛细管电泳(Capillary Electrophoresis,CE)或高效毛细管电泳(High Performance Capillary Electrophoresis,HPCE)是指以毛细管为分离室、以高压电场为驱动力的一类新型现代电泳技术。毛细管电泳仪的基本结构见图5-1。

HV(0-+30KV) 图1 毛细管电泳仪的结构图 C—毛细管;D—检测器;E—电极槽;HV—直流高压电源;Pt—铂电极;S—样品;DA—数据采集处理系统 完善的毛细管电泳仪应具备(1)有多种施压模式;(2)恒温精度高,恒温范围宽;(3)精确的进样控制;(4)检测器的灵敏度高等条件。 毛细管电泳分离技术用的是内径为5-100μm,外径为370μm,长为10-100cm的弹性熔融石英毛细管,毛细管的特点是(1)体积小;(2)散热快,可承受高电场;(3)可使用自由溶液、凝胶等为支持电解质,在溶液介质下可产生平面形状的电渗流。 毛细管电泳分离技术与传统的平板电泳和现代液相色谱分离技术相比具有很多优点:(1)高效(105-107理论塔板/米);(2)快速(几十秒至几十分钟);(3)分离模式多,选择自由度大;(4)分析对象广,从无机离子到整个细胞;(5)高度自动化;

高效毛细管电泳

高效毛细管电泳-非接触式电导检测法的应用 ——瓶装矿泉水中Na+、K+、Ca2+、Mg2+的分离检测 摘要本实验采用毛细管电泳–非接触式电导检测法,以8mmol?L-1Tris 和6mmol?L-1酒石酸为电泳运行液,分离电压为+15 kV,采用标准加入法,对瓶装矿泉水中Na+、K+、Ca2+、Mg2+四种阳离子同时进行直接分离和检测。实验测得逸仙泉矿泉水中Na+、K+、Ca2+、Mg2+的含量分别为2.57mg·L1、13.46mg·L-1、4.99mg·L-1、1.82mg·L-1,发现K+、Mg2+含量均大大超出厂家提供的含量范围。 关键词高效毛细管电泳非接触电导检测法中大逸仙泉水分离检测标准加入法 1 引言 Na+、K+、Ca2+、Mg2+是人体内重要的无机阳离子,这些离子含量的高低直接影响人体的生理功能。Mg2+是人体细胞内的主要阳离子,浓集于线粒体中,是体内多种细胞基本生化反应的必需物质,在神经肌肉的机能正常运作、血糖转化等过程中扮演着重要角色。K+在人体内的主要作用是维持酸碱平衡,参与能量代谢以及维持神经肌肉的正常功能。人体中的钙元素主要以羟基磷酸钙晶体的形式存在于骨骼和牙齿中。Na+是细胞外液中带正电的主要离子,参与水的代谢,保证体内水的平衡,调节体内水分与渗透压,此外,糖代谢、氧的利用、维持正常血压也需要钠的参与。矿物质水中这些离子含量的高低决定了水质是否符合标准。因此,研究快速分离测定这些离子的含量很有实际的意义。 由于要同时测量四种离子含量,因此传统的对单一离子测量的方法不能用,毛细管电泳–非接触式电导检测法,可以同时对K+、Na+、Ca2+、Mg2+四种阳离子同时进行直接分离并且检测含量,相比已有的实验方法,本实验具有灵敏度高,操作简便,而且可以同时测定四种不同离子的含量,离子之间不存在相互干扰,极大地提高了实验效率,实验结果令人满意。 高效毛细管电泳的检测器中,非接触式电导检测(Capacitively Coupled Contactless Conductivity Detection, 简称C4D)是近年来发展起来一种新型的电导检测方法。非接触式电导检测法的电极与待测溶液隔离,避免了因电极与溶液接触而造成的诸多问题,有效地消除了电极中毒的问题,电极寿命长,抗干扰能力强,可检测物质的范围广。HPCE–C4D具有通用性好、灵敏高、分析成本低和环境友好的优点,在日常分析中具有广阔的应用前景。 2 实验部分 2.1仪器试剂

