微分方程传递函数的定义

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求解微分方程可求出系统的输出响应,但如果方程阶次较高,则计算非常繁琐,因此对系统的设计分析不便,所以应用传递函数将实数中的微分运算变成复数中的代数运算,可使问题分析大大简化。

一、传递函数的概念及意义

(1)传递函数的定义:

线性系统在零初始条件下,输出信号的拉氏变换与输入信号的拉氏变换之比。

线性定常系统微分方程的一般表达式:

其中x c为系统输出量,x r为系统输入量

在初始情况为零时,两端取拉氏变换:

移项后得:

上式中Xc(s)输出量的拉氏变换;Xr(s)输入量的拉氏变换;W(s) 为系统或环节的传递系数。

(2)传递函数的两种表达形式

a.传递函数的零极点表示形式

b.传递函数的时间常数表示形式

(3)关于传递函数的几点说明

a.传递函数的概念只适应于线性定常系统。

b.传递函数只与系统本身的特性参数有关,而与输入量变化无关。

c.传递函数不能反映非零初始条件下系统的运动规律。

d.传递函数分子多项式阶次低于或至多等于分母多项式的阶次。

二、典型环节的传递函数及其暂态特性

无论什么样的系统,它的传递函数都是一些基本因子相乘积而得到的。这些基本因子就是典型环节对应的传递函数。把复杂的物理系统划分为若干个典型环节,利用传递函数和框图来进行研究,这是研究系统的一种重要方法。

(1)比例环节(放大环节/无惯性环节)

特点:输入量与输出量的关系为一种固定的比例关系(见下图)。

(2)惯性环节

特点:只包含一个储能元件,使其输出量不能立即跟随输入量的变化,存在时间上的延迟(见下图)。

(3)积分环节

特点:输出量随时间成正比地无限增加(见下图)。

(4)振荡环节

特点:振荡的程度与阻尼系数有关(见下图)。

(5)微分环节

特点:是积分环节的逆运算,其输出量反映了输入信号的变化趁势(见下图)。实践中,理想的微分环节难以实现。

(6)延迟环节(时滞环节、滞后环节)

特点:输出信号经过一段延迟时间τ后,可完全复现输入信号(见下图)。

相关文档
最新文档