工程力学弯曲变形

弹塑性力学简答题

弹塑性力学简答题 第一章 应力 1、 什么是偏应力状态?什么是静水压力状态?举例说明? 静水压力状态时指微六面体的每个面只有正应力作用,偏应力状态是从应力状态中扣除静水压力后剩下的部分。 2、应力边界条件所描述的物理本质是什么? 物体边界点的平衡条件。 3、对照应力张量ij δ与偏应力张量ij S ,试问:两者之间的关系?两者主方向之间的关系? 相同。110220330 S S S σσσσσσ=+=+=+。 4、为什么定义物体内部应力状态的时候要采取在一点的领域取极限的方法? 不规则,内部受力不一样。 5、解释应力空间中为什么应力状态不能位于加载面之外? 保证位移单值连续。连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。 6、Pie 平面上的点所代表的应力状态有何特点? 该平面上任意一点的所代表值的应力状态1+2+3=0,为偏应力状态,且该平面上任一法线所代表的应力状态其应力解不唯一。 固体力学解答必须满足的三个条件是什么?可否忽略其中一个? 第二章 应变 1、从数学和物理的不同角度,阐述相容方程的意义。 从数学角度看,由于几何方程是6个,而待求的位移分量是3个,方程数目多于未知函数的数目,求解出的位移不单值。从物理角度看,物体各点可以想象成微小六面体,微单元体之间就会出现“裂缝”或者相互“嵌入”,即产生不连续。 2、两个材料不同、但几何形状、边界条件及体积力(且体积力为常数)等都完全相同的线弹性平面问题,它们的应力分布是否相同?为什么? 相同。应力分布受到平衡方程、变形协调方程及力边界条件,未涉及本构方程,与材料性质无关。 3、应力状态是否可以位于加载面外?为什么? 不可以。保证位移单值连续。连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。 4、给定单值连续的位移函数,通过几何方程可求出应变分量,问这些应变分量是否满足变形协调方程?为什么? 满足。根据几何方程求出各应变分量,则变形协调方程自然满足,因为变形协调方程本身是从几何方程中推导出来的。 5、应变协调方程的物理意义是什么? 对于单连通体,协调方程是保证由几何方程积分出单值连续的充分条件。多于多连通体,除满足协调方程方程外,还应补充保证切口处位移单值连续的附加条件。 6、已知物体内一组单值连续的位移,试问通过几何方程给出的应变一定满足变形协调方程吗?为什么?

工程力学(一)知识要点

《工程力学(一)》串讲讲义 (主讲:王建省工程力学教授,Copyright ? 2010-2012 Prof. Wang Jianxing) 课程介绍 一、课程的设置、性质及特点 《工程力学(一)》课程,是全国高等教育自学考试机械等专业必考的一门专业课,要求掌握各种基本概念、基本理论、基本方法,包括主要的各种公式。在考试中出现的考题不难,但基本概念涉及比较广泛,学员在学习的过程中要熟练掌握各章的基本概念、公式、例题。 本课程的性质及特点: 1.一门专业基础课,且部分专科、本科专业都共同学习本课程; 2.工程力学(一)课程依据《理论力学》、《材料力学》基本内容而编写,全面介绍静力学、运动学、动力学以及材料力学。按重要性以及出题分值分布,这几部分的重要性排序依次是:材料力学、静力学、运动学、动力学。 二、教材的选用 工程力学(一)课程所选用教材是全国高等教育自学考试指定教材(机械类专业),该书由蔡怀崇、张克猛主编,机械工业出版社出版(2008年版)。 三、章节体系 依据《理论力学》、《材料力学》基本体系进行,依次是 第1篇理论力学 第1章静力学的基本概念和公理受力图 第2章平面汇交力系 第3章力矩平面力偶系 第4章平面任意力系

第5章空间力系重心 第6章点的运动 第7章刚体基本运动 第8章质点动力学基础 第9章刚体动力学基础 第10章动能定理 第2篇材料力学 第11章材料力学的基本概念 第12章轴向拉伸与压缩 第13章剪切 第14章扭转 第15章弯曲内力 第16章弯曲应力 第17章弯曲变形 第18章组合变形 第19章压杆的稳定性 第20章动载荷 第21章交变应力 考情分析 一、历年真题的分布情况 《工程力学(一)》历年考题的分值分布情况如下:

工程力学第九章梁的应力及强度计算

课时授课计划 掌握弯曲应力基本概念; 掌握弯曲正应力及弯曲剪应力的计算;掌握弯曲正应力的强度计算; 掌握弯曲剪应力强度校核。

I D (d

根据[M],用平衡条件确定许用外载荷。 在进行上列各类计算时,为了保证既安全可靠又节约材料的原则,设计规范还规定梁内的最大正应力允许稍大于[σ],但以不超过[σ]的5%为限。即 3、进行强度计算时应遵循的步骤 (1)分析梁的受力,依据平衡条件确定约束力,分析梁的内力(画出弯矩图)。(2)依据弯矩图及截面沿梁轴线变化的情况,确定可能的危险截面:对等截面梁,弯矩最大截面即为危险截面。 (3)确定危险点 (4)依据强度条件,进行强度计算。 第三节梁的剪应力强度条件 一、概念 梁在横弯曲作用下,其横截面上不仅有正应力,还有剪应力。 对剪应力的分布作如下假设: (1)横截面上各点处剪应力均与剪力Q同向且平行; (2)横截面上距中性轴等距离各点处剪应力大小相。 根据以上假设,可推导出剪应力计算公式: 式中:τ—横截面上距中性轴z距离为y处各点的剪应力; Q—该截面上的剪力; b—需求剪应力作用点处的截面宽度; Iz—横截面对其中性轴的惯性矩; Sz*—所求剪应力作用点处的横线以下(或以上)的截面积A*对中性轴的面积矩。 剪应力的单位与正应力一样。剪应力的方向规定与剪力的符号规定一样。 二、矩形截面横梁截面上的剪应力 如图所示高度h大于宽度b的矩形截面梁。横截面上的剪力Q沿y轴方向作用。 将上式带入剪应力公式得: 上式表明矩形截面横梁截面上的剪应力,沿截面高度呈抛物线规律变化。 在截面上、下边缘处y=±h/2,则=0;在中性轴上,y=0,剪应力值最大,

