弯曲应力(工程力学)概要

合集下载

材料力学弯曲应力知识点总结

材料力学弯曲应力知识点总结

材料力学弯曲应力知识点总结弯曲应力是材料力学中重要的概念之一,它描述了材料在受到弯曲力作用时所承受的内部力状态。

了解和掌握弯曲应力的知识对于工程领域的设计和分析具有重要意义。

本文将对材料力学中弯曲应力的相关知识点进行总结。

一、弯曲应力的基本概念弯曲应力是指在材料受到弯曲作用时,在横截面上单位面积所承受的力的大小,通常用σ表示。

弯曲应力的大小与施加在材料上的弯曲力以及截面形状和尺寸有关。

二、弯矩和截面性质1. 弯矩:在弯曲过程中,作用在材料上的弯曲力会产生一个力矩。

弯矩的大小等于力矩除以截面法线距离。

弯矩的单位通常是N·m。

2. 惯性矩和截面模量:惯性矩描述了截面抵抗变形的能力,通常用I表示。

截面模量描述了材料在弯曲过程中的刚度,通常用W表示。

惯性矩和截面模量与截面的形状和尺寸有关。

三、材料的截面形状对弯曲应力的影响材料的截面形状对弯曲应力有着重要的影响,以下是几种常见截面形状的弯曲应力分析:1. 矩形截面:矩形截面的弯曲应力呈线性分布,最大弯曲应力出现在截面内边缘。

2. 圆形截面:圆形截面的弯曲应力均匀分布,在截面上的任意一点的弯曲应力都相同。

3. T型截面:T型截面的弯曲应力最大出现在截面顶部和底部的交接处。

4. I型截面:I型截面的弯曲应力主要集中在截面中轴线部分。

四、弯曲应力与应变的关系弯曲应力和应变之间的关系可以通过杨氏模量进行描述。

弯曲应力和应变的关系可以用以下公式表示:σ=M*y/I,其中M为弯矩,y为截面的纵向距离,I为截面的惯性矩。

五、弯曲应力的计算方法根据弯曲应力的定义和性质,可以采用以下方法来计算弯曲应力:1. 等效应力法:将弯矩和弯曲力矩转化为等效应力,然后根据截面形状计算弯曲应力。

2. 梁理论:基于材料的截面形状和尺寸,使用梁理论来计算弯曲应力。

通过计算截面的惯性矩和截面模量来获得弯曲应力。

六、弯曲应力的影响因素弯曲应力受到以下因素的影响:1. 弯曲力的大小和方向2. 材料的弹性模量3. 材料的截面形状和尺寸4. 材料的力学性质和力学行为5. 材料的应变率和应变历史七、弯曲应力的应用弯曲应力在工程设计和分析中具有广泛的应用,例如:1. 结构设计:通过对材料的弯曲应力进行分析,可以确定结构的合理尺寸和截面形状,以满足设计要求。

《工程力学》教学课件第十二章弯曲应力

《工程力学》教学课件第十二章弯曲应力
简支梁
在均布载荷或集中力作用下,简支梁横截面上的正应力呈线 性分布,最大正应力出现在梁的中性层上。
悬臂梁
在自由端受到集中力或均布载荷作用时,悬臂梁横截面上的 正应力呈非线性分布,最大正应力出现在固定端附近。
叠加原理在复杂载荷下梁正应力计算中应用
叠加原理
当梁受到多个载荷作用时,可以将每个载荷单独作用时产生的弯曲变形和正应力进行叠加,从而得到梁在复杂载 荷作用下的总弯曲变形和正应力。
提高构件的弯曲疲劳强度。
06 弯曲应力实验测定方法
电阻应变片法测量原理及操作步骤
测量原理
基于电阻应变效应,通过测量应变片电阻值变化来推算 出试件应变,进而得到弯曲应力。
操作步骤
粘贴应变片、连接测量电路、加载试件、记录数据。
光弹性法测量原理及优缺点分析
01
02
03
测量原理
利用某些透明材料在偏振 光场中受力产生应力双折 射现象,通过光弹性仪器 分析得到应力分布。
其他截面形状(圆形、工字形等)梁剪应力计算方法
圆形截面梁
对于圆形截面梁,可以采用极坐标方法进行剪应力计算,或者将其等效为矩形截面进行 计算。
工字形截面梁
对于工字形截面梁,由于其截面形状复杂,一般采用数值方法进行剪应力计算,如有限 元法等。
剪应力对梁强度和稳定性影响分析
对强度的影响
剪应力过大会导致梁截面发生剪切破坏 ,从而降低梁的承载能力。
《工程力学》教学课件第十二章弯 曲应力
contents
目录
• 弯曲应力基本概念与原理 • 梁弯曲时正应力计算与分析 • 梁弯曲时剪应力计算与分析 • 弯曲变形与位移计算 • 弯曲强度条件与校核方法 • 弯曲应力实验测定方法
01 弯曲应力基本概念与原理