36份枣品种SSR指纹图谱的构建_麻丽颖

园艺学报 2012,39(4):647–654 http: // www. ahs. ac. cn Acta Horticulturae Sinica E-mail: yuanyixuebao@https://www.360docs.net/doc/e97989552.html, 36份枣品种SSR指纹图谱的构建 麻丽颖1,孔德仓2,刘华波1,王斯琪1,李颖岳1,庞晓明1,* (1北京林业大学计算生物学中心,林木育种国家工程实验室,林木、花卉遗传育种教育部重点实验室,北京 100083;2河北省沧县枣树国家良种基地,河北沧州 061000) 摘 要:利用12对SSR引物对36个枣品种进行分析,采用荧光M13毛细管电泳技术进行多态检测,共检测到99个多态位点,每对引物的多态位点数达到8.25,PIC值变幅为0.62 ~ 0.85,平均为0.75。依 据12对SSR引物在36个品种中扩增的特异带型组合,采用引物—带型组合法构建了36个枣品种的指纹 图谱,并对这36份枣品种做聚类分析,遗传相似系数在0.6667 ~ 0.9444之间。研究结果为枣树分类、种 质鉴定和分子育种提供了重要的工具。 关键词:枣;SSR;指纹图谱;毛细管电泳;遗传相似性 中图分类号:S 665.1 文献标识码:A 文章编号:0513-353X(2012)04-0647-08 Construction of SSR Fingerprint on 36 Chinese Jujube Cultivars MA Li-ying1,KONG De-cang2,LIU Hua-bo1,WANG Si-qi1,LI Ying-yue1,and PANG Xiao-ming1,*(1Center for Computational Biology,National Engineering Laboratory for Tree Breeding,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants,Ministry of Education,Beijing Forestry University,Beijing 100083,China;2National Improved Cultivar Station of Jujube,Cangzhou,Hebei 061000,China) Abstract:In this study,36 Chinese jujube cultivars were analyzed by capillary electrophoresis using fluorescent M13 multi-state detection method with 12 pairs of newly developed SSR primers. Totally,99 polymorphic alleles were revealed,with an average of 8.25 for each primer pairs. Polymorphism information content values for the primer pairs ranged from 0.62–0.85,with an average of 0.75. A strategy of combining primer pair with distinct alleles for fingerprint construction was developed and applied to the 36 cultivars. The genetic similarities among cultivars range from 0.6667 to 0.9444,on which a phenetic tree showing the relationship among the cultivars was constructed. The present results provide valuable tools for the cultivar classification,germplasm identification and molecular breeding of Chinese jujube. Key words:jujube;SSR;fingerprint;capillary electrophoresis;genetic similarity 枣(Ziziphus jujuba Mill.)原产于中国,至今已经发现和记载的枣树品种和优良类型达880多种(刘孟军和汪民,2009)。但枣树品种或类型命名比较混乱,同名异物和同物异名的情况较严重,如“冬枣”就有多个不同地方命名的品种,因此亟需准确的种质和品种鉴定方法。传统形态鉴别法不仅鉴定周期长、可利用标记少和易受环境因素的影响,而且对一些性状差异小的品种鉴定困难。RAPD、 收稿日期:2011–12–22;修回日期:2012–03–26 基金项目:中央高校基本业务费项目(BLYX200924,JD-03);林业公益性行业专项(201004017) * 通信作者Author for correspondence(E-mail:xmpang@https://www.360docs.net/doc/e97989552.html,)

