电磁屏蔽的通用特征——噪声屏蔽..

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信号传输理论的概念及噪声传导和反射

【导读】噪声传导藉由导体传导性和空间传导性产生。在解释导体传导性的本质时,可能会运用传输理论概念。为便于理解以下内容,我们将用一种简化的方法解释EMC中用到的传输理论概念。

在传输理论中,导体被视为传输线路,电能在传输线上以波的形式传导,并在末端发生反射。无论传导的能量是信号还是噪声,都同样是以波的形式传导的。因此,本章节首先针对信号先解释了传输理论的概念,进而讲述噪声的传导。

1. 数字信号对脉冲波形的影响

(1) 反射导致谐振

当数字信号与10cm或更长的导线相连时,可能导致如图1所示的振铃现象。如上一章节所述,由于线路中存在电感和静电容量,这可以解释为谐振。但是,根据传输理论,由于导线两端信号波发生如图2所示的反射,也可以认为导线本身作为一种谐振器,让特定频率成分变得非常明显。这样一来,传输理论就从电波传导和反射的角度解释了这种现象。

运用传输理论可以预测,在振铃的振荡频率处以及更高频率范围内会出现频谱(图中460MHz和860MHz)增加的现象(如图1(c)所示)。

(2) 反射会干扰信号波形的传输

如果发生反射或谐振,脉冲波形无法正确传输。为正确传输信号波形,需要抑制导线两端的反射。利用传输理论,可以提出一种抑制反射的设计,并预测反射导致的波形变化。

图1 数字信号中振铃的示例

图2 数字信号中产生振铃的机制

2. 特性阻抗和反射

(1) 阻抗匹配

为抑制导线两端的反射,需要执行“阻抗匹配”。“匹配”一词指的是匹配导线的“特性阻抗”与连接至导线端的电路的“阻抗”。

(2) 特性阻抗

如图3中信号线路所示传导电波的导体被称为信号线路。通过传输线路传输电时,电力和电流之间的比率恒定。这一比率就称为特性阻抗。特性阻抗由每单位导线长度的电感和静电容量决定(如图3所示),是无损传输线路的纯电阻。大家提到同轴电缆时说50Ω或75Ω,就是指的特性阻抗。如果本课程中没有另作规定,我们则认为传输线路处于理想状态而且没有任何电阻损耗,以便简化理论和表述。这也适用于后面的章节。(如果存在损耗,特性阻抗就不是纯电阻,会使整个概念更加复杂。)

图3 信号线的分布式恒定线路模型

(3) 负载、终端、终端匹配

如图4(b)所示,当连接至导线端(以下称为终端)的电路阻抗(以下称为负载)与特性阻抗相等时,全部电能将被传输到负载,而不会发生任何反射。信号波形也被正确传输。在这种情况下,可以说此导线的终端是终端匹配的。

(4) 匹配能传输全部能量

如果导线端连接至另一个电路而不是负载,则电路的输入阻抗会被视为负载阻抗,以考虑阻抗匹配。当电路的输入阻抗与传输线的特性阻抗相同时,可以传输全部能量。在这种情况下,可以说这两个电路相互匹配。

在噪声抑制中,能量传输并不总是好事。在噪声传输路径与噪声源或天线相互连接之处,形成较差的阻抗匹配更有利,这样才不会传输噪声能量。

(5) 反射波

如果负载阻抗不同于特性阻抗,信号能量会被部分反射,并通过传输线路逆流,如图4(c)所示。这种波被称为“反射波”,反射的大小以“反射系数”表示。如果发生反射,则会在终端处观察到加入了输入波和反射波的波形。

(6) 数字信号中包含的反射波

图5提供了数字信号与传输线路和负载相连时所产生波形的一个示例。如图5(a)所示,一根28cm长的导线(特性阻抗为50Ω)传输33MHz时钟脉冲发生器信号。图5(b)给出了所连接负载具有与导线特性阻抗相同阻抗时的情形。脉冲波形被正确传输。(因为时钟脉冲发生器的输出电阻大,上升时间约为2ns。)

(7) 通过增加行波和反射波形成数字信号

图5(c)给出了连接数字IC时的情形。信号振幅增加,同时可以观察到一些过冲和下冲。观察到的波形是由终端处产生的反射波和原信号右向行波相重叠产生的。这就意味着终端处产生了具有与原信号相同迹象的反射波(图4(c)),因此信号振幅看起来比原信号更大(图5(b))。

与此相反,还存在另一种情形: 反射波的迹象与原信号相对,使信号振幅比原信号小。

表示反射波的这种迹象(更准确的说是相位)和大小的系数是反射系数。

图4 信号反射和匹配

图5 发生反射时数字信号波形的示例(8) 反射系数是矢量

反射系数Γ是一个矢量,其大小为ρ,相位角度为Φ,可在复杂平面上标绘在半径为1的圆内(如图4(c))。因此,ρ的取值范围为0到1。

ρ=1表示全反射,而ρ=0表示无反射。通常而言,该值随频率而变化。

随着特性阻抗和负载阻抗之差变大,反射会越来越强,因此,ρ值增加(更接近圆的边缘)。如果是完全反射,ρ等于1,标注在圆周上。

(9) 反射系数位于圆心意味着“匹配中”

在未发生反射时(匹配中时),反射系数被标绘在圆心处。按照前述方法通过圆内的位置来表示反射系数,会有助于从直观上理解反射的状态。史密斯圆图就采用了这种方法。

另一方面,也可以根据特征阻抗和反射系数计算负载阻抗。

反射系数的概念也会用于后面讲述的S参数。S参数是非常重要的概念,因为它们广泛用于高频波(并不局限于噪声)的电子测量。

3. 数字电路阻抗匹配

(1) 数字信号特性阻抗

数字信号所使用信号线的特征阻抗有多大?如图6所示,在以电源层和接地层为内层的4层电路板的表面有一根信号线,此信号线可以作为微带线(以下称为MSL)来处理,其中信号线的特性阻抗约为50Ω到150Ω。(如果有电源线,特性阻抗值可能更小。)

(2) 很多数字电路都未实现阻抗匹配

与此相反,数字IC的输入阻抗通常一个几pF的电容,在频率为100MHz及以下时,会变成100Ω以上的高阻抗。因此,如图7所示,数字电路的设计基本上会产生非常高的反射,从而导致在接收器处反射大部分信号能。

此外,数字IC驱动器侧的输出阻抗也会变化。因此,阻抗匹配并非总是在驱动器侧完成,而且也可能导致反射。所以,数字信号一般会在信号线两端造成反射(如图2所示),而且会在造成多重反射一定程度时被传输。

相关文档
最新文档