【工程力学】弯曲应力【工程类精品资料】

【工程力学】弯曲应力【工程类精品资料】

第七章弯曲应力7.1预备知识一、基本概念 1、二、重点与难点 1、 2、 3、三、解题方法要点 1、 2、7.2典型题解一、计算题长为l 的矩形截面梁,在自由端作用一集中力F ,已知h=0.18m ,b=0.12m,y=0.06m,a =2m,F=1.5kN ,求C 截面上K 点的正应力。

解:先算出C 截面上的弯矩m N m N Fa M C ⋅⨯-=⨯⨯-=-=331032105.1截面对中性轴(即水平对称轴)的惯性矩为4433310583.01218.012.012m m m bh I z -⨯=⨯==将C M 、z I 及y 代入正应力公式(7—7)。

代入时,C M 、y 均不考虑正负号而以绝对值代入,则MPa Pa m mm N y I M z C K09.31009.306.010583.01036443=⨯=⨯⨯⋅⨯=⋅=-σ C 截面的弯矩为负,K 点位于中性轴上边,所以K 点的应力为拉应力。

在我国法定计量单位制中,应力的单位为Pa 在计算梁的正应力时,弯矩用N.m 、y 用m 、惯性矩用m 4,则算得的应力单位即为Pa 。

二、计算题一矩形珙面的简支木梁,梁上作用有均布荷载,已知:l =4m ,b=140mm,h=210mm,q=2kN/m ,弯曲时木木材的许用正应力[]σ=10MPa ,试校核该梁的强度。

解:梁中的最大正应力发生在跨中弯矩最大的截面上,最大弯矩为m N m m N ql M ⋅⨯=⨯⨯⨯==32232m ax 1044/1028181弯曲截面系数为3222210103.021.014.0616m m m bh W z -⨯=⨯⨯==最大正应力为[]σσ<=⨯=⨯⋅⨯==-MPa Pa m m N W M z 88.31088.310103.01046323max max所以满足强度要求。

二、计算题就计算题一,求梁能承受的最大荷载(即求m ax q )。

解:根据强度条件,梁能承受的最大弯矩为[]σz W M =m ax 跨中最大弯矩与荷载q 的关系为2m ax 81ql M = 所以[]281ql W z =σ 从而得[]m kN m N mPam lW q z /15.5/51504101010103.088226322==⨯⨯⨯⨯==-σ即梁能承受的最大荷载为m kN q /15.5m ax =。