高效毛细管电泳色谱仪的介绍

高效毛细管电泳色谱仪的介绍 高效毛细管电泳色谱仪(CE)是以毛细管为分离通道,以高压直流电场为驱动力,利用荷电粒子之间的淌度差异和分配系数差异进行分离。由于CE溶质区带的超小体积特性导致光程太短,圆柱形毛细管作为光学表面不够理想,对检测器灵敏度要求相当高。CE常用检测器有紫外检测器、激光诱导荧光检测器、质谱检测器和电化学检测器等。 一、紫外检测器: 紫外检测器是基于物质对紫外吸收进行检测,是成熟的检测器,在CE中应用广。 1、原理: 入射紫外光通过样品时,被吸收的多少符合朗伯-比耳定律。 检测点在毛细管的末端,检测点的毛细管的外涂层要烧掉。 2、检测方法: (1)固定波长: 光源为低紫外氘灯,用滤光片获得固定波长的光。 (2)可变波长: 光源为氘灯或钨灯,用单色器(棱镜或光栅)获得连续可调波长的光。 (3)快速扫描: 1)利用线性二极管阵列快速捕获紫外光。 2)利用硅光电倍增管作快速扫描。 3、特点: (1)通用性好,特别是对蛋白质的适用性很强。 (2)灵敏度不足。 4、提高灵敏度的方法: 由于CE检测池的光路长度为毛细管内径,一般不超过100μm,小内径的毛细管限制了紫外检测器的灵敏度,可采用以下几种方法来提高灵敏度。 (1)优化测定波长: 通过测定不同波长下的信噪比来选择测定波长,以提高灵敏度。

(2)减少检测噪音: 1)提高光源强度。 2)采用聚焦和狭缝等减少背景光的影响。 3)采用良好的信号放大系统。 (3)扩展吸光光路长度: 1)为了克服圆柱形毛细管表面引起的散射、失真等不利的光学特性和增加光路长度,可采用矩形、扁形、Z形和泡型等特殊毛细管。当然柱效会有所下降。 2)对于普通毛细管,可采用轴向照射和多次反射来增加光路长度。 ①轴向照射:将激光光束从毛细管末端沿管轴方向入射,在毛细管侧面进行检测。 ②多次反射:在毛细管壁镀上银,分别开入射窗和出射窗。当入射光以特定角度入射后,在毛细管内反射30~40次后从出射窗口射出。 二、激光诱导荧光检测器: 激光诱导荧光检测器采用激发光源使检测物质产生荧光进行检测。 检测下限为10ˉ12~10ˉ10mol/L。 三、质谱检测器: 在CE-MS联用中,毛细管区带电泳为常用。电子喷雾离子源可检测多种高质量的带电分子,从CE分离出来的分子经过接口后直接进入MS,是MS的离子源。 检测下限为10ˉ9~10ˉ7mol/L,通用性好,可获得溶质的结构信息,但接口复杂。 四、电化学检测器: 电化学检测器可避免光学类检测器遇到的光程太短的问题,是CE中灵敏的检测器之一。 1、电导检测器: 柱上电导检测是在毛细管壁上用激光钻两个孔,插上两根铂电极,再将孔封住进行检测。 检测下限为10ˉ7~10ˉ5mol/L,通用性好,但需专门装置和毛细管处理。 2、安培检测器: CE中微量样品可使库仑效率大大提高,可达40%以上,而在HPLC中很少超过10%。 检测下限为10ˉ9~10ˉ8mol/L,灵敏度高,选择性好,但仅适用于电活性物