工程力学习题库-弯曲变形

第8章 弯曲变形 本章要点 【概念】平面弯曲,剪力、弯矩符号规定,纯弯曲,中性轴,曲率,挠度,转角。 剪力、弯矩与荷载集度的关系;弯曲正应力的适用条件;提高梁的弯曲强度的措施;运用叠加法求弯曲变形的前提条件;截面上正应力分布规律、切应力分布规律。 【公式】 1. 弯曲正应力 变形几何关系:y ερ = 物理关系:E y σρ = 静力关系:0N A F dA σ==?,0y A M z dA σ==?,2z z A A EI E M y dA y dA σρ ρ == =?? 中性层曲率: 1 M EI ρ = 弯曲正应力应力:,M y I σ= ,max max z M W σ= 弯曲变形的正应力强度条件:[]max max z M W σσ=≤ 2. 弯曲切应力 矩形截面梁弯曲切应力:b I S F y z z S ??=* )(τ,A F bh F S S 2323max ==τ 工字形梁弯曲切应力:d I S F y z z S ??=* )(τ,A F dh F S S ==max τ 圆形截面梁弯曲切应力:b I S F y z z S ??=* )(τ,A F S 34max =τ 弯曲切应力强度条件:[]ττ≤max

3. 梁的弯曲变形 梁的挠曲线近似微分方程:()''EIw M x =- 梁的转角方程:1()dw M x dx C dx EI θ= =-+? 梁的挠度方程:12()Z M x w dx dx C x C EI ??=-++ ??? ?? 练习题 一. 单选题 1、 建立平面弯曲正应力公式z I My /=σ,需要考虑的关系有( )。查看答案 A 、平衡关系,物理关系,变形几何关系 B 、变形几何关系,物理关系,静力关系; C 、变形几何关系,平衡关系,静力关系 D 、平衡关系, 物理关系,静力关系; 2、 利用积分法求梁的变形,不需要用到下面那类条件( )来确定积分常 数。 查看答案 A 、平衡条件 B 、边界条件 C 、连续性条件 D 、光滑性条件 3、 在图1悬臂梁的AC 段上,各个截面上的( )。 A .剪力相同,弯矩不同 B .剪力不同,弯矩相同 C .剪力和弯矩均相同 D .剪力和弯矩均不同 图1 图2 4、 图2悬臂梁受力,其中( )。 A .A B 段是纯弯曲,B C 段是剪切弯曲

第二章应力状态 弹塑性力学基本理论及应用_刘土光

第二章 应力状态理论 2.1 应力和应力张量 在外力作用下,物体将产生应力和变形,即物体中诸元素之间的相对位置发生变化,由于这种变化,便产生了企图恢复其初始状态的附加相互作用力。用以描述物体在受力后任何部位的内力和变形的力学量是应力和应变。本章将讨论应力矢量和某一点处的应力状态。 为了说明应力的概念,假想把受—组平衡力系作用的物体用一平面A 分成A 和B 两部分(图2.1)。如将B 部分移去,则B 对A 的作用应代之以B 部分对A 部分的作用力。这种力在B 移去以前是物体内A 与B 之间在截面C 的内力,且为分布力。如从C 面上点P 处取出一包括P 点在内的微小面积元素S ?,而S ?上的内力矢量为F ?,则内力的平均集度为F ?/S ?,如令S ?无限缩小而趋于点P ,则在内力连续分布的条件下F ?/S ?趋于一定的极限σ,即 σ=??→?S F S 0lim 这个极限矢量σ就是物体在过c 面上点P 处 的应力。由于S ?为标量,故,σ的方向与F ?的 极限方向一致。内力矢量F ?可分解为所在平面 的外法线方向和切线方向两个分量n F ?和s F ?。 同样,应力σ可分解为所在平面的外法线方向 和切线方向两个分量。沿应力所在平面 的外法线方向n 的应力分量称为正应力,记为n σ,沿切线方向的应力分量称为切应力,记为 n τ。此处脚注n 标明其所在面的外法线方向,由此, S ?面上的正应力和切应力分别为n σ和n τ。 在上面的讨论中,过点P 的平面C 是任选的。显然,过点P 可以做无穷多个这样的平面C ,也就是说,过点P 有无穷多个连续变化的n 方向。不同面上的应力是不同的。这样,就产生了如何描绘一点处的应力状态的问题。为了研究点P 处的应力状态,在点P 处沿坐标轴x ,y ,z 方向取一个微小的平行六面体(图2.2),其六个面的外法线方向分别与三个坐标轴的正负方向重合,其边长分别为x ?,Δy ,Δz 。假定应力在各面上均匀分布,于是各面上的应力便可用作用在各面中心点的一个应力矢量来表示,每个面上的应力矢量又可分解关一个正应力和两个切应力分量,如图2.2所示。以后,对正应力只用一个字母的下标标记,对切应力则用两个字母标记*其中第一个字母表示应力所在面的外法线方向;第二个字母表示应力分量的指向。正应力的正负号规定为:拉应力为正,压应力为负。切应力的正负号规定分为两种情况:当其所在面的外法线与坐标轴的正方向一致时,则以沿坐标轴正方向的切应力为正,反之为负;当所在面的外法线与坐标袖的负方向一致时,则以沿坐标轴负方向的切应力为正,反之为负。图2.2中的各应力分量均 图2.1 应力矢量