工程力学弯曲应力PPT资料94页

工程力学弯曲应力PPT资料94页

ycmax yt max
M
z
σ tm ax y
σtmax Mytmax Iz
σcmax Mycmax Iz
3.横力弯曲时梁横截面上的正应力
平面假设不再成立
当:L 5
h
纯弯曲的正应力计算公式 计算横力弯曲梁横截面上的正应力
误差不超过1%。
My
IZ
Mxy
IZ
总结
假设 平面假设,单向受力假设
空心圆截面
z
z
y
y
WIz πd4/64 πd3 d/2 d/2 32
WIz b3 h/12b2 h h/2 h/2 6
WπD3(14)
32
αd D
(2)对于中性轴不是对称轴的横截面
Wz
Iz ymax
分别以横截面上受拉和受压部分距中性轴最远的距离
ycmax 和 ytmax 直接代入公式
σcmax
σ My Iz
一些易混淆的概念
对称弯曲与纯弯曲 对称弯曲-对称截面梁,在纵向对称面承受横向外 力时的受力与变形形式 纯 弯 曲-梁或梁段各横截面的剪力为零弯矩为常 数的受力状态
中性轴与形心轴
中性轴-横截面受拉与受压区的分界线 形心轴-通过横截面形心的纵向坐标轴
截面弯曲刚度与抗弯截面系数
弯曲刚度EI-代表梁截面抵抗弯曲变形的能力 抗弯截面系数Wz-代表梁截面几何性质对弯曲强度
中性层 受拉区
受压区 中性轴
纵向纤维既不伸长也不缩短的层—中性层 中性层与横截面的交线—中性轴
中性轴⊥截面纵向对称轴 ❖横截面间绕中性轴相对转动
拉压、扭转时横截面上应力分析过程
变形
平面假定
应变分布
物理关系

工程力学2第五章 弯曲应力

工程力学2第五章 弯曲应力

max
M max ymax M max IZ WZ
目录
§5-3 横力弯曲时的正应力
弯曲正应力强度条件
σmax
M
max
y max
Iz

M
max
WZ
σ
1.等截面梁弯矩最大的截面上 2.离中性轴最远处 3.变截面梁要综合考虑 M 与 I z 4.脆性材料抗拉和抗压性能不同,两方面都要考虑
FS 90kN

M
-
x 90kN
I Z 5.832 10-5 m4 1 M EI
ql 2 / 8 67.5kN m
EI Z 200 109 5.832 10 -5 C MC 60 103 194.4m

x
目录
21
§5-3 横力弯曲时的正应力
第五章 弯曲应力
目录
第五章
弯曲应力
§5-1 纯弯曲 §5-2 纯弯曲时的正应力 §5-3 横力弯曲时的正应力 §5-4 弯曲切应力 §5-6 提高弯曲强度的措施
目录
§5-1 纯弯曲
回顾与比较 内力 应力
FN A
T IP
M FS
目录
? ?
§5–1 引言
(Introduction)
4 103 8810-3 c,max 7.6410-6 46 .1106 Pa 46 .1MPa c
目录
§5-3 横力弯曲时的正应力
(3)作弯矩图
(4)B截面校核
2 .5kN.m
t ,max 27.2MPa t
c,max 46.1MPa c
目录
§5-3 横力弯曲时的正应力

材料力学07弯曲应力

材料力学07弯曲应力
e
x
y
z
P
P
s
M
Q
e
*
弯曲中心的确定:
(1) 双对称轴截面,弯心与形心重合
(2) 反对称截面,弯心与反对称中心重合
(3) 若截面由两个狭长矩形组成,弯心与两矩形长中线交点重合
(4) 求弯心的普遍方法:
C
C
Qy
e
C
C
*
ss
ss
§7-6 考虑材料塑性的极限弯矩
(一)物理关系:
全面屈服后,平面假设不再成立;仍做纵向纤维互不挤压假设
每单元在立面上呈T型双悬臂
*
成昆线 旧庄河 一号桥
(一个单元)
中国铁路上首次采用悬臂拼装法施工的预应力混凝土桥, 主跨为24+48+24(m) 铰接悬臂梁。
*
厂房大梁、 车辆叠板簧、 闸门主梁 鱼腹式吊车梁、桥 阶梯轴…… 龙门刨横梁
*
若使受弯构件每一横截面的最大正应力均相等 或: 挖掘机-手臂 等强度条件: ——等强度梁
取微段dx
z
y
b
h
x
M
dx
x
——两截面内力
分离部分
2、公式推导:
y
Q
——平衡分析……
M+dM
均匀分布
与侧边平行
周边 —— 互等定理
( Sheariog Stresses on Cross Section of Beam )
*
两截面M 不等——
左侧面
右侧面
顶平面
(∵切应力互等 )
平面假设:
(由表及里,由线到面)
(不受拉压应力)
内必有一层既无伸长也无缩短,