高效毛细管电泳及其在蛋白质_多肽分析中的应用

tion of ceriv astatin in mice,rats,and do gs in vivo[J]. Dr ug M etab D ispos,1998,26(7) 640 652. [19]L indon JC,Nicholson JK,Sidelman U G,et al.Directly coupled HPL C N M R and its application to drug metabolism[J].Dr ug M etab Rev,1997,29 705 746. [20]Sidemann UG,Braumann U,Hofmann M,et al.Direct ly coupled800MHz HPLC N MR spectroscopy of ur ine and its application to the identification of major phase metabolites o f tolfenamic acid[J].A nal Chem,1997,69 607 612. [21]William JE,Joseph M W,T odd M B,et al.L iquid chro matography/nuclear magnetic resonance spectrosco py and liquid chr omatog raphy/mass spectrometry identification of novel metabolites of the mult idrug resistance modulator LY335979in rat bile and human L iver microsomal incu bat ions[J].Dr ug metab D isp os,1998,26(1) 42 51. 高效毛细管电泳及其在蛋白质、多肽分析中的应用 孔 毅, 吴如金, 吴梧桐 (中国药科大学,江苏南京210009) 摘 要:高效毛细管电泳(HPCE)是一种分离效率高、检测灵敏度高、样品用量少的分析技术。本文简述HPCE的研究进展及基本原理,着重介绍了它在蛋白质及多肽的分离、纯度鉴定、性质研究、结构分析、临床检测、药代动力学研究等方面的应用。 关键词:高效毛细管电泳;蛋白质;多肽 中图分类号:O658.9;Q51 文献标识码:A 文章编号:1001-5094(2000)04-0204-05 High Performance C apillary Electrophoresis and Its Application in Analysis of Protein and Peptide K ON G Yi, WU Ru jin, WU W u tong (China Phar maceutical University,N anj ing210009,China) Abstract:H ig h performance capillary electrophoresis(HPCE)is characterized as an analysis method, w hich show ed high selectiv ity and high sensitivity,but needed only little sample.In this article,the de velopment of HPCE and its foundamental principle were briefly introduced,and its applications to sepa ration,purity determ ination,characterization study,structural analysis,clinical monitoring and phar macokinetics of protein and peptide were emphasized. Key words:H PCE;protein;peptide 蛋白质、多肽是生命科学中一类重要的生物大分子物质,是生物体实现其功能的物质基础。在医药领域,有许多疗效很好的蛋白质、多肽类药物,如促红细胞生成素、干扰素、白介素、重组人生长激素等都是近年开发的蛋白质类药物。在后基因组时代,蛋白质组学成为一门重要的新兴学科,其任务就是研究细胞内所有蛋白质的组成及其活动规律[1]。因此,许多研究机构和大财团都在投入人力物力对蛋白质及多肽进行研究,这些复杂的研究工作对分析手段提出了更高的要求。 高效毛细管电泳(HPCE)是近十几年发展起来的一项新的分析技术,它将电泳技术和色谱技术结合,是继高效液相色谱(H PLC)出现之后,分析科学领域的又一次革命。研究与实践表明HPCE具有以下特点:分离效率高(理论塔板数达106~107/ m);快速(20~30min内完成一次电泳操作);样品用量少(仅为纳升级,可对单细胞液进行分离分析);灵敏度高(用激光诱导荧光检测器,可达1 10 24 收稿日期:1999 10 14; 修回日期:1999 12 20

高效毛细管电泳HPCE笔记

高效毛细管电泳HPCE 优势:高效、高速、低耗。 一、原理 【1】电泳和电泳淌度 1、电泳 带电离子在电场中的定向移动,不同离子具有不同的迁移速度。 影响因素: 当带电离子以速度ν在电场中移动时,受到大小相等、方向相反的电场推动力和平动摩擦阻力的作用。 故: 式中: q—离子所带的有效电荷; E —电场强度; ν—离子在电场中的迁移速度; f —平动摩擦系数( 对于球形离子:f =6πηγ;γ —组分离子半径;η —介质的粘度;对于棒形离子:f =4πηγ) ?物质离子在电场中差速迁移是电泳分离的基础。 电泳淌度:单位场强下离子的平均迁移速度。