弹塑性力学简答题

弹塑性力学简答题

弹塑性力学简答题 第一章 应力 1、 什么是偏应力状态?什么是静水压力状态?举例说明? 静水压力状态时指微六面体的每个面只有正应力作用,偏应力状态是从应力状态中扣除静水压力后剩下的部分。 2、应力边界条件所描述的物理本质是什么? 物体边界点的平衡条件。 3、对照应力张量ij δ与偏应力张量ij S ,试问:两者之间的关系?两者主方向之间的关系? 相同。110220330 S S S σσσσσσ=+=+=+。 4、为什么定义物体内部应力状态的时候要采取在一点的领域取极限的方法? 不规则,内部受力不一样。 5、解释应力空间中为什么应力状态不能位于加载面之外? 保证位移单值连续。连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。 6、Pie 平面上的点所代表的应力状态有何特点? 该平面上任意一点的所代表值的应力状态1+2+3=0,为偏应力状态,且该平面上任一法线所代表的应力状态其应力解不唯一。 固体力学解答必须满足的三个条件是什么?可否忽略其中一个? 第二章 应变 1、从数学和物理的不同角度,阐述相容方程的意义。 从数学角度看,由于几何方程是6个,而待求的位移分量是3个,方程数目多于未知函数的数目,求解出的位移不单值。从物理角度看,物体各点可以想象成微小六面体,微单元体之间就会出现“裂缝”或者相互“嵌入”,即产生不连续。 2、两个材料不同、但几何形状、边界条件及体积力(且体积力为常数)等都完全相同的线弹性平面问题,它们的应力分布是否相同?为什么? 相同。应力分布受到平衡方程、变形协调方程及力边界条件,未涉及本构方程,与材料性质无关。 3、应力状态是否可以位于加载面外?为什么? 不可以。保证位移单值连续。连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。 4、给定单值连续的位移函数,通过几何方程可求出应变分量,问这些应变分量是否满足变形协调方程?为什么? 满足。根据几何方程求出各应变分量,则变形协调方程自然满足,因为变形协调方程本身是从几何方程中推导出来的。 5、应变协调方程的物理意义是什么? 对于单连通体,协调方程是保证由几何方程积分出单值连续的充分条件。多于多连通体,除满足协调方程方程外,还应补充保证切口处位移单值连续的附加条件。 6、已知物体内一组单值连续的位移,试问通过几何方程给出的应变一定满足变形协调方程吗?为什么?

工程力学-应力状态与应力状态分析

8 应力状态与应变状态分析 1、应力状态的概念, 2、平面应力状态下的应力分析, 3、主平面是切应力为零的平面,主应力是作用于主平面上的正应力。 (1)过一点总存在三对相互垂直的主平面,对应三个主应力,主应力排列规定按代数值由大到小为: 321σσσ≥≥ 最大切应力为 13 2 max σστ-= (2)任斜截面上的应力 α τασσσσσα2sin 2cos 2 2 xy y x y x --+ += α τασστα2cos 2sin 2 xy y x +-= (3) 主应力的大小 2 2min max )2 ( 2 xy y x y x τσσσσσ+-±+= 主平面的方位 y x xy tg σστα--= 220 4、主应变 12 2122x y x y xy xy x y ()()tg εεεεεεγγ?εε? = +±-+? = - 5、广义胡克定律 )]([1 z y x x E σσμσε+-=

)] ( [ 1 x z y y E σ σ μ σ ε+ - = )] ( [ 1 y x z z E σ σ μ σ ε+ - = G zx zx τ γ= G yz yz τ γ= ,G xy xy τ γ= 6、应力圆与单元体之间的对应关系可总结为“点面对应、转向相同、夹角两倍。” 8.1试画出下图8.1(a)所示简支梁A点处的原始单元体。 图8.1 [解](1)原始单元体要求其六个截面上的应力应已知或可利用公式直接计算,因此应选取如下三对平面:A点左右侧的横截面,此对截面上的应力可直接计算得到;与梁xy平面平行的一对平面,其中靠前的平面是自由表面,所以该对平面应力均为零。再取A点偏上和偏下的一对与xz平行的平面。截取出的单元体如图8.1(d)所示。 (2)分析单元体各面上的应力: A点偏右横截面的正应力和切应力如图8.1(b)、(c)所示,将A点的坐标x、y代入正应力和切应力公式得A点单元体左右侧面的应力为: z M y I σ= b I QS z z * = τ 由切应力互等定律知,单元体的上下面有切应力τ;前后边面为自由表面,应力为零。在单元体各面上画上应力,得到A点单元体如图8.1(d)。 8.2图8.2(a)所示的单元体,试求(1)图示斜截面上的应力;(2)主方向和主应力,画出主单元体;(3)主切应力作用平面的位置及该平面上的正应力,并画出该单元体。 解题范例

工程力学应力状态与应力状态分析样本

8 应力状态与应变状态分析 1、应力状态概念, 2、平面应力状态下应力分析, 3、主平面是切应力为零平面,主应力是作用于主平面上正应力。 (1)过一点总存在三对互相垂直主平面,相应三个主应力,主应力排列规定按代数值由大到小为: 321σσσ≥≥ 最大切应力为 13 2 max σστ-= (2)任斜截面上应力 α τασσσσσα2sin 2cos 2 2 xy y x y x --+ += α τασστα2cos 2sin 2 xy y x +-= (3) 主应力大小 2 2min max )2 ( 2 xy y x y x τσσσσσ+-±+= 主平面方位 y x xy tg σστα--= 220 4、主应变 12 2122x y x y xy xy x y ()()tg εεεεεεγγ?εε? = +±-+? = - 5、广义胡克定律

