RN2-150-6井式气体氮化炉方案

RN2-150-6井式气体氮化炉方案
RN2-150-6井式气体氮化炉方案

RN2-150-6井式气体氮化炉

目录

一、公司简介

二、用途及工作条件

三、设备主要技术参数

四、工艺描述

五、设备结构简介

六、关键件明细表

七、售后服务及承诺

八、附图

一、公司简介

二、用途及工作条件

RN2系列井式气体氮化电炉属标准节能型周期作业氮化电炉。主要供各种钢制机械零件、汽车曲轴、活塞杆、模具等进行氨气或甲醇介质条件下进行碳氮、渗碳处理,当不加入介质时也可做一般井式加热炉用。

本型炉并与电炉温度控制柜配合使用,可实现自动或手动控制电炉的工作温度和机械动作。

设备工作条件

室内使用

380V±10%;50HZ,480KVA,三相交流电源。

环境温度:5~50℃,相对湿度<80%。

设备所有周围没有导电尘埃、爆炸性气体及严重破坏金属及绝

缘的腐蚀性气体。

没有振动和颠簸。

三、设备主要技术参数1额定功率: 150Kw

2额定电压: 380V

3相数: 3相

4额定频率: 50HZ

5额定温度: 650℃

6控温区数: 2区

7有效加热尺寸:φ700×4000mm 8加热元件接法: Y

9炉温均匀性:≤±5℃

10温控精度:±1℃

11空炉升温时间:≤3h

四、工艺描述

1、概论:

1.1 、氮化就是把氮渗入钢件表面,形成富氮硬化层的化学热处理过程。

1.2 、氮化处理:氮化处理是利用氨在一定温度下(500 一600 ℃),所分解的活性氮原子向钢的表面层渗透扩散而形成铁氮合金,从而改变钢件表面机械性能(增强耐磨性,增加硬度,提高耐蚀性等)和物理、化学性质。

1.3 、氮化过程:氮化共有三个过程:

( 1 )氨的分解

随着温度的升高,氨的分解程度加大,生成活性氮原子。

2NH3 →6H + 2 [ N 〕

( 2 )吸收过程

钢表面吸收氮原子,先溶解形成氮在Q 一Fe 中的饱和固溶体,然后再形成氮化物。

2mFe + 2 [ N 〕→2FemN

( 3 )扩散过程

氮从表面饱和层向钢内层深处进行扩散,形成一定深度的氮化层。

过程

往氮化炉内不锈钢真空密封罐中通入氨气,加热到520℃,保持适当的时间,根据工件材质和渗层要求3-90小时不等,使渗氮工件表面获得含氮强化层,得到高硬度,高耐磨性,高疲劳极限和良好的耐磨性。

2.操作方法:

2.1.渗氮前的模具必须是先经过正火或调质处理过的工件。

2.2.先用汽油和酒精擦洗工件表面,不得有锈斑、油污、脏物存在。

2.3.装入炉内后,对称拧紧炉盖压紧螺栓。

2.4.将炉罐和炉盖进水口通入冷却水进行循环水冷。炉盖上管道外水套下端为进水,上端为出水,炉罐单独进水,单独排水,炉盖所有水管可按低进高出原则串联,由一个口进水,一个口排水。

2.5.升温前应先送氮气排气,排气时流量应比使用时大一倍以上。排气10分钟后,将控温仪表设定到150℃,自动加热开关拨向开,边排气边加热150℃保持2h排气,再将控温仪表设定到530℃,把氨气流量调小,保持炉内正压,排气口有较小气流向上的压力,当炉温升到530℃时,恒温恒流渗氮3-20h,再将氨气压力调大一点,让排气维持适中压力,渗氮4-70h,再将氨气压力调小,退氮1-2h,切断电源,停止加热,给少量氨气,使炉内维持正压,待炉温降到150℃以下方可停止供氨出炉。

五、设备结构简介

井式炉主要由炉壳、炉衬、加热元件、导流桶、热风循环系统、炉盖及升降机构、控制系统组成。

5.1炉壳

炉体外壳采用Q235国标钢板制成圆筒形,圆筒型炉体外壳以国标型钢对其进行焊接加固。炉底采用10#槽钢纵横焊接为炉体底座,在其上铺焊国标钢板以充分保证炉子较高的整体强度及结构性能。为保证炉子整体的保温性能,防止热量的散失,在炉壳与炉盖之间设置砂密封装置。为保证炉子使用的安全性,在炉壳的侧面安装有保护接线棒及热电偶的金属保护罩。炉壳焊接检验后,再进行防锈处理,先除氧化皮,再刷二次红丹底漆,然后进炉筑炉、安装完成后再制作二次面漆。

为便于运输和安装,炉体分两段制作,中间用法兰连接。

5.2炉衬

为了保证炉衬既有良好的保温性能又能有一定的结构强度,炉衬采用由耐火砖及耐火保温材料组成。即炉墙采用轻质耐火砖作耐火层,炉衬外层夹置硅酸铝纤维,间置填充膨胀蛭石粉填充作保温层。炉口由于要承受炉盖的重量及一定抗冲击能力,所以炉口采用高铝重质耐火砖砌筑,且在其上面敷一层δ=25mm的硅酸铝陶瓷耐火纤维毯,以保证炉口的牢固性及保温性能。炉底由于要承受工件的重量及一定的抗冲击能力,所以炉底采用高铝重质耐火砖砌筑而成。

5.3电热元件

电热元件采用北京首钢生产的0Cr27AL7Mo2电炉丝绕成螺旋状,安装在炉衬的搁砖上,该型号电炉丝最高使用温度可达到1300℃,

具有耐高温、耐腐蚀、耐氧化使用寿命长等特点。将电热元件按每区功率的大小均匀布置,既保证炉子整体的炉温均匀性,又保证电热元件在同一区每组之间的互换性。且整个炉子的电热元件的接线棒均分布在炉子的一侧,外面加装有保护电热元件接线棒及电热偶的保护罩。

5.4炉盖及升降机构

炉盖升降采用丝杆升降系统,由丝杆升降机,导向轴,悬臂架等组成,此结构具有结构紧凑、体积小、无污染、低维修率等优点。

炉盖上还备有三根管子直通炉子的炉罐内,一个管子安装三头滴油器,由三头滴油器可向炉内滴注甲醇、煤油或其他有机液体.各种液体均可调节。另一个管子为试样管,该管端部的封帽上有吊挂试样的不锈钢钩,该管子的上部有一个管接嘴可接压力计用来监护炉内气氛的压力。第三个管子为排气管,用于排出或点燃炉内废气。上述炉盖上的三个管子都有水冷套,以使进入三个管子中的气体快速冷却。

炉罐与炉盖采用双水冷套加真空橡胶密封,并在四周装有压紧手轮,手动操作,方便快捷。

炉盖主要由绝热箱,水冷风机,导流罩等组成。

绝热箱外壳采用耐热钢板焊接,内填充硅酸铝纤维棉。

水冷电机采用炉窑专用水冷电机。电机轴一体化设计,电机轴材质为310S,经久耐用。搅拌风叶为铸造件材质为ZG40Cr25Ni20Si2,在真空的炉膛内形成强对流循环目的,促使炉压提高,炉内气氛、温度均匀,升温快,密封好等特点。

