对一道课本例题的教学改进

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对一道课本例题的教学改进

发表时间:2012-01-16T09:21:24.123Z 来源:《学习方法报·语数教研周刊》2011年第24期供稿作者:于开兵[导读] 这样做完本题后就知道,装货时货高不能超过6.7米,否则就过不了该桥,而且有危险.

江苏泗阳县裴圩中学于开兵

我们知道数学来源于生活,反之又服务于生活.在平时的教学过程中,如果能够注意数学与日常生活之间的联系,并多利用所学知识来解决我们身边的数学问题,对提高学生的思维能力是很有好处的.同时对于拓宽我们教师知识视野也有一定的帮助.下面就我在平时的教学中的一点思考,谈谈自己的一点尝试.例如在九年级圆的那一节教学中就有这样一道例题,是在学完垂径定理后的一道应用题.如果单单为讲题而讲这个例题,那显然是不够的.关键是要在学生解完后指导学生去进行适当的反思.实践表明,培养学生把解题后的反思应用到整个数学学习过程中,养成检验、反思的习惯,是提高学习效果、培养能力的行之有效的方法.解题是学生学好数学的必由之路,但不同的解题指导思想就会有不同的解题效果,养成对解题后进行反思的习惯,即可作为学生解题的一种指导思想.反思对学生思维品质的各方面的培养都有作积极的意义.反思题目结构特征可培养思维的深刻性;反思解题思路可培养思维的广阔性;反思解题途径,可培养思维的批判性;反思题结论,可培养思维的创造性;从而可以说反思是培养学生思维品质的有效途径.有研究发现,数学思维品质以深刻性为基础,而思维的深刻性是对数学思维活动的不断反思中实现的,大家知道,数学在锻炼人的逻辑思维能力方面有特殊的作用,而这种锻炼老师不可能传授,只能是由学生独立活动过程中获得.我在教学中是这样指导学生去反思的例题:我国一千三百年前建造的赵州石拱桥的构造.它是单孔圆弧形,在设计此桥时一定有许多数据.赵州桥的桥拱半径?这个问题怎么解决?事实上要想解决求桥拱半径的问题,我们必须先要把桥拱从桥的图片中提出来,把桥拱抽象成几何图形,那么桥拱就是一个圆弧形,只要把圆弧放入桥拱所在圆中即可求其半径.要求半径,连接圆弧两端构成弓形此时来添加一定的辅助线即可求解.问题1、测得桥的跨度为37.4米,拱高为7.2米,求桥拱的半径?解:如图所示,根据垂径定理的

AD=AB=×37.4=18.7,

在Rt△AOD中,

AO2=DO2+AD2

R2= (R-7.2)2+18.72

R≈27.9(米)

答:桥拱的半径约为27.9米.

本来这个例题上到这里就结束了,但是如果教师就讲到这样那就忽视了这个例题的价值.作为教师解完一个题目以后应该多反思反思:这个问题的解题思想是什么?还是否有其他的解法?这个问题的答案有没有漏解?这个问题的答案是否可以推广?所以在教完这个例题以后,我进一步追问学生:

问题2、如果桥拱下面要通过货船,同学们能否求出所装货物的最大高度呢?弓形高7.2米,限高应是多少米?

分析:是否是7.2米呢?显然不是,因为弓形高是最高点,桥拱是圆弧形的,而且船又又宽度.可以根据船的宽度计算出所装货物的限高.

设一艘宽10米的货船从桥下正中间通过桥拱,求所装货物的最高限度.如图所示:

解:DF是船宽的一半,即DF=5米,作EF⊥AB于F,即求EF. 延长EF,作OQ⊥EF与其延长线交于Q,垂足为Q,连接OE. 在Rt△EQO中

∵DOQF为矩形∴FQ=DO=20.7(米)

EF=27.4-20.7=6.7(米)

答:装货的限高是6.7米.

此时同样可以提问:还有没有其他解法?当然有,如图

在Rt

相关文档
最新文档