弯曲应力_精品文档

弯曲应力_精品文档

弯曲应力引言弯曲应力是材料受到弯曲力作用时产生的应力。

在工程中,许多结构和元件都会承受弯曲力,因此对于弯曲应力的研究非常重要。

本文将介绍弯曲应力的概念、产生原因、计算方法以及对材料性能的影响。

一、概念与定义弯曲应力是由外力在材料截面上产生的弯曲时引起的内力分布所导致的。

当材料受到垂直于其截面的力作用时,材料会发生形变,产生内部应力以抵消外力的作用。

这些应力在截面上沿纵横两个方向分布,形成应力分布图。

在该图中,对于一切外力小于弯曲应力时,材料会发生弹性形变,当外力超过弯曲应力时,材料开始发生塑性变形。

二、弯曲应力产生原因弯曲应力的主要产生原因是施加在材料上的弯曲力。

当一个材料受到作用力时,由于横向收缩和纵向伸展,材料会发生变形。

在弯曲过程中,材料的上面受到压力,下面受到拉力。

这种压力和拉力导致了截面上的应力分布,形成弯曲应力。

三、弯曲应力的计算方法为了计算弯曲应力,需要了解材料的弯曲刚度和外力大小。

根据材料的力学性质,可以使用欧拉-伯努利梁理论计算等效弯曲应力。

该理论基于以下假设:材料在弯曲过程中保持线弹性,纵向扰动被忽略,并且任何截面都在弯曲过程中垂直于轴线。

通过这些假设,可以得到以下弯曲应力的计算公式:σ = (M * y) / I其中,σ是应力,M是弯矩,y是离轴心的距离,I是截面的惯性矩。

这个公式表示弯曲应力与弯矩成正比,与截面惯性矩成反比。

因此,在设计结构时,可以通过调整截面形状或增加材料的截面尺寸来减小弯曲应力。

四、弯曲应力对材料性能的影响弯曲应力对材料性能有重要影响。

首先,弯曲应力会导致材料发生弹性或塑性变形。

在弯曲应力作用下,材料的内部结构发生改变,导致材料的力学性能发生变化。

其次,弯曲应力还会导致材料的疲劳断裂。

当材料受到长期的反复弯曲作用时,弯曲应力超过了材料的疲劳极限,材料会产生裂纹,最终导致断裂。

因此,在设计和使用材料时,必须考虑到弯曲应力对材料的影响,并采取相应的措施来避免材料破坏。

工程力学中的弯曲应力和弯曲变形问题的探究与解决方案

工程力学中的弯曲应力和弯曲变形问题的探究与解决方案

工程力学中的弯曲应力和弯曲变形问题的探究与解决方案引言:工程力学是研究物体受力和变形规律的学科,其中弯曲应力和弯曲变形问题是工程力学中的重要内容。

本文将探讨弯曲应力和弯曲变形问题的原因、计算方法以及解决方案,旨在帮助读者更好地理解和应对这一问题。

一、弯曲应力的原因在工程实践中,当梁、梁柱等结构承受外力作用时,由于结构的几何形状和材料的力学性质不同,会导致结构发生弯曲变形。

弯曲应力的产生主要有以下几个原因:1. 外力作用:外力作用是导致结构弯曲的主要原因之一。

例如,悬臂梁受到集中力的作用,会导致梁的一侧拉伸,另一侧压缩,从而产生弯曲应力。