导流罩通过拉杆悬挂与绝热箱上。

5.5马弗罐

渗氮罐由δ=10mm厚310S(2520)耐热钢板卷制焊接而成,上部

为法兰与炉盖连接,底部为蝶形封头,所有焊缝均采用密封焊,保证其气密性。马弗罐与炉壳之间通过沙封隔断热能传递。

马弗罐侧壁上方接有一根管子,直通马弗罐底部,管子有两个接口,一个用于通入氨气介质,另一根用于通入氮气置换炉内空气,防止加热前工件氧化。

马弗罐底座材质为耐腐蚀耐热钢铸造而成。

以上材质抗高温性能好,使用寿命长,经久耐用。

马弗罐内悬挂安装导流筒,由δ=4mm厚310S(2520)耐热钢板卷制焊接而成,

炉盖,马弗罐,导流筒形成热风循环系统,强制炉内空气循环流动,使炉温和炉内气氛均匀。

5.6温度及电气控制系统

温度控制系统由热电偶、智能温控仪表、固态继电器、中圆图记录仪等组成。

采用K型热电偶,测温范围为0-1100℃,热电偶连接智能温控仪表以实现PID调节,实现时时监控和超温报警功能;温控仪表连接记录仪,记录各加热区的温度,温控仪表采用日本导电的PID调节器,温控仪表带有标准的显示面板,通过对智能控制仪进行合理的编程及参数设置,可以设定温度及温度修正以达到每个温区的最佳控制,利用其自动整定功能,达到较为理想的温度稳定性。所采用的记录仪可以连续记录热处理工艺的全过程。

电气控制系统可分为主加热功率回路、控制回路两部分组成,在电器部分的设计具有以下特点:

本电柜配件全部采用国内外知名厂家的产品,具有控制精度高,自动化程度高,性能稳定、安装调试方便、安全可靠。

温控仪表采用日国龙电公司的最新 PID调节器,本仪表具有操作简单、基本功能完善、四位超大LED显示,自整定PID参数,带手动、输出限幅、独立的两回路事件报警继电器。最重要的是采用了岛电在热处理应用方面享有盛名的专家PID算法。

固态继电器由工业级SSR和周波过零控制器组成。SSR即可控硅,采用单向晶闸硅反并联增强工艺,它具有耐压高、通断速度快,长期高温工作性能稳定、恶劣环境的防潮和抗盐雾性能。周波过零控制器采用锁相环和微处理器,它能接受PWM信号或4-20mA输入,产生周期过零式和周波过零式两种输出,直接驱动SSR。由于采用先进的周波过零输出,负载电流的通断是按正弦波均匀分布,多台设备同时运行,所造成的总动力负载电流相对是均衡的,它提高了调节精度和电源利用效率以及避免打表针和电力设备增容,节电效果十分明显。配套散热器为原厂正品配件,散热面积大、热阻小,配合风扇使用,组成吹风式强制冷单元,使固态继电器的性能更加稳定。

本电柜设有声光报警器,与温控表相组合,可以设定7种独立事件,包括:上/下限绝对值,上/下限偏差值,偏差值内/外和超量程报警。可以在第一时间反映出系统的状态。反映现象更为直观。

本电柜其它电气配件全部采用正泰产品,为电柜的整体性能提供了有效的保证。

采用软氮化工艺过程控制系统,能够实时监控炉内氨气的分解率数值。

六、关键件明细表

七、售后服务及承诺

7.1、合同生效后严格依据贵方规定时内交付设备。

7.2、实行图纸设计、产品制造、跟踪及售后服务。

7.3、提供设备使用说明书、安装总图。

7.4、设备施工完毕后,供方负责进行现场安装和冷、热态的调试,保证产品正常使用。

7.5、供方负责对技术、维修和操作人员的理论、维修和操作技能免费进行现场培训,使用户正确熟练使用产品,培训时间在设备调试、试运行阶段进行。

7.6、接到用户保修信息,36小时内派员到现场处理故障。小的故障立即解决,由于用户原因无法即时解决好的,和用户商妥处理方案后尽速解决。

7.7、设备按国家行业标准执行,实行三包,质量保证期为十二个月,保质期内由于设计制作、材质等原因造成的损坏,由供方免费更换和修复。保质期外的损坏,供方给予优惠服务和易损件的供应,终身提供售后服务。

八、附图

氮化处理方式比较

一、氮化的机理 氮化是将工件放入大量活性氮原子的介质中,在一定温度与压力下,把氮原子渗入钢件表面,形成富氮硬化层的热处理。 二、氮化的作用 1、氮化能使零件表面有更高的硬度和耐磨性。例如用38CrMoAlA钢制作的零件经氮化处理后表面的硬度可达HV=950—1200,相当于HRC=65—72,而且氮化后的高强度和高耐磨性保持到500—600℃,不会发生显著的改变。 2、能提高抗疲劳能力。由于氮化层内形成了更大的压应力,因此在交变载荷作用下,零件表现出具有更高的疲劳极限和较低的缺口敏感性,氮化后工件的疲劳极限可提高15—35%。 3、提高工件抗腐蚀能力,由于氮化使工件表面形成一层致密的、化学稳定性较高的ε相层,在水蒸气中及碱性溶液中具有高的抗腐蚀性,此种氮化法又简单又经济,可以代替镀锌、发蓝,以及其它化学镀层处理。此外,有些模具经过氮化,不但可以提高耐磨性和抗腐性,还能减少模具与零件的粘合现象,延长模具的工作寿命。 二、氮化的实现方法 1、气体氮化 气体氮化是将工件放入一个密封空间内,通入氨气,加热到500-580℃保温几个小时到几十个小时。氨气在400℃以上将发生如下分解反应:2NH3—→3H2+2[N],从而炉内就有大量活性氮原子,活性氮原子[N]被钢表面吸收,并向内部扩散,从而形成了氮化层。 以提高硬度和耐磨性的氮化通常渗氮温度为500—520℃。停留时间取决于渗氮层所需要的厚度,一般以0.01mm/h计算。因此为获得0.25—0.65mm的厚度,所需要的时间约为20—60h。提高渗氮温度,虽然可以加速渗氮过程,但会使氮化物聚集、粗化,从而使零件表面层的硬度降低。 对于提高硬度和耐磨性的氮化,在氮化时必须采用含Mo、A、V等元素的合金钢,如38CrMoAlA、38CrMoAA等钢。这些钢经氮很后,在氮化层中含有各种合金氮化物,如:AlN、CrN、MoN、VN等。这些氮化物具有很高的硬度和稳定性,并且均匀弥散地分布于钢中,使钢的氮化层具有很高的硬度和耐磨性。Cr还能提高钢的淬透性,使大型零件在氮化前调质时能得到均匀的机械性能。Mo还能细化晶粒,并降低钢的第二类回火脆性。如果用普通碳钢,在氮化层中形成纯氮化铁,当加热到较高温度时,易于分解聚集粗化,不能获得高硬度和高耐磨性。 抗腐蚀氮化温度一般在600—700℃之间,分解率大致在40—70%范围,停留时间由15分钟到4小时不等,深度一般不超过0.05m m。对于抗腐蚀的氮化用钢,可应用任何钢种,都能获得良好的效果。 2、液体氮化 液体氮化它是一种较新的化学热处理工艺,温度不超过570℃,处理时间短,仅1—3h;而且不要专用钢材,试验表明:40Cr经液体氮化处理比一般淬火回火后的抗磨能力提高50%;铸铁经液体氮化处理其抗磨能力提高更多。不仅如此,实践证明:经过液体氮化处理的零件,在耐疲劳性、耐腐蚀性等方面都有不同程度的提高;高速钢刀具经液体氮化处理,一般能提