2、淌度 单位电场强度下电渗流的平均迁移速度。 1.绝对淌度(absolute mobility)μab 无限稀释溶液中带电离子在单位电场强度下的平均迁移速度,简称淌度。 2.有效淌度(effective mobility)μef 实际溶液中的淌度(实验中测定的)。μef=∑a iμiγi a i —溶质i的解离度;μi —溶质i在解离状态下的绝对淌度γi:活度系数?有效淌度即在除去干扰因素后的电泳淌度。 3.表观淌度μap 离子在实际分离过程中的迁移速度(表观迁移速度): νap=μap E 4。表观迁移速度 电泳和电渗速度的矢量和 故电荷实际迁移速度的影响因素有:电场强度、介质黏度、电荷数、离子离解度及其大小形状。 【2】电渗和电渗淌度 1、电渗流现象 当固体与液体接触时,固体表面由于某种原因带一种电荷,则因静电引力使其周围液体带有相反电荷,在液-固界面形成双电层,二者之间存在电位差。

当液体两端施加电压时,就会发生液体相对于固体表面的移动,这种液体相对于固体表面的移动的现象叫电渗现象。 电渗现象中整体移动着的液体叫电渗流(electroosmotic flow ,简称EOF)。2、HPCE中电渗流的大小 电渗流的大小用电渗流速度ν电渗流表示,取决于电渗淌度μ和电场强度E。即ν电渗流= μ E 电渗淌度取决于电泳介质及双电层的Zeta电势,即 μ = ε0εξ ε0—真空介电常数;ε—介电常数;ξ—毛细管壁的Zeta电势。 ν电渗流= ε0εξE 实际电泳分析,可在实验测定相应参数后,按下式计算 ν电渗流= L ef/t eo L ef —毛细管有效长度;t eo—电渗流标记物(中性物质)的迁移时间。 ξ=4πδe/ε δ—扩散层厚度e—单位面积总的过剩电荷 ν电渗流=εξE/η 3、HPCE中电渗流的方向 1. ①电渗流的方向取决于毛细管内表面电荷的性质: ②内表面带负电荷,溶液带正电荷,电渗流流向阴极; ③内表面带正负电荷,溶液带负电荷,电渗流流向阳极;

高效毛细管电泳的发展及应用

高效毛细管电泳的发展及应用 摘要:高效毛细管电泳(即HPCE)是在传统电泳基础上继现代高效液相色谱技术之后发展起来的一种新型高效分离技术,由于效率更高、速度更快、样品和试剂消耗量特少的特性,逐渐受到越来越多科学家们的青睐。本文结合HPCE的发展史、基本原理、分离模式以及在现实中的实际应用,对毛细管电泳做了系统的分析,并提出合理的展望。 关键字:毛细管电泳;发展史;原理;分离模式;应用 高效毛细管电泳(即HPCE)是在传统电泳基础上继现代高效液相色谱技术之后发展起来的一种新型高效分离技术,它是在熔融的石英毛细管(内径为25~100μm)中进行电泳,其管内填充缓冲液或凝胶,是近年来进展最快的分析方法之一。 毛细管电泳可以说是电泳技术和现代微柱分离相结合的产物,它具有效率更高、速度更快、样品和试剂消耗量特少的特性,因而也受到越来越多科学家们的青睐。 一、毛细管电泳的发展史 1967年在高电场作用下,以3mm直径的毛细管内进行自由溶液的区带电泳,1974年报道了以200-500μm内径玻璃毛细管内进行的区带电泳分析,早期的研究受当时检测灵敏度的影响,未获预期的高效分离效率,但为毛细管电泳分离的发展奠定了基础。 1981年人们第一次展示了毛细管区带电泳,使用75微米内径的玻璃毛细管和荧光检测器进行在线检测,在30KV电压下,分离了氨基酸和多肽类物质,塔板数高达40万,这一工作被认为是现代毛细管电泳发展的里程碑。1983年将聚胶柱制备困难的缺点。1984年使用含有表面活性剂的背景电解质,开辟了毛细管电泳另一个重要分支——胶束毛细管电动力学色谱。1987年又结合传统的等电聚焦电泳和凝胶电泳原理,并移到毛细管内进行电泳,1988年实现了微量制备的可能性,提取和分离了50μmol的蛋白质、肽和寡核苷酸等。80年代未,

