-高等数学-课件完整版
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
g( x)
o
x
y min{ f ( x), g( x)}
y
f (x)
g( x)
o
x
2020/10/17
在自变量的不同变化范围中, 对应法则用不同的 式子来表示的函数,称为分段函数.
例如,
2x 1,
f
(
x)
x
2
1,
x0 x0
y x2 1
y 2x 1
2020/10/17
例2
设f
(
x)
1 2
则称函数f ( x)在X上有界.否则称无界.
y M
y M
y=f(x)
o
x
有界 X
x0
o
X
x 无界
-M
-M
2020/10/17
2.函数的单调性:
设函数 f ( x)的定义域为D, 区间I D, 如果对于区间 I 上任意两点x1及 x2 , 当 x1 x2时, 恒有 (1) f ( x1 ) f ( x2 ),
绝对值不等式:
x a (a 0)
a x a;
x a (a 0)
x a 或 x a;
2020/10/17
几个特殊的函数举例
(1) 符号函数
y
1 当x 0
y
sgn
x
0
当x 0
1 当x 0
1
o
x
-1
x sgn x x
2020/10/17
(2) 取整函数 y=[x]
y
[x]表示不超过 x 的最大整数
规定 空集为任何集合的子集.
2020/10/17
2.区间: 是指介于某两个实数之间的全体实数. 这两个实数叫做区间的端点.
a,b R,且a b.
{x a x b} 称为开区间, 记作 (a,b)
oa
b
x
{x a x b} 称为闭区间, 记作[a,b]
2020/10/17
oa
b
x
{x a x b} 称为半开区间, 记作 [a,b)
-x f (x)
y
y f (x)
f (x)
o
xx
奇函数
2020/10/17
4.函数的周期性:
设函数f ( x)的定义域为D, 如果存在一个不为零的
数l, 使得对于任一x D, ( x l ) D. 则称f ( x)为周
期函数, l称为f ( x)的周期. 且f ( x l) f ( x)恒成立.
点a叫做这邻域的中心, 叫做这邻域的半径 .
U (a) {x a x a }.
a
a
a x
点a的去心的邻域,
记作
U
0
(
a
).
U (a) { x 0 x a }.
2020/10/17
5.绝对值:
a
a a
a0 a0
运算性质:
ab a b;
( a 0)
a a; bb
a b a b a b.
(通常说周期函数的周期是指其最小正周期).
3l
l
2
2
l 2
3l 2
2020/10/17
四、反函数
y 反函数y ( x)
Q(b, a )
直接函数y f ( x)
o
ห้องสมุดไป่ตู้
P(a, b)
x
直接函数与反函数的图形关于直线 y x对称.
2020/10/17
五、小结
基本概念 集合, 区间, 邻域, 绝对值. 函数的概念 函数的特性 有界性,单调性,奇偶性,周期性. 反函数
(1,0)
•
2020/10/17
{x a x b} 称为半开区间, 记作 (a,b]
有限区间
[a,) {x a x} (,b) {x x b}
无限区间
oa
x
ob
x
区间长度的定义:
两端点间的距离(线段的长度)称为区间的长度.
2020/10/17
3.邻域: 设a与是两个实数 , 且 0. 数集{ x x a }称为点a的邻域 ,
数集分类: N----自然数集 Z----整数集 Q----有理数集 R----实数集
数集间的关系: N Z, Z Q, Q R. 若A B,且B A,就称集合A与B相等. ( A B) 例如 A {1,2},
C { x x2 3x 2 0}, 则 A C. 不含任何元素的集合称为空集. (记作 ) 例如, { x x R, x2 1 0}
0
x
1 ,
求函数
f
(x
3)的定义域.
1 x2
解
f
(
x)
1 2
0 x1 1 x2
f
(
x
3)
1 2
0 x31 1 x32
1 2
3 x 2 2 x 1
故 D f :[3,1]
2020/10/17
三、函数的特性
1.函数的有界性:
若X D, M 0, x X , 有 f ( x) M 成立,
y
y f (x)
f (x1)
f (x2 )
o
x
I
2020/10/17
3.函数的奇偶性:
设D关于原点对称, 对于x D, 有 f ( x) f ( x) 称 f ( x)为偶函数;
y y f (x)
2020/10/17
f (x)
f (x)
-x o x
x
偶函数
设D关于原点对称, 对于x D, 有 f ( x) f ( x) 称 f ( x)为奇函数;
高等数学-课件完整版
2020/10/17
一、 基本概念
1.集合: 具有某种特定性质的事物的总体.
组成这个集合的事物称为该集合的元素.
aM, aM, A {a1 , a2 ,, an }
有限集
M { x x所具有的特征} 无限集
若x A,则必x B,就说A是B的子集. 记作 A B.
2020/10/17
2020/10/17
一、基本初等函数
1.幂函数
y x (是常数)
y
y x
y x2
1
y x
(1,1)
y 1 x
o1
x
2020/10/17
2.指数函数 y a x (a 0, a 1)
y ex
y (1)x a
• (0,1)
y ax (a 1)
2020/10/17
3.对数函数 y loga x (a 0,a 1) y ln x
则称函数 f ( x)在区间 I上是单调增加的 ;
y
y f (x)
2020/10/17
f (x2 )
f (x1)
o
x
I
设函数 f ( x)的定义域为D, 区间I D, 如果对于区间 I 上任意两点x1及 x2 , 当 x1 x2时, 恒有 (2) f ( x1 ) f ( x2 ), 则称函数 f ( x)在区间I上是单调减少的;
4321
-4 -3 -2 -1 o -11 2 3 4 5 x -2 -3 -4
阶梯曲线
2020/10/17
(3) 狄利克雷函数
y
D( x)
1 0
当x是有理数时 当x是无理数时
y
1
• 无理数点
o
有理数点
x
2020/10/17
(4) 取最值函数
y max{ f ( x), g( x)}
y
f (x)