)]( [1 z y x x E σσμσε+-= )]([1 x z y y E σσμσε+-= )]([1 y x z z E σσμσε+-= G zx zx τγ= G yz yz τγ= , G xy xy τγ= 6、应力圆与单元体之间相应关系可总结为“点面相应、转向相似、夹角两倍。” 8.1 试画出下图8.1(a)所示简支梁A 点处原始单元体。 图8.1 [解](1)原始单元体规定其六个截面上应力应已知或可运用公式直接计算,因而应选用如下三对平面:A 点左右侧横截面,此对截面上应力可直接计算得到;与梁xy 平面平行一对平面,其中靠前平面是自由表面,因此该对平面应力均为零。再取A 点偏上和偏下一对与xz 平行平面。截取出单元体如图8.1(d)所示。 (2)分析单元体各面上应力: A 点偏右横截面正应力和切应力如图8.1(b)、(c)所示,将A 点坐标x 、y 代入正应力和切应力公式得A 点单元体左右侧面应力为: z M y I σ= b I QS z z *= τ 解题范例

材料力学习题弯曲变形

弯曲变形 基本概念题 一、选择题 1.梁的受力情况如图所示,该梁变形后的 挠曲线如图()所示(图中挠曲线的虚线部 分表示直线,实线部分表示曲线)。 2. 如图所示悬臂梁,若分别采用两种坐标 系,则由积分法求得的挠度和转角的正负号为 ()。 题2图题1图 A.两组结果的正负号完全一致 B.两组结果的正负号完全相反 C.挠度的正负号相反,转角正负号一致 D.挠度正负号一致,转角的正负号相反 3.已知挠曲线方程y = q0x(l3 - 3lx2 +2 x3)∕(48EI),如图所示,则两端点的约束可能为下列约束中的()。 题3图 4. 等截面梁如图所示,若用积分法求解梁的转角、挠度,则以下结论中( )是错误的。 A.该梁应分为AB、BC两段进行积分 B.挠度积分表达式中,会出现4个积分常数 -26-

题4图 题5图 C .积分常数由边界条件和连续条件来确定 D .边界条件和连续条件表达式为x = 0,y = 0;x = l ,0==右左y y ,0='y 5. 用积分法计算图所示梁的位移,边界条件和连续条件为( ) A .x = 0,y = 0;x = a + l ,y = 0;x = a ,右左y y =,右左 y y '=' B .x = 0,y = 0;x = a + l ,0='y ;x = a ,右左y y =,右左 y y '=' C .x = 0,y = 0;x = a + l ,y = 0,0='y ;x = a ,右左y y = D .x = 0,y = 0;x = a + l ,y = 0,0='y ;x = a ,右左 y y '=' 6. 材料相同的悬臂梁I 、Ⅱ,所受荷载及截面尺寸如图所示。关于它们的最大挠度有如 下结论,正确的是( )。 A . I 梁最大挠度是Ⅱ梁的 41倍 B .I 梁最大挠度是Ⅱ梁的2 1 倍 C . I 梁最大挠度与Ⅱ梁的相等 D .I 梁最大挠度是Ⅱ梁的2倍 题6图 题7图 7. 如图所示等截面梁,用叠加法求得外伸端C 截面的挠度为( )。 A . EI Pa 323 B . EI Pa 33 C .EI Pa 3 D .EI Pa 233 8. 已知简支梁,跨度为l ,EI 为常数,挠曲线方程为)24)2(323EI x lx l qx y +-=, -27-

弹塑性力学总结读书报告

弹塑性力学读书报告 弹塑性力学是固体力学的一个重要分支,是研究可变形固体变形规律的一门学科。研究可变形固体在荷载(包括外力、温度变化等作用)作用时,发生应力、应变及位移的规律的学科。它由弹性理论和塑性理论组成。弹性理论研究理想弹性体在弹性阶段的力学问题,塑性理论研究经过抽象处理后的可变形固体在塑性阶段的力学问题。因此,弹塑性力学就是研究经过抽象化的可变形固体,从弹性阶段到塑性阶段、直至最后破坏的整个过程的力学问题。弹塑性力学也是连续介质力学的基础和一部分。弹塑性力学包括:弹塑性静力学和弹塑性动力学。 弹塑性力学的任务是分析各种结构物或其构件在弹性阶段和塑性阶段的应力和位移,校核它们是否具有所需的强度、刚度和稳定性,并寻求或改进它们的计算方法。并且弹塑性力学是以后有限元分析、解决具体工程问题的理论基础,这就要求我们掌握其必要的基础知识和具有一定的计算能力。 1 基本思想及理论 1.1科学的假设思想 人们研究基础理论的目的是用基础理论来指导实践,而理论则是通过对自然、生活中事物的现象进行概括、抽象、分析、综合得来,在这个过程中就要从众多个体事物中寻找规律,而规律的得出一般先由假设得来,弹塑性力学理论亦是如此。固体受到外力作用时表现出的现象差别根本的原因在于材料本身性质差异,这些性质包括尺寸、材料的方向性、均匀性、连续性等,力学问题的研究离不开数学工具,如果要考虑材料的所有性质,那么一些问题的解答将无法进行下去。所以,在弹塑性力学中,根据具体研究对象的性质,并联系求解问题的范围,忽略那些次要的局部的对研究影响不大的因素,使问题得到简化。 1.1.1连续性假定 假设物体是连续的。就是说物体整个体积内,都被组成这种物体的物质填满,不留任何空隙。这样,物体内的一些物理量,例如:应力、应变、位移等,才可以用坐标的连续函数表示。 1.1.2线弹性假定(弹性力学)