高效毛细管电泳分析法

高效毛细管电泳分析法 1.1 高效毛细管电泳概述 高效毛细管电泳(High Performance Capillary Electrophoresis, HPCE)是20 世纪80年代发展起来的一种新型的液相分析技术,其分离原理可以追溯到1937 年Tiselius[1]所做的研究,Tiselius 制成了第一台电泳仪并进行了第一次自由溶液电泳。而现代毛细管电泳(Capillary Electrophoresis, CE)得以普及归因于1981 年Jorgenson 和Lukacs所取得的标志性成果[2],之后电泳技术迅速发展。CE 是经典电泳技术和现代微柱技术的结合产物,它克服了高效液相色谱(High Performance Liquid Chromatography,HPLC)实验成本高、气相色谱(Gas Chromatography, GC)应用面窄、薄层色谱(Thin-Layer Chromatography, TLC)柱效低和重现性差的缺点。短短的几十年间已被广泛用于分子生物学、医学、药学、材料学以及与化学有关的化工、环保、食品、饮料等各个领域[3]。 1.1.1 高效毛细管电泳的基本原理 毛细管电泳是以高压电场为驱动力,以毛细管为分离通道,依据样品中各组分之间淌度和分配行为上的差异而实现分离的一类液相分离技术。毛细管电泳仪的基本结构包括一个高压电源,一根石英毛细管,一个检测器及两个供毛细管两端插入而又可和电源相连的缓冲液贮瓶. 毛细管电泳的基本原理如下:毛细管电泳所用石英毛细管柱内存在两种电迁移现象:电泳现象和电渗现象。电泳现象是指带电粒子在电场作用下的迁移;在pH>3的情况下,毛细管柱内表面带负电,与溶液接触时形成双电层,在高电压作用下,双电层中的水合阳离子引起流体整体朝负极方向移动的现象叫做电渗现象[4]。粒子在毛细管内电解质中的迁移速度等于电泳和电渗两种速度的矢量和。正离子的运动方向和电渗流一致,故从负极最先流出;中性粒子的电泳速度为“零”,故以电渗流速度在正离子之后流出;负离子的运动方向与电渗流方向相反,但因电渗流速度一般都大于电泳流速度,故在中性粒子之后流出,因此各种粒子迁移速度不同而实现分离。 1.2 高效毛细管电泳在食品药品分析中的应用 食品和药品种类的多样性及其成分的复杂性对应用于其分析的方法提出了很高的要求。由于CE 具有多种不同的分离体系,可以满足许多复杂基质所含的复杂成分的分析要求,其分析的对象可以从饮用水到复杂的肉制品,分析的成分可以从简单的金属离子到蛋白质等大分子,而且CE 对被分析成分的提取、纯化及衍生等预处理没有严格的要求。因此,CE 在食品药品分析方面的应用日趋广泛。 食品和药品是由各种不同化学性质的分子组成的,在其分析中最常用的两种方法是HPLC 和GC。迄今为止HPLC 是食品药品分析中最适当的检测方法[11],但是也会出现分离效能低的情况;HPLC 中分离度的改善不如在CE 中实施起来容易,而且操作成本也相对较高。另外,GC 不能直接用于测定难挥发不稳定的物质。而毛细管电泳的灵活性使其在食品药品分析中完全可以成为以上两者的有效补充,已用于许多食品和药品组分(成分、添加剂、残留物等)的检测。 1.2.1 成分分析 1.2.1.1 碳水化合物分析 碳水化合物分为单糖、低聚糖和多聚糖三类,是食品中的主要组分,对人体具有重要的功能性和生理性机能,因此对其分析具有极大的重要性。用于碳水化合物分析的CE 方法应用已有许多报道。CZE 和MEKC 方法均已应用于碳水化合物的分析中。通常采用间接紫外检测或柱前衍生方法解决大多数碳水化合物中不含发色团的问题。常用的衍生试剂有2-氨基吡

相关文档
最新文档