2. 结构几何形状:结构的几何形状对弯曲应力有直接影响。

例如,梁的截面形状不均匀或不对称,会导致弯曲应力的分布不均匀,从而引起结构的弯曲变形。

3. 材料力学性质:材料的力学性质也是导致弯曲应力的重要因素。

不同材料的弹性模量、屈服强度等参数不同,会导致结构在受力时产生不同的弯曲应力。

二、弯曲应力的计算方法为了准确计算弯曲应力,工程力学中提出了一系列的计算方法。

其中最常用的方法是梁的弯曲方程和梁的截面应力分析。

1. 梁的弯曲方程:梁的弯曲方程是描述梁在弯曲过程中受力和变形的重要方程。

根据梁的几何形状和受力情况,可以得到梁的弯曲方程,并通过求解该方程,计算出梁在不同位置的弯曲应力。

2. 梁的截面应力分析:梁的截面应力分析是通过分析梁截面上的应力分布情况,计算出梁在不同位置的弯曲应力。

该方法根据梁的几何形状和材料的力学性质,采用静力学平衡和弹性力学理论,计算出梁截面上的应力分布,并进一步得到梁的弯曲应力。

三、弯曲变形问题的解决方案针对弯曲变形问题,工程力学提出了一系列的解决方案,包括结构改进、材料选择和加固措施等。

1. 结构改进:对于存在弯曲变形问题的结构,可以通过改进结构的几何形状,增加结构的刚度,从而减小结构的弯曲变形。

例如,在梁的设计中,可以增加梁的截面尺寸或改变梁的截面形状,以增加梁的抗弯刚度。

工程力学-9(2)弯曲应力

工程力学-9(2)弯曲应力

25
§9(2). 弯曲应力
弯曲正应力及正应力强度条件
3. 全梁上最大正应力
M x Fx
0 x l
工 程 力 学
全梁上最大弯矩的大小为 M max Fl 40 kN m
max
M max ymax 40 103 90 103 11.1MPa 2 9 Iz 120 180 10 12


30
§9(2). 弯曲应力
弯曲正应力及正应力强度条件
讨论:承载能力相同情况下,比较两种设计方案:
工 程 力 学
1 2 π 2 A实 πD 40 1256mm 2 4 4
A空
1 π 2 π D02 d 2 482 48 0.8 675mm 2 4 4

工 程 力 学
B
b
BH 3 bh3 Iz 12 12
C
z
HB hb Iy 12 12
3
3
y
BH 3 bh3 Wz 6H
21
§9(2). 弯曲应力
弯曲正应力及正应力强度条件 惯性矩I与抗弯截面系数W的计算
惯性矩的平行移轴公式
工 程 力 学
z O C
dA
y yc a ,
平面假设:纯弯曲梁的横截面变形前后保持为平面且与轴线正交。
工 程 力 学
从对称截面A-A处将 杆件截开。 截开后的杆段,其结 构、受力和变形仍然是对 称的,所以杆段的对称面 同样保持平面。 无限分割下去,就可 以证明所有横截面都将保 持平面。
5
§9(2). 弯曲应力
弯曲正应力及正应力强度条件 变形的几何关系
解:取x截面右段梁为研究对象。