高温井式电阻炉安全操作规程标准范本

操作规程编号:LX-FS-A85449 高温井式电阻炉安全操作规程标准 范本 In The Daily Work Environment, The Operation Standards Are Restricted, And Relevant Personnel Are Required To Abide By The Corresponding Procedures And Codes Of Conduct, So That The Overall Behavior Can Reach The Specified Standards 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

高温井式电阻炉安全操作规程标准 范本 使用说明:本操作规程资料适用于日常工作环境中对既定操作标准、规范进行约束,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 1 目的 本规程用于指导操作者正确操作和使用设备。 2 适用范围 本规程适用于指导高温井式电阻炉的操作与安全操作。 3 管理内容 3.1 操作规程 3.1.1 设备检查:开炉前应对设备各部分是否

正常作一次全面检查。 3.1.1.1 检查液压站油位及管路应正常,然后启动液压泵起、闭炉盖,检查液压升降机构动作是否正常、坩埚应无烧裂或严重变形。 3.1.1.2 电热元件的接线柱、安全防护罩、设备接地装置是否正确有效。 3.1.1.3 风扇运转是否正常、炉子起、闭联锁开关是否安全可靠。 3.1.1.4 测控温装置是否完好、准确。 3.1.2 炉子启动: 3.1.2.1 经全面检查设备确认无任何隐患和问题后,打开控温仪表和启动加热和风扇开关并按工艺卡所规定的工艺参数设定炉温。 3.1.2.2 操作人员要坚持做好升温过程检查,防止仪表跑温或其它事故。

渗氮与氮化处理

渗氮 渗氮,是在一定温度下一定介质中使氮原子渗入工件表层的化学热处理工艺。常见有液体渗氮、气体渗氮、离子渗氮。传统的气体渗氮是把工件放入密封容器中,通以流动的氨气并加热,保温较长时间后,氨气热分解产生活性氮原子,不断吸附到工件表面,并扩散渗入工件表层内,从而改变表层的化学成分和组织,获得优良的表面性能。如果在渗氮过程中同时渗入碳以促进氮的扩散,则称为氮碳共渗。常用的是气体渗氮和离子渗氮。 原理应用 渗入钢中的氮一方面由表及里与铁形成不同含氮量的氮化铁,一方面与钢中的合金元素结合形成各种合金氮化物,特别是氮化铝、氮化铬。这些氮化物具有很高的硬度、热稳定性和很高的弥散度,因而可使渗氮后的钢件得到高的表面硬度、耐磨性、疲劳强度、抗咬合性、抗大气和过热蒸汽腐蚀能力、抗回火软化能力,并降低缺口敏感性。与渗碳工艺相比,渗氮温度比较低,因而畸变小,但由于心部硬度较低,渗层也较浅,一般只能满足承受轻、中等载荷的耐磨、耐疲劳要求,或有一定耐热、耐腐蚀要求的机器零件,以及各种切削刀具、冷作和热作模具等。渗氮有多种方法,常用的是气体渗氮和离子渗氮。 钢铁渗氮的研究始于20世纪初,20年代以后获得工业应用。最初的气体渗氮,仅限于含铬、铝的钢,后来才扩大到其他钢种。从70年代开始,渗氮从理论到工艺都得到迅速发展并日趋完善,适用的材料和工件也日益扩大,成为重要的化学热处理工艺之一。

气体渗氮 一般以提高金属的耐磨性为主要目的,因此需要获得高的表面硬度。它适用于38CrMoAl等渗氮钢。渗氮后工件表面硬度可达HV850~1200。渗氮温度低,工件畸变小,可用于精度要求高、又有耐磨要求的零件,如镗床镗杆和主轴、磨床主轴、气缸套筒等。但由于渗氮层较薄,不适于承受重载的耐磨零件。 气体参氮可采用一般渗氮法(即等温渗氮)或多段(二段、三段)渗氮法。前者是在整个渗氮过程中渗氮温度和氨气分解率保持不变。温度一般在480~520℃之间,氨气分解率为15~30%,保温时间近80小时。这种工艺适用于渗层浅、畸变要求严、硬度要求高的零件,但处理时间过长。多段渗氮是在整个渗氮过程中按不同阶段分别采用不同温度、不同氨分解率、不同时间进行渗氮和扩散。整个渗氮时间可以缩短到近50小时,能获得较深的渗层,但这样渗氮温度较高,畸变较大。 还有以抗蚀为目的的气体渗氮,渗氮温度在 550~700℃之间,保温 0.5~3小时,氨分解率为35~70%,工件表层可获得化学稳定性高的化合物层,防止工件受湿空气、过热蒸汽、气体燃烧产物等的腐蚀。 正常的气体渗氮工件,表面呈银灰色。有时,由于氧化也可能呈蓝色或黄色,但一般不影响使用。 离子渗氮

井式电阻炉安全操作规程(新版)

The prerequisite for vigorously developing our productivity is that we must be responsible for the safety of our company and our own lives. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 井式电阻炉安全操作规程(新版)

井式电阻炉安全操作规程(新版)导语:建立和健全我们的现代企业制度,是指引我们生产劳动的方向。而大力发展我们生产力的前提,是我们必须对我们企业和我们自己的生命安全负责。可用于实体印刷或电子存档(使用前请详细阅读条款)。 1操作规程 1.1设备检查:开炉前应对设备各部分是否正常作一次全面检查。 1.1.1检查液压站油位及管路应正常,然后启动液压泵起、闭炉盖,检查液压升降机构动作是否正常、坩埚应无烧裂或严重变形。 1.1.2电热元件的接线柱、安全防护罩、设备接地装置是否正确有效。 1.1.3风扇运转是否正常、炉子起、闭联锁开关是否安全可靠。 1.1.4测控温装置是否完好、准确。 1.2炉子启动: 1.2.1经全面检查设备确认无任何隐患和问题后,打开控温仪表和启动加热和风扇开关并按工艺卡所规定的工艺参数设定炉温。 1.2.2操作人员要坚持做好升温过程检查,防止仪表跑温或其它事故。1.3装炉: 1.3.1按轴承套圈的大小和工艺文件的规定,将工件摆平、摞直、

放稳在专用的工装、吊具上。然后使用行车稳、准地将工件吊入井式炉炉膛中的支承平座架上。 1.3.2若两人装吊,应密切配合,专心操作,防止装炉不稳、防止发生碰坏设备事故。 1.3.3为了防止工件在加热时产生严重氧化脱碳,工件装架入炉前,可浸涂硼酸酒精饱和溶液。或在工件装炉后,待炉温达到800℃时,通入适量比例的甲醇与丙酮作为保护气氛,以防止工件产生氧化脱碳。 1.3.4注意装入工件高度或吊具、料筐高度不得触及风扇挡板,如必要时先用手旋动风扇,风叶不得碰到工件,同时保证有气流的循环空间。 1.3.5运行中: 1.3.5.1若风扇振动过大,可适当调整炉盖拉杆、顶杆来减少振动。 1.3.5.2发生气氛滴注管路阻塞,应及时排除。 1.3.6出炉:若炉子有通入保护气氛,在开炉盖前,应关闭通入井式炉的保护气氛开关。待排气管明火燃烧渐小后,才可开启炉盖。 1.3.6.1关闭加热元件电源并停止风扇运转。 1.3.6.2打开炉盖,使用行车将淬火支架稳、准地吊出移入淬火油槽中进行冷却。