工程力学教学大纲(48学时)

《工程力学》教学大纲 课程编码:01011076 课程类别:专业基础必修课 学时:48 学分:3 适用专业:汽车检测与维修技术 先修课程:高等数学 一、教学目的 本课程是高等职业技术学院工程技术类相关专业的一门技术基础课程。本课程的任务是运用力学的基本原理,研究机械零部件在载荷等因素作用下的平衡规律、运动规律和承载能力,使学生掌握机械工程力学的基础知识和基本技能,学会运用力学的基本原理解决机械工程中简单的力学问题,培养学生正确的思想方法和工作方法,为学习后续课程和继续学习提供必要的基础。 二、教学内容与要求 绪论 教学要求:了解机械工程力学课程的性质、任务和主要内容;了解机械工程力学的研究对象:机械零部件——杆件;了解机械工程力学研究的模型刚体与变形体;分布力与集中力。 重点:工程力学研究的目的、内容、方法。 难点:工程力学的研究方法 第一章构件静力学基础 第一节力的基本概念和公理 第二节常见约束及力学模型 第三节构件的受力图 教学要求:掌握构件受力图的画法,理解力的基本概念和公理,了解常见的约束模型 重点:画构件的受力图 难点:构件的受力分析 第二章力的投影和平面力偶 第一节力的投影和力的分解 第二节平面汇交力系的合成与平衡 第三节力矩和力偶 第四节平面力偶系的合成与平衡 教学要求:掌握平面受力时平衡方程及其应用,理解平衡方程的其他形式,了解平面受力的特殊情况 重点:力的投影、力矩;平面力系的合成与平衡 难点:平衡方程的应用 第三章平面任意力系 第一节平面任意力系的简化 第二节平面任意力系简化的平衡方程及其应用 第三节固定端约束和均布载荷

第四节物体系统的平衡问题 第五节考虑摩擦时构件的平衡问题 教学要求:掌握平衡方程的应用,理解固定端约束,了解工程中的摩擦与自锁问题 重点:任意力系的简化和物体系统的平衡分析 难点:平衡方程的应用 第四章空间力系和重心 第一节力的投影和力对轴之矩 第二节空间力系的平衡方程 第三节空间力系常见约束 第四节轮轴类构件平衡问题的平面解法 第五节物体的重心和平面图形的形心 教学要求:掌握力对轴之矩、合力矩定理,理解力在空间直角坐标轴上的投影,了解形心的概念、形心位置坐标公式;组合图形形心坐标的概念 重点:组合图形形心坐标的电算方法,物体重心的求解 难点:物体重心和平面图形形心的计算 第五章轴向拉伸与压缩 第一节材料力学的基本概念 第二节轴向拉压的工程实例与力学模型 第三节轴力和轴力图 第四节拉压杆横截面的应力和强度计算 第五节拉压杆的变形 第六节材料的力学性能 第七节许用应力与强度准则 第八节应力集中的概念 第九节拉压静不定问题的解法 教学要求:掌握杆件拉伸和压缩时的轴力图,以及强度、刚度计算,理解截面法和杆件内力的概念,了解材料的力学性能;应力集中、静不定问题的求解。 重点:杆件的强度、刚度计算 难点:杆件轴力图的绘制 第六章剪切和挤压 第一节剪切和挤压的工程实例 第二节剪切和挤压的实用计算 第三节剪切胡克定律 教学要求:掌握剪切和挤压的实用计算,理解胡克定律,了解切应力互等定理 重点:剪切与挤压的实用计算 难点:剪切与挤压的实用计算 第七章圆轴扭转 第一节圆轴扭转的工程实例与力学模型 第二节扭矩扭矩图 第三节圆轴扭转时横截面上的应力和强度计算 第四节圆轴扭转时的变形和刚度计算

工程力学答案

1:图示应力状态,其主应力有何特点( ) 1. 2. 3. 4. 2:图示应力状态,其主应力有何特点( ) 1. 2. 3. 4. 3: 一两端受扭转力偶作用的圆轴,下列结论中哪些是正确的( ) 1)该圆轴中最大正应力出现在圆轴横截面上; 2)该圆轴中最大正应力出现在圆轴纵截面上; 3)最大切应力只出现在圆轴横截面上; 4)最大切应力只出现在圆轴纵截面上。 1. 2),3);

2. 2),4); 3. 1),4); 4.全错。 4: 下列结论中正确的是( ): 1. 钢材经过冷作硬化后,其弹性模量不变; 2.钢材经过冷作硬化后,其比例极限不变; 3.钢材经过冷作硬化后,其材料的强度极限可得到提高; 4.钢材经过冷作硬化后,其材料的强度不能得到提高。 5:受扭圆轴中最大切应力为τ,下列结论中哪些是正确的( ) 1) 该圆轴中最大正应力为σmax=τ; 2) 该圆轴中最大压应力为σmax=-τ; 3) 最大切应力只出现在圆轴横截面上; 4) 圆轴横截面上和纵截面上均无正应力。 1. 1),2),3); 2. 1),2),4); 3.全对; 4.全错。

6:图示应力状态,其主应力关系必有( ) 1. 2. 3. 4. 7:箱形截面外伸梁,梁有图示的两种放置方式,在对 称弯曲的条件下,两梁的 有如下4种关系:正确答案是( ): 1. 2. 3. 4.无法确定 8: 下列结论中正确的是( ): 1.钢材经过冷作硬化后,其延伸率将降低;