工程力学中的弯曲应力及应变分析

工程力学中的弯曲应力及应变分析

工程力学中的弯曲应力及应变分析工程力学是工程学科中的重要分支,它研究物体在受力作用下的力学性质和变形规律。

而在工程力学中,弯曲应力及应变分析是一项非常重要的内容。

本文将从弯曲应力与应变的基本概念入手,探讨弯曲应力与应变的分析方法,并介绍一些相关的实际应用。

1. 弯曲应力与应变的基本概念在工程力学中,弯曲是指物体在受到力的作用下,发生形状的变化,使其呈现出曲线状的变形。

而弯曲应力则是指物体在弯曲过程中受到的内部力的大小。

弯曲应变则是指物体在弯曲过程中产生的变形程度。

弯曲应力与应变的分析是为了了解物体在受力作用下的变形情况,以便进行结构设计和强度计算。

2. 弯曲应力与应变的分析方法弯曲应力与应变的分析方法主要有两种:一是基于弹性力学理论的解析方法,二是基于有限元分析的数值方法。

在解析方法中,我们可以利用梁的基本假设和弹性力学理论,通过求解弯曲方程和边界条件,得到弯曲应力与应变的解析解。

这种方法适用于简单的几何形状和边界条件的情况,可以快速得到结果。

但是对于复杂的结构和边界条件,解析方法往往难以应用。

数值方法中的有限元分析是一种常用的方法。

它将结构划分成有限个小单元,通过求解每个小单元的力学方程和边界条件,最终得到整个结构的弯曲应力与应变分布。

有限元分析可以处理复杂的几何形状和边界条件,但需要进行离散化处理和复杂的计算,计算量较大。

3. 弯曲应力与应变的实际应用弯曲应力与应变的分析在实际工程中有着广泛的应用。

例如,在建筑领域,我们需要对梁、柱等结构进行弯曲应力与应变的分析,以保证结构的稳定性和安全性。

在机械工程中,对于弯曲杆件、弯曲轴等零部件的设计,也需要进行弯曲应力与应变的分析,以确保其工作正常。

此外,在航空航天、汽车制造等领域,对于飞机、汽车等复杂结构的弯曲应力与应变分析更是不可或缺的。

4. 弯曲应力与应变分析的挑战与发展随着工程领域的不断发展,弯曲应力与应变分析也面临着一些挑战。

首先是对于复杂结构的分析问题,传统的解析方法和有限元分析方法可能无法满足需求,需要开发新的数值方法和计算技术。

《工程力学》课件——第九章 弯曲应力1

《工程力学》课件——第九章  弯曲应力1

第9章弯曲应力
9.1 纯弯曲
9.2 弯曲正应力的强度条件及其应用9.3 提高梁弯曲强度的一些措施
F Fa F F A
C D B
横力弯曲:既有弯矩又有剪力。

如AC 段和DB 段
纯弯曲:只有弯矩,没有剪力。

如CD 段
实验现象: 1、变形前互相平行的纵向直线、变形后变成弧线,且凹边纤维缩短、凸边纤维伸长。

2、变形前垂直于纵向线的横向线,变形后仍为直线,且仍与弯曲了的纵向线正交,但两条横向线间相对转动了一个角度。

变形前原本为平面的横截面变形后仍保持为平面。

且仍垂直于变形后的轴线,只是横截面绕某一轴旋转了一个角度。

必有一层变形前后长度不变的纤维
中性层:梁内一层纤维既不伸长也不缩短,因而纤维不受拉应力和压应力,此层纤维称为中性层。

(阴影面)
中性轴:中性层与横截面的交线称为中性轴。

中性轴与纵向对称面垂直。

•具有纵向对称面
•外力都作用在此面内 •弯曲变形后轴线变成对称面内的平面曲线
对称弯曲 纵向对称面
将梁的轴线取为 x 轴,
横截面的对称轴取为 y 轴,(向下为正) 中性轴取为 z 轴。

z
9.1 纯弯曲
9.2 弯曲正应力的强度条件及其应用9.3 提高梁弯曲强度的一些措施。

工程力学教学课件 第6章 弯曲应力

工程力学教学课件 第6章 弯曲应力

6Fs (h2 y2)
bh3 4
由此式可知,横截面各点切应力是各点坐标y 的2次函数,
切应力的大小沿截面高度呈抛物线分布。中性轴上切应力最
大,上下边缘切应力为零。
33
max6bFh3s h42
3 Fs 2 bh
max

3 2

Fs A
二、其它截面切应力
工字型截面腹板的切应力
翼板 腹板
q2kN/m
40 40 40
A 2m C 2m B
80
解: M C2214k.N m
W zyIm z a x8(113 22 643)18.94 cm 3
Cma x M WzC1480.9402 0.16M 3 Pa
29
§6–4 弯曲切应力
横力弯曲时,梁横截面即有弯矩,也有剪力,相应也必
平面假设分析吗?
18
横力弯曲
19
6-2
横力弯曲正应力公式
弯曲正应力
M (x) y
IZ
弹性力学精确分析表明, 当跨度 l 与横截面高度 h 之 比 l / h > 5 (细长梁)时, 纯弯曲正应力公式对于横力 弯曲近似成立。
横力弯曲最大正应力
max
Mmaxymax IZ
M max
max
P=50kN
P=20kN
30
A
DB
C
0.3m 0.3m 0.2m
5.5kN.m

○-
z
C
110
z1
4kN.m
解:画梁的弯矩图; 确定中性轴的位置。
y111 130 1 0 1 30 5 0 3 3 0 0 8 8 0 0 7 03.2 8 mm