渗氮及氮化处理

渗氮及氮化处理

渗氮 渗氮,是在一定温度下一定介质中使氮原子渗入工件表层的化学热处理工艺。常见有液体渗氮、气体渗氮、离子渗氮。传统的气体渗氮是把工件放入密封容器中,通以流动的氨气并加热,保温较长时间后,氨气热分解产生活性氮原子,不断吸附到工件表面,并扩散渗入工件表层内,从而改变表层的化学成分和组织,获得优良的表面性能。如果在渗氮过程中同时渗入碳以促进氮的扩散,则称为氮碳共渗。常用的是气体渗氮和离子渗氮。 原理应用 渗入钢中的氮一方面由表及里与铁形成不同含氮量的氮化铁,一方面与钢中的合金元素结合形成各种合金氮化物,特别是氮化铝、氮化铬。这些氮化物具有很高的硬度、热稳定性和很高的弥散度,因而可使渗氮后的钢件得到高的表面硬度、耐磨性、疲劳强度、抗咬合性、抗大气和过热蒸汽腐蚀能力、抗回火软化能力,并降低缺口敏感性。与渗碳工艺相比,渗氮温度比较低,因而畸变小,但由于心部硬度较低,渗层也较浅,一般只能满足承受轻、中等载荷的耐磨、耐疲劳要求,或有一定耐热、耐腐蚀要求的机器零件,以及各种切削刀具、冷作和热作模具等。渗氮有多种方法,常用的是气体渗氮和离子渗氮。 钢铁渗氮的研究始于20世纪初,20年代以后获得工业应用。最初的气体渗氮,仅限于含铬、铝的钢,后来才扩大到其他钢种。从70年代开始,渗氮从理论到工艺都得到迅速发展并日趋完善,适用的材料和工件也日益扩大,成为重要的化学热处理工艺之一。

气体渗氮 一般以提高金属的耐磨性为主要目的,因此需要获得高的表面硬度。它适用于38CrMoAl等渗氮钢。渗氮后工件表面硬度可达HV850~1200。渗氮温度低,工件畸变小,可用于精度要求高、又有耐磨要求的零件,如镗床镗杆和主轴、磨床主轴、气缸套筒等。但由于渗氮层较薄,不适于承受重载的耐磨零件。 气体参氮可采用一般渗氮法(即等温渗氮)或多段(二段、三段)渗氮法。前者是在整个渗氮过程中渗氮温度和氨气分解率保持不变。温度一般在480~520℃之间,氨气分解率为15~30%,保温时间近80小时。这种工艺适用于渗层浅、畸变要求严、硬度要求高的零件,但处理时间过长。多段渗氮是在整个渗氮过程中按不同阶段分别采用不同温度、不同氨分解率、不同时间进行渗氮和扩散。整个渗氮时间可以缩短到近50小时,能获得较深的渗层,但这样渗氮温度较高,畸变较大。 还有以抗蚀为目的的气体渗氮,渗氮温度在 550~700℃之间,保温 0.5~3小时,氨分解率为35~70%,工件表层可获得化学稳定性高的化合物层,防止工件受湿空气、过热蒸汽、气体燃烧产物等的腐蚀。 正常的气体渗氮工件,表面呈银灰色。有时,由于氧化也可能呈蓝色或黄色,但一般不影响使用。 离子渗氮

井式电阻炉操作规程正式样本

文件编号:TP-AR-L6827 There Are Certain Management Mechanisms And Methods In The Management Of Organizations, And The Provisions Are Binding On The Personnel Within The Jurisdiction, Which Should Be Observed By Each Party. (示范文本) 编制:_______________ 审核:_______________ 单位:_______________ 井式电阻炉操作规程正 式样本

井式电阻炉操作规程正式样本 使用注意:该操作规程资料可用在组织/机构/单位管理上,形成一定的管理机制和管理原则、管理方法以及管理机构设置的规范,条款对管辖范围内人员具有约束力需各自遵守。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 1、工作前 a.查验“交接班记录”。 b.操作人员穿戴好规定的防护用品,并熟悉“安 全操作规程”。 c.检查炉门、炉盖、炉膛的清洁情况;检查炉膛 内的保护圈、炉衬、牙砖、电阻丝和热电偶引出棒的 安装紧固情况,发现损坏与松动要及时修理。 d.检查炉门开关机构的滚轮滑动情况并进行润 滑,同时调节滚轮位置应与炉颈的位置相接。 e.按“工艺规程”准备工夹具(挂具)、工件 上的挂环,并焊牢。做到适用、牢固、安全。

f.检查热工仪表。 g.工作环境应符合要求。 2、工作中 a.新炉或新修炉要按“工艺规程”进行烘炉。 b.按工艺要求进行定温。 c.合上总开关,控制开关置于“自动”位置。空炉升温、到温后保温4小时。 d.切断电源,打开炉门。 e.按规定装炉量进行装炉。 f.关闭炉门,接通电源,转换开关置于“自动”位置。 g.按工艺规定进行保温。 h.保温结束后,切断电源,打开炉门进行出炉。 i.按“工艺规程”冷却工件。

零件的氮化处理相关知识

氮化处理 又称为扩散渗氮。气体渗氮在1923年左右,由德国人Fry首度研究发展并加以工业化。由於经本法处理的制品具有优异的耐磨性、耐疲劳性、耐蚀性及耐高温,其应用围逐渐扩大。例如钻头、螺丝攻、挤压模、压铸模、鍜压机用鍜造模、螺桿、连桿、曲轴、吸气及排气活门及齿轮凸轮等均有使用。 一、氮化用钢简介 传统的合金钢料中之铝、铬、钒及钼元素对渗氮甚有帮助。这些元素在渗氮温度中,与初生态的氮原子接触时,就生成安定的氮化物。尤其是钼元素,不仅作为生成氮化物元素,亦作为降低在渗氮温度时所发生的脆性。其他合金钢中的元素,如镍、铜、硅、锰等,对渗氮特性并无多大的帮助。一般而言,如果钢料中含有一种或多种的氮化物生成元素,氮化后的效果比较良好。其中铝是最强的氮化物元素,含有0.85~1.5%铝的渗氮结果最佳。在含铬的铬钢而言,如果有足够的含量,亦可得到很好的效果。但没有含合金的碳钢,因其生成的渗氮层很脆,容易剥落,不适合作为渗氮钢。 一般常用的渗氮钢有六种如下: (1)含铝元素的低合金钢(标准渗氮钢) (2)含铬元素的中碳低合金钢 SAE 4100,4300,5100,6100,8600,8700,9800系。 (3)热作模具钢(含约5%之铬) SAE H11 (SKD – 61)H12,H13 (4)肥粒铁及麻田散铁系不锈钢SAE 400系 (5)奥斯田铁系不锈钢 SAE 300系 (6)析出硬化型不锈钢 17 - 4PH,17 – 7PH,A – 286等 含铝的标准渗氮钢,在氮化后虽可得到很高的硬度及高耐磨的表层,但其硬化层亦很脆。相反的,含铬的低合金钢硬度较低,但硬化层即比较有韧性,其表面亦有相当的耐磨性及耐束心性。因此选用材料时,宜注意材料之特徵,充分利用其优点,俾符合零件之功能。至於工具钢如H11(SKD61)D2(SKD – 11),即有高表面硬度及高心部强度。 二、氮化处理技术: 调质后的零件,在渗氮处理前须澈底清洗乾净,兹将包括清洗的渗氮工作程序分述如下: (1)渗氮前的零件表面清洗 大部分零件,可以使用气体去油法去油后立刻渗氮。但在渗氮前之最后加工方法若採用抛光、研磨、磨光等,即可能产生阻碍渗氮的表面层,致使渗氮后,氮化层不均匀或发生弯曲等缺陷。此时宜採用下列二种方法之一去除表面层。第一种方法在渗氮前首先以气体去油。然后使用氧化铝粉将表面作abrassive cleaning 。第二种方法即将表面加以磷酸皮膜处理(phosphate coating)。(2)渗氮炉的排除空气 将被处理零件置於渗氮炉中,并将炉盖密封后即可加热,但加热至150℃以前须作炉排除空气工作。 排除炉的主要功用是防止氨气分解时与空气接触而发生爆炸性气体,及防止被处理物及支架的表面氧化。其所使用的气体即有氨气及氮气二种。 排除炉空气的要领如下:

氮化优点及常见缺陷原因分析工艺制定

离子氮化及优点,常见缺陷及原因分析,工艺制定 离子氮化是由德国人B.Berghaus于1932年发明的。该法是在0.1~10Torr (Torr = 133.3 Pa)的含氮气氛中,以炉体为阳极,被处理工件为阴极,在阴阳极间加上数百伏的直流电压,由于辉光放电现象便会产生象霓红灯一样的柔光覆盖在被处理工件的表面。此时,已离子化了的气体成分被电场加速,撞击被处理工件表面而使其加热。同时依靠溅射及离子化作用等进行氮化处理。 离子氮化法与以往的靠分解氨气或使用氰化物来进行氮化的方法截然不同,作为一种全新的氮化方法,现已被广泛应用于汽车、机械、精密仪器、挤压成型机、模具等许多领域,而且其应用范围仍在日益扩大。 离子氮化法具有以下一些优点: ①由于离子氮化法不是依靠化学反应作用,而是利用离子化了的含氮气体进行氮化处理,所以工作环境十分清洁而无需防止公害的特别设备。因而,离子氮化法也被称作二十一世纪的“绿色”氮化法。 ②由于离子氮化法利用了离子化了的气体的溅射作用,因而与以往的氮化处理相比,可显著的缩短处理时间(离子渗氮的时间仅为普通气体渗氮时间的1/3~1/5)。 ③由于离子氮化法利用辉光放电直接对工件进行加热,也无需特别的加热和保温设备,且可以获得均匀的温度分布,与间接加热方式相比加热效率可提高2倍以上,达到节能效果(能源消耗仅为气体渗氮的40~70%)。 ④由于离子氮化是在真空中进行,因而可获得无氧化的加工表面,也不会损害被处理工件的表面光洁度。而且由于是在低温下进行处理,被处理工件的变形量极小,处理后无需再行加工,极适合于成品的处理。 ⑤通过调节氮、氢及其他(如碳、氧、硫等)气氛的比例,可自由地调节

热处理电阻炉安全操作规程

热处理电阻炉安全操作规程 1、箱式电阻炉 1、1作业前检查: 1、1、1测温仪表、热电偶、电气设备接地线等是否完好; 1、1、2炉膛内是否有遗留工件,炉底板电阻是否完好。 1、2工件进出炉时应断电操作,不允许工件或工具与电阻丝相碰撞或接触。 1、3箱式电阻护使用温度不允许超过额定值。 1、4电炉通电前应首先合闸,再开控制柜电钮。停炉时应先关控制柜电钮,再拉闸。 1、5每日清理设备各部位(包括炉底板下部)的氧化物和杂物。 1、6工作完毕应整理工作场地,并向下一班次操作负责人交待设备情况。 2、井式电阻炉 2、1管理者应指定炉前操作负责人。 2、2使用前检查设备及炉盖提升装置、工件吊具是否缺损,设备接地、风扇是否良好。 2、3装、出炉工件时应切断电源,不允许带电操作。吊装工件时应注意不应碰撞或接触电阻丝,工件重量不允许超过吊具规定负荷。 2、4开炉过程中,温度不允许超过额定值。 2、5吊装工件时,炉子平台上、下不允许站人。 3、气体渗碳炉 3、1 指定炉前操作负责人。 3、2工作前准备: 3、2、1检查设备的接地情况,并将测量仪表按工艺规范调整正确; 3、2、2 检查炉盖的升降机构是否正常; 3、2、3风扇转动平稳、无噪音,风扇的冷却水管应完好无堵塞,工作中的冷却出水温度不允许大于60℃;

3、2、4输油管道应完好畅通无渗漏,排气管、滴油器应畅通; 3、2、5炉罐内应无碳黑之类杂物,炉子应密封良好; 3、2、6检查吊车的吊放工具是否良好,工件起吊后吊钩下不允许站人。 3、3先给风扇轴迷宫装置通冷却水,然后给设备通电。 3、4温度在3600℃以上时不允许关掉风扇。 3、5温度在750℃以下时不允许向炉内滴注煤油,以防爆炸。 3、6 RJJ 系列气体渗碳炉最高工作温度不允许超过950℃。各设备装置量及最大工件尺寸应符合设备的技术要求。 3、7工件进出炉时设备应断电;吊车的升降速度应缓慢,起吊工件时应将吊钩对中。 3、8在渗碳过程中应点燃从炉内排出的废气。 3、9渗碳工作完毕应立即用辅助炉盖将渗碳炉罐盖好。 3、10液体渗碳剂、甲醇等均属易燃易爆物品,应严格保管,注意防火防爆。 3、11定期检查设备,清洁环境卫生。 4、气体氮化炉 4、1指定炉前操作负责人。 4、2氨瓶应放置在阴凉通风的地方,距离工作场地5m 以上,不允许靠近热、电源,或受日光曝晒,以防气体受热膨胀爆炸。 4、3氨瓶应在指定地点立放,不准用吊车运送,不准摔碰、涂油脂和卧放。 4、4冬季存放氨瓶,环境气温应保持在20℃左右。如液氨冻结,只能用水冲淋化冻,不允许用火或电炉烘烤。 4、5液氨用完后,应在瓶上标注“已用完”,并集中堆放。 4、6氮化炉装好料后,应仔细检查氨气管道、炉盖是否有泄漏,以免污染环境,氨气中毒;严防氨分解出来的氢气遇火自燃,引至氮化包内引起爆炸。

冲压热处理安全检查表/气体渗碳氮化炉安全检查表通用范本

内部编号:AN-QP-HT570 版本/ 修改状态:01 / 00 The Procedures Or Steps Formulated T o Ensure The Safe And Effective Operation Of Daily Production, Which Must Be Followed By Relevant Personnel When Operating Equipment Or Handling Business, Are Usually Systematic Documents, Which Are The Operation Specifications Of Operators. 编辑:__________________ 审核:__________________ 单位:__________________ 冲压热处理安全检查表/气体渗碳氮化炉安全检查表通用范本