2.钢材经过冷作硬化后,其截面收缩率可得到提高; 3.钢材经过冷作硬化后,其抗冲击性能可得到提高; 4.钢材经过冷作硬化后,其材料的强度将降低。 9: 下列结论中正确的是( ): 1.钢材经过冷作硬化后,其截面收缩率可得到提高; 2.钢材经过冷作硬化后,其延伸率可得到提高; 3.钢材经过冷作硬化后,其抗冲击性能可得到提高; 4.钢材经过冷作硬化后,其材料的强度可得到提高。 10: 脆性材料具有以下哪种力学性质( ): 1.试件拉伸过程中出现屈服现象; 2.压缩强度极限比拉伸强度极限大得多; 3.抗冲击性能比塑性材料好; 4.若构件因开孔造成应力集中现象,对强度无明显影响。 11: 图示结构,其中AD杆发生的变形为:( )

工程力学-应力状态与应力状态分析报告

8 应力状态与应变状态分析 1、应力状态的概念, 2、平面应力状态下的应力分析, 3、主平面是切应力为零的平面,主应力是作用于主平面上的正应力。 (1)过一点总存在三对相互垂直的主平面,对应三个主应力,主应力排列规定按代数值由大到小为: 321σσσ≥≥ 最大切应力为 13 2 max σστ-= (2)任斜截面上的应力 α τασσσσσα2sin 2cos 2 2 xy y x y x --+ += α τασστα2cos 2sin 2 xy y x +-= (3) 主应力的大小 2 2min max )2 ( 2 xy y x y x τσσσσσ+-±+= 主平面的方位 y x xy tg σστα--= 220 4、主应变 12 2122x y x y xy xy x y ()()tg εεεεεεγγ?εε? = +±-+? = - 5、广义胡克定律 )]([1 z y x x E σσμσε+-=

)] ( [ 1 x z y y E σ σ μ σ ε+ - = )] ( [ 1 y x z z E σ σ μ σ ε+ - = G zx zx τ γ= G yz yz τ γ= ,G xy xy τ γ= 6、应力圆与单元体之间的对应关系可总结为“点面对应、转向相同、夹角两倍。” 8.1试画出下图8.1(a)所示简支梁A点处的原始单元体。 图8.1 [解](1)原始单元体要求其六个截面上的应力应已知或可利用公式直接计算,因此应选取如下三对平面:A点左右侧的横截面,此对截面上的应力可直接计算得到;与梁xy平面平行的一对平面,其中靠前的平面是自由表面,所以该对平面应力均为零。再取A点偏上和偏下的一对与xz平行的平面。截取出的单元体如图8.1(d)所示。 (2)分析单元体各面上的应力: A点偏右横截面的正应力和切应力如图8.1(b)、(c)所示,将A点的坐标x、y代入正应力和切应力公式得A点单元体左右侧面的应力为: z M y I σ= b I QS z z * = τ 由切应力互等定律知,单元体的上下面有切应力τ;前后边面为自由表面,应力为零。在单元体各面上画上应力,得到A点单元体如图8.1(d)。 8.2图8.2(a)所示的单元体,试求(1)图示斜截面上的应力;(2)主方向和主应力,画出主单元体;(3)主切应力作用平面的位置及该平面上的正应力,并画出该单元体。 解题范例

工程力学课程教学大纲

《工程力学》课程教学大纲 课程代码:210305 课程名称:工程力学/Engineering Mechanics 学时/学分:96 / 6 先修课程:《高等数学》、《线性代数》 适用专业:机械设备及自动化、材料成型及控制工程、汽车应用技术、金属材料工程 开课院系:基础教学学院工程力学教学部 开课院系:基础教学学院工程力学教学部 教材:《工程力学教程》西南交大应用力学与工程系编 2004年7月 参考教材:《理论力学》第六版哈尔滨工业大学理力教研室高教社2002年8月教材: 主要参考书:《材料力学》单辉祖高等教育出版社 2004年 4月第二版 《材料力学》刘鸿文高等教育出版社 2004年第四版 一、课程的性质和任务 《工程力学》包括理论力学和材料力学这两门课的主要部分内容,是机电、材料、汽车等工科大学一门重要的技术基础课。它的任务是使学生在学习高等数学、工程制图等课程的基础上,培养学生对简单工程对象正确建立力学模型的能力,对这些力学模型进行静力学,运动学,动力学(包括瞬时与过程)分析和计算的能力;同时对构件的强度、刚度以及稳定性等问题有明确的基本概念和基本计算能力。能利用工程力学的基本概念判断分析结果正确与否的能力。并为后续课程学习、以及从事工程技术工作打下坚实的力学基础。 二、教学内容和基本要求 理论力学内容部分和基本要求: (一)静力学: 力的概念;约束及约束力;物体的受力分析;各种力系的简化与平衡;摩擦和物体的重心。(二)运动学: 描述点的运动方程、在其基础上求点速度和加速度;刚体的平动与定轴转动方程的建立、如何求其速度和加速度;重点讲授点的复合运动和刚体的平面运动。 (三)动力学: 质点运动微分方程,动力学普遍定理应用,惯性力的概念及达朗伯原理。 学完理论力学后,应完整地理解基本内容,掌握基本概念、基本理论和基本方法,并达到下列要求: 1、具有从简单实际问题中提出理论力学问题的初步能力。 2、能选取分离体并正确画出受力图。 3、平面力系和空间力系的简化;能熟练运用平面力系的平衡方程求解简单物系的平衡问题(包 括考虑有摩擦力的情况)。 4、能正确地运用分解和合成的方法分析点的运动。能熟练运用点的速度合成定理。熟练地计算 刚体作平面运动时角速度和刚体上点的速度。 5、能正确运用动力学普遍定理求解简单的动力学问题。 6、能熟练地运用达朗伯原理求解简单的动反力问题。