第十章 工程力学之弯曲应力

第十章 工程力学之弯曲应力

max拉MWm1ax [拉] ; max压MWm2ax [压]
式中W1和W2分别是相应于最大拉应力 max拉和最大压应力 max压 的抗弯截面模量,[ 压 ] 为材料的许用拉应力,[ 拉 ]为
材料的许用压应力。
例10-1 某冷却塔内支承填料用的梁,可简化为受均布载荷 的简支梁,如图10-8所示。已知梁的跨长为3m,所受均布
加载之前,先在梁的侧面,分别画上与梁轴线垂直的横线mn、 m1n1,与梁轴线平行的纵线ab、a1b1,前二者代表梁的横截面;
后二者代表梁的纵向纤维。如图10-2(a)所示。
在梁的两端加一对力偶,梁处于纯弯曲状态,将产生如图 10-2(b)、图10-2(c)所示的弯曲变形,可以观察到以下 现象:
•两条横线仍为直线,仍与纵线垂直,只是横线间作相对 转动,由平行线变为相交线。
2. 梁的变形规律
可以证明,纯弯曲梁变形后的轴线为一段圆弧。将图10-2(b)
中代表横截面的线段mn和m1n1延长,相交于C点,C点就是梁轴 弯曲后的曲率中心。若用 表示这两个横截面的夹角, 表
示中性层 故有
O
1
O
2
的曲率半径,因为中性层的纤维长度
O
1
O
2
不变,
O1O2
在如图10-2所示的坐标系中,y轴为横截面的对称轴,z轴为
如图10-1(a)所示的简支梁,其剪 力图如图10-1(b)所示,弯矩图如图 10-1(c)所示。可以看出梁中间一段 的剪力为零,而弯矩为常数,即为纯
弯曲; AC 和DB 段上既有剪力,又有
弯矩,为横力弯曲。
一、变形的几何关系
1. 梁的变形特点
如图10-2(a)所示,取梁的纵向对称面为xy平面。梁上的 外载荷就作用在这个平面内,梁的轴线在弯曲变形后也位于这 个平面内。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
b
d
a d
D
D
b B
矩形
Wz
Iz ymax
bh2 6
圆环
Wz
Iz D3 (1a 4)
ymax 32
回字框
Wz
BH 6
2
(1
bh3 BH 3
)
§6-3 横力弯曲时梁横截面上的正应力
弹性力学精确分析表明,
q
当跨度 l 与横截面高度 h 之
比 l / h > 5 (细长梁)时,
纯弯曲正应力公式对于横力
假设:纵向纤维无相互挤压。
4. 几何方程:
a
b
dq
x
A
y
B
y
O
A1
O1 B1
x
c
d
y
) ))
y
) x
A1B1 AB AB
A1B1 OO1 OO1
( y)dq dq dq
y
x
y
...... (1)
(二)物理关系: 假设:纵向纤维互不挤压。于是,任意一点均处于单向应 力状态。
在横截面上建立坐标系:以对称轴为y轴,以中性轴为Z轴。
弯曲近似成立。 l
横力弯曲正应力公式
s My
IZ
横力弯曲最大正应力
M
s max WZ
目录
q=3.6kN/m
A L=3m
M
qL2
8
+
例2 矩形(bh=0.12m0.18m)截 B
面木梁如图,试求最大正应力。
解:画内力图求危险截面上 的内力
M max
qL2 8
3600 32 8
4050 Nm
Iz=763cm4 ,试计算梁内的最大 拉应力及最大压应力。
RA 2.5kN ; RB 10.5kN ②画弯矩图并求危面内力
P1=9kN
A
C
P2=4kN
B
D
1m 1m 1m
M
2.5kNm
A1 y1 G y2
A2
-4kNm A3
A4
x
M C 2.5kNm (下拉、上压 ) M B 4kNm(上拉、下压)
3 . 纯弯曲
某段梁的内力只有弯 矩没有剪力时,该段梁的 变形称为纯弯曲。如AB段。 x
x M
4 . 纯弯曲段横截面上的应力
只有正应力,没有剪 应力
§6-2 纯弯曲时梁横截面上的正应力
M
M
纵向对称面
a
c
b
d
M
a
c
b
d
(一)变形几何规律: 1.梁的纯弯曲实验
横向线(a b、c d)变
形后仍为直线,但有转动; M
x 求最大应力
s max
M max Wz
6M max bh2
6 4050 0.12 0.182
6.25MPa
P1=9kN
A
C
P2=4kN
B
D