冲压热处理安全检查表/气体渗碳氮化炉安全检查表通用范本 使用指引:本操作规程文件可用于保证本部门的日常生产、工作能够安全、稳定、有效运转而制定的,相关人员在操作设备或办理业务时必须遵循的程序或步骤,通常为系统性的文件,是操作人员的操作规范。资料下载后可以进行自定义修改,可按照所需进行删减和使用。 气体渗碳氮化炉安全检查表 说明 1)井式气体渗碳氮化炉由于安装在地坑中,地坑的干燥中保证安全的重要条件,因此地坑不得有积水,渗水现象。 2)氨气有毒,抽风装置及净化装置是防止急性中毒的关键条件之一。 1 设备检查 1.1 井式气体渗碳氮化炉上方应设有抽风罩口,以备抽风。 1.2 井式气体渗碳氮化炉安装在地坑中,

井式电阻炉安全操作规程标准版本

文件编号:RHD-QB-K4071 (操作规程范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 井式电阻炉安全操作规 程标准版本

井式电阻炉安全操作规程标准版本操作指导:该操作规程文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时必须遵循的程序或步骤。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 1操作规程 1.1设备检查:开炉前应对设备各部分是否正常作一次全面检查。 1.1.1检查液压站油位及管路应正常,然后启动液压泵起、闭炉盖,检查液压升降机构动作是否正常、坩埚应无烧裂或严重变形。 1.1.2电热元件的接线柱、安全防护罩、设备接地装置是否正确有效。 1.1.3风扇运转是否正常、炉子起、闭联锁开关是否安全可靠。 1.1.4测控温装置是否完好、准确。

1.2炉子启动: 1.2.1经全面检查设备确认无任何隐患和问题后,打开控温仪表和启动加热和风扇开关并按工艺卡所规定的工艺参数设定炉温。 1.2.2操作人员要坚持做好升温过程检查,防止仪表跑温或其它事故。1.3装炉: 1.3.1按轴承套圈的大小和工艺文件的规定,将工件摆平、摞直、放稳在专用的工装、吊具上。然后使用行车稳、准地将工件吊入井式炉炉膛中的支承平座架上。 1.3.2若两人装吊,应密切配合,专心操作,防止装炉不稳、防止发生碰坏设备事故。 1.3.3为了防止工件在加热时产生严重氧化脱碳,工件装架入炉前,可浸涂硼酸酒精饱和溶液。或在工件装炉后,待炉温达到800℃时,通入适量比例

的甲醇与丙酮作为保护气氛,以防止工件产生氧化脱碳。 1.3.4注意装入工件高度或吊具、料筐高度不得触及风扇挡板,如必要时先用手旋动风扇,风叶不得碰到工件,同时保证有气流的循环空间。 1.3.5运行中: 1.3.5.1若风扇振动过大,可适当调整炉盖拉杆、顶杆来减少振动。 1.3.5.2发生气氛滴注管路阻塞,应及时排除。 1.3.6出炉:若炉子有通入保护气氛,在开炉盖前,应关闭通入井式炉的保护气氛开关。待排气管明火燃烧渐小后,才可开启炉盖。 1.3.6.1关闭加热元件电源并停止风扇运转。 1.3.6.2打开炉盖,使用行车将淬火支架稳、准地吊出移入淬火油槽中进行冷却。

氮化处理工艺守则

氮化处理工艺 QB/ZFFG04.46.56-2005 Rev.01 1、适用范围 本标准规定我厂使用的抗蚀氮化处理的工艺守则。 2、名词术语 2.1氮化 将钢铁工件置于渗氮介质中,在一定温度下加热保温,从而在工件表面形成一层以氮化物为主的渗层组织的化学热处理工艺过程。 2.2抗蚀氮化 使碳钢、一般低合金钢工件表面形成一层0.0150.060mm厚致密的、化学稳定性高的ε相组织或ε+ξ相组织,从而提高工件在一定介质中的抗腐蚀能力的气体氮化过程。 2.3有效加热区 炉膛内炉温均匀性符合热处理工艺要求的装料区域。有效加热区的确定按GB9452-88《热处理炉有效加热区测定方法》进行。 2.4炉温均匀性 在正常工作条件和额定温度下,在热稳定状态时,同一时刻在规定的测温区域内,炉温的最高值与最低值之间的偏差。 2.5热处理变形 由热处理引起的工件形状变化或尺寸的偏差。垂直于长度方向的变形叫做弯曲。 3、待氮化件 3.1待氮化件的材料 待氮化件的材料,其化学成分应符合有关国家标准、部标准或厂标准的规定。 3.2待氮化件的原始状态数据 对于待氮化件,应注明的原始状态数据包括: (1)材质代号或化学成分 (2)待氮化件的供货状态(铸件、锻件、棒料、半成品或成品件) (3)待氮化件的预先热处理状态(正火、退火、淬火+回火) 3.3待氮化件的外观、形状及尺寸 3.3.1工件的外观不允许有裂纹和影响热处理质量的锈蚀、氧化皮及碰伤。 3.3.2工件的简图或任务书,应注明主要尺寸,能准确地反映工件的形状。主要尺寸也可以通过实测获得。 4、热处理设备

4.1氮化加热设备 氮化加热设备必须满足下列要求: 4.1.1在加热设备正常装炉量的情况下,有效加热区内的允许温度偏差不得超过±15℃,且温度可以调节和控制。 4.1.2氮化炉内的气体成分要保证抗蚀氮化的要求,而且可经调节。炉子要密封,炉气要循环。所用液氨的化学成分要稳定,有害杂质少。 4.2温度测定及温度控制设备 4.2.1氮化所使用的各种加热设备都应配有温度测定及温度控制装置,加热设备中的每个加热区都应配备跟踪处理温度与时间关系的记录装置。 4.2.2热电温度测定设备的指示器经校正后,其指示器上温度读数的总误差在预定温度≤400℃时≤±4℃,在预定温度>400℃时≤±T/100℃,T为预定温度。 4.3设备的保养 为了保证设备的精度和使用性能,应遵守热处理设备的操作规程和维修制度,并保存有关记录。其中温度测定及温度控制设备应遵守质量处仪表室的有关规定。 5、作业 5.1氮化前的准备工作 5.1.1对待氮化的工件进行检查和了解,并查阅有关工艺文件 (1)了解待氮化件的质量要求 (2)了解非氮化部位的防渗措施 (3)了解钢材的牌号或化学成分、预先热处理等情况。 5.1.2检查待氮化件的外表质量 (1)氮化前工件的表面粗糙度最好在0.8μm以下。 (2)检查工件表面是否有氧化皮、锈斑、油污。有锈斑者应先进行打磨,然后用汽油清洗;无锈斑者则可直接清洗。清洗后用洁净棉纱或布擦干,在1~~2hr内就应当装炉进行氮化处理。中间停留时间越短越好。 (3)检查工件表面,不允许有碰伤、裂纹、尖角及毛刺。必要时要进行探伤检验。 5.1.3清理氮化罐,并对液氨瓶、四通阀、流量计、氨分解测定器、干燥箱、加热炉及温度测控仪表等设备的状态作严格的检查,保证设备良好、管路畅通。 5.1.4根据工件的形状及技术要求,准备好必要的工夹具。 5.2装炉 5.2.1对工件进行绑扎。绑扎工件的铁丝和工夹具必须洁净。 5.2.2非氮化部位可用镀铜或镀锡保护,也可涂敷涂料(常用水玻璃+10~~20%石墨粉,涂层1~~1.5μm)。