弹塑性力学 应力和应变之间的关系

我所认识的应力和应变之间的关系 在单向应力状态下,理想弹性材料的应力和应变之间的关系是满足胡克定律的一一对应的关系。在三维应力状态下描述一点处的应力状态需要9个分量,相应的应变状态也要用9个应变分量来表示。对于一个具体的理想弹性体来讲,如果在三维应力状态下,应力与应变之间仍然有线性一一对应关系存在,则称这类弹性体为线性弹性体。 所谓各向弹性体,从力学意义上讲,就是弹性体内的每一点沿各个方向的力学性质都完全相同的。这类线性弹性体独立的唐兴常数只有两个。 各向同性体本构关系特点:1.主应力与主应变方向重合。2.体积应力与体积应变成比例。 3.应力强度与应变强度成比例。 4.应力偏量与应变偏量成比例。工程应用中,常把各向同性弹性体的本构方程写下成11()11()11()x y z xy xy y x z yz yz z y x xz xz E G E G E G εσμσσγτεσμσσγτεσμσσγτ???=-+=???????=-+=???????=-+=???? ,式中分别为弹性模量、泊松比和剪切模量。在E G μ、、这三个参数之间,实际上独立的常量只有两个,它们之间存在关系为() 21E G μ=+。 屈服条件:弹性和塑性的最主要区别在于变形是可以恢复。习惯上,根据破坏时变形的大小把工程材料分为脆性材料和塑性材料两类。对于加载过程如图1 OA: 比例阶段;线性弹性阶段 AB: 非弹性变形阶段 BC : 初始屈服阶段 s σσ≤ CDE :强化阶段;应变强化硬化阶段 EF : 颈缩阶段;应变弱化,软化阶段 s σσ≥ C 点为初始屈服点具有唯一性。在应力超过屈服应力后,如果在曲线上任意一点D 处卸 载,应力和应变之间将不再遵循原有的加载曲线规 律,而是沿一条接近平行于OA 的直线DO ’变化,直到应力下降为零,这时应变并不为零,即有塑性应变产生。如果用OD ’表示总应变ε,O ’D ’表示可以恢复的弹性应变e ε,OO ’表示不能恢复的塑性应变p ε,则有e p εεε=+,即总应变等于弹性应变加上塑性应变。若在卸载后重新加载,则曲线基本上仍沿直线O ’D 变化,直至超过D 点的应力之后,才会产生新的塑性变形。由此看来,在经过前次塑性变形后,屈服应力提高了,这种现象称为应变强化现象。为了与初始屈服相区别,我们把机箱发生新的塑性变形时的材料的再次屈服称为后

2021年工程力学第六章答案 梁的变形-工程力学梁的弯曲答案

第五章梁的变形 欧阳光明(2021.03.07) 测试练习 1.判断改错题 5-1-1梁上弯矩最大的截面,挠度也最大,弯矩为零的截面,转角亦为零.() 5-1-2两根几何尺寸、支承条件完全相同的静定梁,只要所受荷栽相同,则两梁所对应的截面的挠度及转角相同,而与梁的材料是否相同无关。() 5-1-3悬臂梁受力如图所示,若A点上作用的集中力P在A B段上作等效平移,则A截面的转角及挠度都不变。() 5-1-4图示均质等直杆(总重量为W),放置在水平刚性平面上, 若A端有一集中力P作用,使A C B部分仍与刚性 平面贴剪力和) 5-1-5挠曲线近似微分方程不能用于求截面直梁的位移。() 5-1-6等截面直梁在弯曲变形时,挠度曲线的曲率最大值发生在转角等于零的截面处。 () 5-1-7两简支梁的抗刚度E I及跨长2a均相同,受力如图所示,则两梁跨中截面的挠度不等而转角是相等的。 题5-1-3图题5-1-4图

( ) 5-1-8 简支梁在图示任意荷载作用下,截面C 产生挠度和转角,若在跨中截面C 又加上一个集中力偶M 0作用,则梁的截面C 的挠度要改变,而转角不变。 ( ) 5- 下别按放截面同。 ( ) 5-1-10 图示变截 面梁,当用积分法求挠曲线方程时,因弯矩 方程有三 个 , 则 通 常 有 6 个 积 分 常 量 。 ( ) 5-2-1 挠曲线近似微分方 程y "。 5-2-2 已知图示二梁的抗弯度E I 相同,若使二者自由端的挠度相等,则 =2 1 P P 5-2-3 应用叠加原理求梁的变形时应满足的条件是:。 5-2-4 在梁的变形中挠度和转角之间的关系是。 5-2-5 用积分法求图示的外伸梁(B D 为拉杆)的挠曲线方程时,求解积分常量所用到的边界条件是,连续条件是。 5-2-6 用积分法求图示外伸梁的挠曲线方程时,求解积分常量所用到边界条件是,连续条件是。 5-2-7 图示结构为次超静定梁。 题5-1-8图 题5-1-7图 题5-1-9图 题5-2-2图