y1
z
1m 1m 1m
y2
例3 T 字形截面的铸铁梁受力如
图,其截面形心位于C点,
解:求支座反力
y1=52mm, y2=88mm, 截面对形心轴的惯性矩
M
qL2
8
+
例2 矩形(bh=0.12m0.18m)截
B 面木梁如图,[s]=7MPa,试求最
大正应力,并校核梁的正应力强度。
解:画内力图求危面力
qL2 3600 32 M max 8 8 4050 Nm x 求最大应力并校核强度
s max
M max Wz
6M max bh2
6 4050 0.12 0.182
M
2.5kNm
M C 2.5kNm (下拉、上压 )
A1 y1 G y2
A2
-4kNm A3
A4
M B 4kNm(上拉、下压)
画危面应力分布图,找危险点
s A4
c
M B y2 Iz
4 88 763108
46.2MPa
s A 2
t
M C y2 Iz
2.5 88 763 10 8
28.2MPa
纵向线变为曲线,且上缩
下伸;横向线与纵向线变
形后仍正交。
2.两个概念 中性层:梁内一层纤维既不伸长也不缩短,因而纤维不 受拉应力和压应力,此层纤维称中性层。 中性轴:中性层与横截面的交线。
纵向对称面 中性层
中性轴
3.假设
纵向对称面 中性层
平面假设:横截面变形后仍为平面,只是绕中性轴发生转
动,且与弯曲后的轴线垂直。距中性层等高处的纵向纤维 变形相等。
则二方面都要考虑。
s max t s t
s max c s c
目录
M
s max Wz
s
依此强度准则可进行三种强度计算:
校核强度:
、校核强度:
设计截面尺寸:
s max [s ]
Wz
M
[s ]
设计载荷: M Wz[s ]; [P] f (M )
q=3.6kN/m
A L=3m
s A3
t
M B y1 Iz
4 52 763108
27.2MPa
校核强度:
s max t 28.2 s t
s max c 46.2 s c
§6-5弯曲剪应力
③画危面应力分布图,找危险点
s A4
c
M B y2 Iz
4 88 763108
46.2MPa
s A 2
t
M C y2 Iz
2.5 88 763 10 8
28.2MPa
s A3
t
M B y1 Iz
4 52 763108
27.2MPa
结论:对于截面关于中性
轴不对称的弯曲构件,最
大弯矩的截面不一定是产
生最大拉应力或最大压应
力的截面。
§6-4 弯曲正应力的强度条件
σmax
M y max Iz
M WZ
σ
1.对等截面梁且截面关于中性轴对称,弯矩最大截面的上
下边缘产生最大正应力
2.若截面关于中性轴不对称,注意最大正应力的计
算。
3.若材料为脆性材料,脆性材料的抗拉和抗压性能不同,
6.25MPa 7MPa [s ]
P1=9kN
P2=4kN
A
CB
D
y1
G
z
1m 1m 1m
y2
M
2.5kNm
-4kNm 解:求支座反力并画弯矩图
RA 2.5kN ; RB 10.5kN
例3 T 字形截面的铸铁梁受力如
图,铸铁的[st]=30MPa,[sc]=60
MPa,其截面形心位于C点, y1=52mm, y2=88mm, Iz=763cm4 ,试校核此梁的强度。 并说明T字梁怎样放置更合理?
s
E x
Ey
...... (2)
(三)静力学关系:
z (中性)轴过形心
故y,z轴为形心主轴。
1 M s E y
EIZ
s My
I 目录
Z
s My
IZ
正应力沿梁高的分布: 线形分布
(四)最大正应力:
s max
Mymax Iz

Wz
I z ymax
抗弯截面模量。
s
max
M WZ
几种截面的抗弯截面模量:
§6–1 梁的纯弯曲 §6–2 纯弯曲时的正应力 §6–3 横力弯曲时的正应力 §6–4 弯曲切应力 §6–5 提高弯曲强度的措施
§6-1 梁的纯弯曲
1、横力弯曲 q
横截面上既有剪力Q又有 弯矩M的情况
2、横力弯曲构件横截面上的(内力)、应力
剪力Q 内力
弯矩M
剪应力t 正应力s
aP A
Q
Pa B
相关文档
最新文档