中温井式电阻炉安全操作规程通用版

操作规程编号:YTO-FS-PD975 中温井式电阻炉安全操作规程通用版 In Order T o Standardize The Management Of Daily Behavior, The Activities And T asks Are Controlled By The Determined Terms, So As T o Achieve The Effect Of Safe Production And Reduce Hidden Dangers. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

中温井式电阻炉安全操作规程通用 版 使用提示:本操作规程文件可用于工作中为规范日常行为与作业运行过程的管理,通过对确定的条款对活动和任务实施控制,使活动和任务在受控状态,从而达到安全生产和减少隐患的效果。文件下载后可定制修改,请根据实际需要进行调整和使用。 1 目的 本规程用于指导操作者正确操作和使用设备。 2 适用范围 本规程适用于指导本公司中温井式电阻炉的操作与安全操作。 3 管理内容 3.1 操作规程 3.1.1 设备检查:开炉前应对设备各部分是否正常作一次全面检查。 3.1.1.1 检查液压站油位及管路应正常,然后启动液压泵起、闭炉盖,检查液压升降机构动作是否正常、坩埚

应无烧裂或严重变形。 3.1.1.2 电热元件的接线柱、安全防护罩、设备接地装置是否正确有效。 3.1.1.3 风扇运转是否正常、炉子起、闭联锁开关是否安全可靠。 3.1.1.4 测控温装置是否完好、准确。 3.1.2 炉子启动: 3.1.2.1 经全面检查设备确认无任何隐患和问题后,打开控温仪表和启动加热和风扇开关并按工艺卡所规定的工艺参数设定炉温。 3.1.2.2 操作人员要坚持做好升温过程检查,防止仪表跑温或其它事故。 3.1.3 装炉: 3.1.3.1 按轴承套圈的大小和工艺文件的规定,将工件摆平、摞直、放稳在专用的工装、吊具上。然后使用行车稳、准地将工件吊入井式炉炉膛中的支承平座架上。 3.1.3.2 若两人装吊,应密切配合,专心操作,防止装炉不稳、防止发生碰坏设备事故。 3.1.3.3 为了防止工件在加热时产生严重氧化脱碳,工件装架入炉前,可浸涂硼酸酒精饱和溶液。或在工件装炉后,待炉温达到800℃时,通入适量比例的甲醇与丙酮作为保护气氛,以防止工件产生氧化脱碳。

氮化处理

氮化处理 氮化处理是指一种在一定温度下一定介质中使氮原子渗入工件表层的化学热处理工艺。经氮化处理的制品具有优异的耐磨性、耐疲劳性、耐蚀性及耐高温的特性。 目录 1简介 2技术流程 1. 2.1 渗氮前的零件表面清洗 2. 2.2 渗氮炉的排除空气 3. 2.3 氨的分解率 4. 2.4 冷却 3气体氮化 4液体氮化 5离子氮化 6相关标准 1简介 传统的合金钢料中之铝、铬、钒及钼元素对渗氮甚有帮助。这些元素在渗氮温度中,与初生态的氮原子接触时,就生成安定的氮化物。尤其是钼元素,不仅作为生成氮化物元素,亦作为降低在渗氮温度时所发生的脆性。其他合金钢中的元素,如镍、铜、硅、锰等,对渗氮特性并无多大的帮助。一般而言,如果钢料中含有一种或多种的氮化物生成元素,氮化后的效果比较良好。其中铝是最强的氮化物元素,含有0.85~1.5%铝的渗氮结果最佳。在含铬的铬钢而言,如果有足够的含量,亦可得到很好的效果。但没有含合金的碳钢,因其生成的渗氮层很脆,容易剥落,不适合作为渗氮钢。 一般常用的渗氮钢有六种如下: (1)含铝元素的低合金钢(标准渗氮钢) (2)含铬元素的中碳低合金钢SAE 4100,4300,5100,6100,8600,8700,9800系。 (3)热作模具钢(含约5%之铬)SAE H11 (SKD – 61)H12,H13 (4)铁素体及马氏体系不锈钢SAE 400系 (5)奥氏体系不锈钢SAE 300系

(6)析出硬化型不锈钢17 - 4PH,17 – 7PH,A – 286等 含铝的标准渗氮钢,在氮化后虽可得到很高的硬度及高耐磨的表层,但其硬化层亦很脆。相反的,含铬的低合金钢硬度较低,但硬化层即比较有韧性,其表面亦有相当的耐磨性及耐束心性。因此选用材料时,宜注意材料之特征,充分利用其优点,俾符合零件之功能。至于工具钢如H11(SKD61)D2(SKD – 11),即有高表面硬度及高心部强度。 2技术流程 渗氮前的零件表面清洗 大部分零件,可以使用气体去油法去油后立刻渗氮。部分零件也需要用汽油清洗比较好,但在渗氮前之最后加工方法若采用抛光、研磨、磨光等,即可能产生阻碍渗氮的表面层,致使渗氮后,氮化层不均匀或发生弯曲等缺陷。此时宜采用下列二种方法之一去除表面层。第一种方法在渗氮前首先以气体去油。然后使用氧化铝粉将表面作abrasive cleaning 。第二种方法即将表面加以磷酸皮膜处理(phosphate coating)。 渗氮炉的排除空气 将被处理零件置于渗氮炉中,并将炉盖密封后即可加热,但加热至150℃以前须作炉内排除空气工作。 排除炉内的主要功用是防止氨气分解时与空气接触而发生爆炸性气体,及防止被处理物及支架的表面氧化。其所使用的气体即有氨气及氮气二种。 排除炉内空气的要领如下: ①被处理零件装妥后将炉盖封好,开始通无水氨气,其流量尽量可能多。 ②将加热炉之自动温度控制设定在150℃并开始加热(注意炉温不能高于150℃)。 ③炉中之空气排除至10%以下,或排出之气体含90%以上之NH3时,再将炉温升高至渗氮温度。 氨的分解率 渗氮是铺及其他合金元素与初生态的氮接触而进行,但初生态氮的产生,即因氨气与加热中的钢料接触时钢料本身成为触媒而促进氨之分解。 虽然在各种分解率的氨气下,皆可渗氮,但一般皆采用15~30%的分解率,并按渗氮所需厚度至少保持4~10小时,处理温度即保持在520℃左右。

气体氮化的发展

气体氮化的发展 气体氮化工艺在工业生产上应用以来,引起人们的重视,氮化层具有很高的耐磨性、耐腐蚀性及高的疲劳强度和红硬性,小的变形等优点。但氮化的缺点:(1)需要特殊的氮化钢;(2)周期太长,几十个小时;(3)化合物层脆性太大。 气体氮碳共渗和盐浴氮碳共渗相比,不仅具备盐浴处理的一切好处(渗速快、处理时间短、工件变形小、化合物层厚度教薄韧性好),而且还能提供更多的优点:(1)可利用渗碳炉的剩余能力;(2)劳动强度小,过程易自动控制;(3)基本上消除了盐浴的“三废”处理问题。 气体氮碳共渗用于低合金结构钢和碳素钢其渗层硬度较低,渗层深度较浅,还难以满足用户需求。 多元快速氮化工艺是一种新的表面硬化技术。它在渗氮(碳)同时,使工件表面渗入所添加的元素(如AL、Cr、T i和V等),其实它是低温金属元素-氮-(碳)共渗。多元快速氮化工艺可形成高硬度、低脆性(I级)和致密的渗层;渗速比气体氮碳共渗提高近90%。本技术克服了气体渗氮周期长,脆性大必须采用氮化钢才能取得良好效果的缺点,并解