jlu塑性力学复习题

塑性力学复习题 一、填空题 1.塑性变形不仅与当前的应力状态有关,还和(加载历史)有关。 2.对一般金属,体积应变完全是()的,静水压力不产生()。它对屈服极限的影响()。 3.下图是低碳钢作简单拉伸试验得到的应力—应变曲线。 (1)图中P点的纵坐标称为(),记作()。Q点的纵坐标称为(),记作()。对应于R点的应力称为(),对应于SA的应力称为()。一般把()称为屈服极限,以()表示。 σ阶段,服从()。 (2)在σ≤ s (3)σ—ε曲线的ABF段称为()。 (4)卸载时卸掉的应力σ'与恢复的应变ε'之间也应当服从()。 (5)经过一次塑性变形以后再重新加载的试件,其弹性段增大了,屈服极限提高了。这种现象称为()。 (6)σ—ε曲线至F点后开始下降,这是由于在F点处试件已开始出现()现象。 ε=(), 4.八面体面上的正应变为 8 γ()。 剪应变为= 8 σ=()。 5.用主应力表示的等效应力(或应力强度)为: i 用六个应力分量表示的等效应力(或应力强度)为: σ=()。 i 6.用主应力表示的等效剪应力(或剪应力强度)为:T = ()。 用六个应力分量表示的等效剪应力(或剪应力强度)为: T = ()。 μ=()。 7.应力状态的Lode参数为: σ ε=()。 8.用主应变表示的等效应变(或应变强度)为: i 用六个应变分量表示的等效应变(或应变强度)为: ε= ()。 i 9.用主应变表示的等效剪应变(或剪应变强度)为:Γ=()。 用六个应变分量表示的等效剪应变(或剪应变强度)为:

Γ=( )。 10.表示应变状态特征的Lode 参数为:εμ=( )。 11.第一应力不变量为:1I =( )=( )。 第二应力不变量为:2I =( )=( )。 第三应力不变量为:3I =( )=( )。 12.第一应变不变量为:1I '=( )=( )。 第二应变不变量为:2I '=( )=( )。 第三应变不变量为:='3I ( )=( )。 13.应力偏张量的第一不变量为:=1J ( )。 应力偏张量的第二不变量为:2J =( ) =( )。 应力偏张量的第三不变量为:3J =( )=( )。 14.应变偏张量的第一不变量为:='1J ( )。 应变偏张量的第二不变量为:='2 J ( ) =( )。 应变偏张量的第三不变量为:3J '=( )=( )。 15.在应力空间中,靠近坐标原点且包括原点在内,有一个弹性区(在这个区内的点所表示的应力状态处于弹性阶段),而在其外则为塑性区(其中各点所表示的应力状态已进入塑性阶段)。这两个区的分界叫做( )。 16.主应力按大小顺序排列时的Tresca 屈服条件为( )。 17.主应力不按大小顺序排列时的Tresca 屈服条件为 ( )。 18.用应力偏张量的第二,第三不变量表示的Tresca 屈服条件为: ( )。 19.Mises 屈服条件为( ) 或( )。 二、判断题(如果题中的说法正确,就在后面的括号里填“√”反之填“×”) 1.塑性应变和应力之间具有一一对应的关系。( ) 2.进入塑性状态后,应力与应变之间呈非线性关系。( )。 3.一个已知应力状态(σ1,σ2,σ3)对应π平面上唯一的点S 。反之,π平面上的一点S 也唯一地确定它所代表的原始应力状态。( ) 4.如果以单向拉伸得到的σ为基础,则Mises 屈服条件和Tresca 屈服条件在单向拉压应力状态下完全一致,( )在纯剪切时二者差异最大,约为15%。( ) 三、选择题(只能选一个答案) 1.如果规定σ1≥σ2≥σ3,则最大剪应力为( ): a .22 1max σστ-=; b .231max σστ-=; c .2 32max σστ-=。 2.单向拉伸(0,0321==>σσσ)时应力状态的Lode 参数为( )。 a .σμ=-1; b .σμ=0; c .σμ=1。 3.纯剪切(312,0σσσ-==)时应力状态的Lode 参数为( )。 a .σμ=-1; b .σμ=0; c .σμ=1。 4.单向压缩(0,0321<==σσσ)时应力状态的Lode 参数为( )。

工程力学(48学时)

《工程力学》课程教学大纲 课程名称:工程力学 考核方式:考试课 学时:48 前导课程: 后续课程: 一、课程定位 1.课程性质 本课程系机械等工科专业的重要技术基础课,是研究结构受力及构件承载能力的课程,是工程技术人员必备的知识。它包括理论力学和材料力学两部份内容。 2.课程作用 课程作用是使学生具有对一般工程结构作受力分析的能力,对构件作强度,刚度计算和稳定性核算的能力,了解材料的主要力学性能并具有测试强度指标的初步能力。根据“以就业为导向,以教学为中心的”的教育理念,把工程力学课程定位在注重培养学生的工程实践能力、技术应用能力和社会适应能力上。同时提出在教学的各个环节强调理论联系实际的教学原则,即要培养学生运用理论知识解决工程中的实际问题的能力,又可有效地把知识转化为相应的工作能力和技能。使本课程为今后应用于压力容器和学习建筑结构、机械设计等后续课程打下必要的力学基础。 二、适用专业、课程代码 本课程大纲适用于城市热能应用技术专业。 课程代码:。 三、课程教学目标 1.知识目标 (1)理解力学模型的建立 (2)掌握刚体系统平衡分析 (3)掌握杆件的强度分析 (4)理解超静定结构的分析 (5)初步掌握锅炉结构的力学模型及其力学分析 2.能力目标

(1)会应用力学概念对实际问题建模 (2)能够对实际问题抽象提炼进行理想状态分析 (3)能够综合实际问题作出比较准确的估算 3.素质目标 (1)培养良好的职业道德修养 (2)训练良好的团队精神 (3)具备自主学习能力,能通过信息数据库获取有关汽车电气系统的知识。 (4)具备一定的独立分析能力 四、课程教学设计

五、课程教学内容学时分配表 六、教学内容纲要 第一部分绪论 (一)教学内容和要求 初步了解工程力学的学习目的、内容和任务。 (二)教学建议(采用的教学方法与手段) 初步了解工程力学的学习目的、内容和任务 第二部分静力学基础理论 (一)教学内容和要求 理解平衡、刚体和力的概念;掌握静力学四个公理;掌握物体的受力分析画物体受力图。 (二)教学重点和难点 1.重点

相关文档
最新文档