决了气体氮碳共渗后表面硬度不够高、渗层仍不够深的问题。 1. 气体氮碳共渗结果较常规气体加氧氮化好。原因可 能是NH3与甲醇裂解气(CO、CH4)发生化学反应,形成HCN: CO+NH3=HCN+H2O (1) CH4+NH3=HCN+3H2(2) 在氮化过程中,渗入工件表面的氮:一来自于残余NH3;二来自于HCN。甲醇裂解气相当于提高了气氛氮势。甲醇裂解气的CO2在氮化过程中具有加氧氮化和加含碳物质氮化两种效果。在氨分解气氛中加入少量CO2,可使气氛中的H2量有所减少,使气氛的氮更能迅速传递给工件。碳渗入钢中可迅速达到饱和状态而析出超显微组织Fe3C。Fe3C形成以后,可直接吸收氮原子形成碳氮化合物[Fe3(C,N)],还可作为氮化物结晶核心,加速其生成过程。可以认为:作为常规工艺气体氮碳共渗能取代加氧氮化。 2. 多元快速氮化处理较常规氮化较常规氮化表面维氏硬度有很大提高。提高的原因是: (1)多元快速氮化过程中,试样表层有大量的ALN形成。ALN的显微硬度为HD500g=1225-1230,即ALN是很硬的质点,存在于试样表层的ALN对渗层表面起着弥散强化的作用,使试样

氮化基本原理及操作指南

氮化基本原理及操作指 南 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

氮化基本原理及操作指南(仅供参考) 一、概论: 1 、氮化就是把氮渗入钢件表面,形成富氮硬化层的化学热处理过程。 2 、氮化处理:氮化处理是利用氨在一定温度下(500 一600 ℃),所分解的 活性氮原子向钢的表面层渗透扩散而形成铁氮合金,从而改变钢件表面机械性能(增强耐磨性,增加硬度,提高耐蚀性等)和物理、化学性质。3 、氮化过程:氮化共有三个过程: ( 1 )氨的分解 随着温度的升高,氨的分解程度加大,生成活性氮原子。 2NH3 →6H + 2 [ N 〕 ( 2 )吸收过程 钢表面吸收氮原子,先溶解形成氮在Q 一Fe 中的饱和固溶体,然后再形成氮化物。 2mFe + 2 [ N 〕→2FemN ( 3 )扩散过程 氮从表面饱和层向钢内层深处进行扩散,形成一定深度的氮化层。 二、工件如何进行氮化 1 、组织准备 氮化工件在氮化前,必须具有均匀一致的组织,否则氮化层质量不高,通常都是采用调质、(淬火)处理来作为预备热处理。 2 、气密性检查 氮化前应对加热炉、氮化罐和整个氮化系统的管道接头处进行气密性检查,保证氨气不漏和在管路中的畅通无阻。 3 、工件工作面的抛光清洁 要求氮化的表面要经过认真的打磨抛光(像镜面一样)及仔细的检查,氮化表面应无油迹、锈蚀、尖角、毛刺、碰伤和洗涤不掉的脏物,对于非氮化面要检查防护镀层是否完整。要氮化前清洗零件≤2 小时,先用干净棉纱擦净油污,再用汽油、酒精或四氯化碳等清洗,也可用稀盐酸或10 %碳酸钠(N 今C03 )沸腾的溶液中去油,一般在溶液中煮沸8 一10 分钟,然后用清水反复洗涤。另外组织吹干、擦千。装炉时,对于易变形零件,如杆件,最好垂直吊挂在罐中。 4 、防止工件局部氮化 有些工件某些部位不需要氮化,可以用以下几种方法加以防止。 ( 1 )镀金属法a , b (略) ( 2 )涂料法a , b , c , d (略) 5 、通入氨气前应注意事项 ( 1 )氨气(液氨):要求水、油总含量≤0 . 2 % ,氨(NH3 )含量≥99 . 8 %。( 2 )保证氨的充足供应量,以利氮化(每公斤液氨每小时可使工件表面积氮化15平方米)。 ( 3 )进行设备的漏气检查 氨气混合在空气中对人的健康有极大的危害,同时氨在空气中分布过多时(空气中混有10 一25%) ,一遇到火便会引起燃烧。故氮化房内严禁吸烟。 ( 4 )检查漏气

高温井式电阻炉安全操作规程

高温井式电阻炉安全操作规程 1. 目的 本规程用于指导操作者正确操作和使用设备。 2. 适用范围 本规程适用于指导高温井式电阻炉的操作与安全操作。 3. 管理容 3.1操作程 3.1.1设备检查:开炉前应对设备各部分是否正常作一次全面检查。 3.1.1.1检查液压站池位及管路应正常,然后启动液压泵起、闭炉盖,检查液压升降机构动作是否正常、坩祸应无烧裂或严重变形。 3.1.1.2电热元件的接线柱、安全防护罩、设备接地装置是否正确有效。 3.1.1.3 风扇运转是否正常、炉子起、闭联锁开关是否安全可靠。 3.1.1.4测控温装置是否完好、准确。 3.1.2炉子启动: 3.121经全面检查设备确认无任何隐患和问题后,打开控温仪表和启动加热和风扇开关并按工艺卡所规定的工艺参数设定炉温。 3.1.2.2操作人员要坚持做好升温过程检查,防止仪表跑温或其它事故。 3.1.3装炉: 3.1.3.1按轴承套圈的大小和工艺文件的规定,将工件摆平、標直、放稳在专用的工装、吊具上。然后使用行牟稳、准地将工件吊入井式炉炉腾中的支承平座架上。 3.1.3.2若两人装吊,应密切配合,专心操作,防止装炉不稳、防止发生碰坏设备事故。

3.133为了防止工件在加热时产生严重氧化脱碳,工件装架入炉前,可浸涂珊酸酒精饱和溶液。或在工件装炉后,待炉温达到800 C时, 通入适量比例的甲醇与丙酮作为保护气氛,以防止工件产生氧化脱碳。 3.1.3.4 注意装入工件高度或吊具、料筐高度不得触及风扇挡板,如必要时先用手旋动风扇,风叶不得碰到工件,同时保证有气流的循环空间。 3.1.3.5 运行中: 3.135.1若风扇振动过大,可适当调整炉盖拉杆、顶杆来减少振动。 3.1.3.5.2 发生气氛滴注管路阻塞,应及时排除。 3.1.3.6出炉:若炉子有通入保护气氛,在开炉盖前,应关闭通入井式炉的保护气氛开关。待排气管明火燃烧渐小后,才可开启炉盖。 3.1.3.6.1关闭加热元件电源并停止风扇运转。 3.1.3.6.2 打开炉盖,使用行牟将洋火支架稳、准地吊出移入洋火池槽中进行冷却。

相关文档
最新文档