电路的暂态分析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第8章电路的暂态分析

含有动态元件L和C的线性电路,当电路发生换路时,由于动态元件上的能量不能发生跃变,电路从原来的一种相对稳态过渡到另一种相对稳态需要一定的时间,在这段时间内电路中所发生的物理过程称为暂态,揭示暂态过程中响应的规律称为暂态分析。

本章的学习重点:

●暂态、稳态、换路等基本概念;

●换路定律及其一阶电路响应初始值的求解;

●零输入响应、零状态响应及全响应的分析过程;

●一阶电路的三要素法;

●阶跃响应。

8.1 换路定律

1、学习指导

(1)基本概念

从一种稳定状态过渡到另一种稳定状态需要一定的时间,在这一定的时间内所发生的物理过程称为暂态;在含有动态元件的电路中,当电路参数发生变化或开关动作等能引起的电路响应发生变化的现象称为换路;代表物体所处状态的可变化量称为状态变量,如i L和u C就是状态变量,状态变量的大小显示了储能元件上能量储存的状态。

(2)基本定律

换路定律是暂态分析中的一条重要基本规律,其内容为:在电路发生换路后的一瞬间,电感元件上通过的电流i L和电容元件的极间电压u C,都应保持换路前一瞬间的原有值不变。此规律揭示了能量不能跃变的事实。

(3)换路定律及其响应初始值的求解

一阶电路响应初始值的求解步骤一般如下。

①根据换路前一瞬间的电路及换路定律求出动态元件上响应的初始值。

②根据动态元件初始值的情况画出t=0+时刻的等效电路图:当i L(0+)=0时,电感元件在图中相当于开路;若i L(0+)≠0时,电感元件在图中相当于数值等于i L(0+)的恒流源;当

u C(0+)=0时,电容元件在图中相当于短路;若u C(0+)≠0,则电容元件在图中相当于数值等于u C(0+)的恒压源。

根据t = 0+时的等效电路图,求出各待求响应的初始值。 2、学习检验结果解析

(1)何谓暂态?何谓稳态?您能说出多少实际生活中存在的过渡过程现象?

解析:在含有动态元件电容的电路中,电容未充电,原始储能为零时是一种稳态,电容充电完毕,储能等于某一数值时也是一种稳态。电容由原始储能为零开始充电,直至充电完毕,使得储存电场能量达到某一数值时所经历的物理过程称为暂态。水是一种稳态,冰是一种稳态,水凝结成冰所经历的物理过程和冰溶化成水所经历的物理过程都是暂态;火车在站内静止时是一种稳态,火车加速至速度为v 时也是一种稳态,从静止加速到速度v 中间所经历的加速过程是暂态……。

(2)从能量的角度看,暂态分析研究问题的实质是什么?

解析:含有动态元件的电路在换路时才会出现暂态过程,这是由于L 和C 是储能元件,而储能就必然对应一个吸收与放出能量的过程,即储存和放出能量都是需要时间的。在L 和C 是上能量的建立和消失是不能跃变的。因此,暂态分析研究问题的实质实际上是为了寻求储能元件在能量发生变化时所遵循的规律。掌握了这些规律,人们才可能在实际当中尽量缩短暂态过程经历的时间,最大限度地减少暂态过程中可能带来的危害。

(3)何谓换路?换路定律阐述问题的实质是什么?换路定律是否也适用于暂态电路中的电阻元件?

解析:在含有动态元件的电路中,当元件参数发生变化、电路或电路某处接通和断开或短路时,只要能引起电路响应发生变化的所有情况,统称为电路发生了换路。换路定律阐述问题的实质是动态元件所储存的能量不能发生跃变,必须经历一定的时间,在这一定的时间(暂态过程)内,能量的变化必须遵循一定的规律,暂态分析就是研究和认识这些基本规律。

换路定律不适合暂态电路中的电阻元件,因为电阻元件不是储能元件。

(4)动态电路中,在什么情况下电感L 相当于短路?电容C 相当于开路?又在什么情况下,L 相当于一个恒流源?C 相当于一个恒压源?

解析:当动态电路换路后重新达到稳态时,电感L 中通过的电流不再发生变化,由公式

dt

di

L

u =L 可知,L 两端的自感电压此时为零,在这种情况下L 相当于短路;同理,电容C 两端的电压重新达到稳态后,由dt du

C i C C =可知,电容支路中电流为零,这种情况下电容C 相

当于开路。求动态电路中响应的初始值时,如果L 在t=0+时已有原始储能,即电流在换路瞬间不为零,根据换路定律)0()0(L L -+=i i 可知,此时电感L 相当于一个恒流源;同理,如果C 在t=0+时已有原始储能,即它两端的电压在换路瞬间不为零,根据换路定律)0()0(C C -+=u u 可知,此时电容C 相当于一个恒压源。

8.2 一阶电路的暂态分析

1、学习指导

(1)一阶电路的零输入响应

外激励为零,仅在动态元件的原始储能下所引起的电路响应称为零输入响应。 (2)一阶电路的零状态响应

动态元件上的原始储能为零,仅在外激励下所引起电路响应称为零状态响应。 (3)一阶电路的全响应

电路既有外激励,动态元件上又有原始能量,这种情况下引起的电路响应称为全响应。 (4)电路响应求解中需要注意的问题

在介绍了初始值求解方法的基础上,本章对一阶电路的零输入响应、零状态响应及全响应进行了经典分析,其中重点阐述了一阶电路时间常数的概念:一阶电路的时间常数τ,在数值上等于响应经历了总变化的63.2%所需用的时间,讨论中一般认为,暂态过程经过3~5τ的时间就基本结束了,因此时间常数τ反映了暂态过程进行的快慢程度。对零输入响应而言,不需求解响应的稳态值,只要求出响应的初始值和时间常数即可;对零状态响应而言,只需求出响应的稳态值和时间常数即可;若动态电路既有外激励,又有原始储能的情况下,这时的电路响应称为全响应。全响应一般有两种分析方法:

① 全响应=零状态响应+零输入响应 ② 全响应=稳态分量+暂态分量

根据题目要求的不同及侧重点的不同,我们可以选择上述两种求解方法中合适的一种方法进行动态电路全响应的分析,在分析中应牢固掌握一阶电路响应的指数规律,并且注意理解响应i C 和u L 任何情况下都只有暂态分量而没有稳态分量的问题。

(5)一阶电路的三要素法

在学习一阶电路经典法的基础上,引入了一阶电路简化的分析计算方法——三要素法。所谓的三要素法,就是对待求的电路响应求出其初始值、稳态值及时间常数τ,然后代入公式

τ

t

e

f f f t f -+∞-+∞=)]()0([)()(

应用三要素法求解一阶电路的响应,关键在三要素(响应的初始值f (0+)、响应的稳态值f (∞)和一阶电路中的时间常数τ)的正确求解,注意动态元件状态变量的初始值求解应根据换路前一瞬间的电路进行;其它响应的初始值求解则要根据换路后一瞬间的等效电路进行;响应稳态值的求解要根据换路后重新达到稳态时的等效电路进行;时间常数的求解要在稳态时的电路基础上除源,然后将动态元件断开后求出其无源二端网络的入端电阻R ,代入时间常数的计算公式中即可。在求解在三要素的过程中,注意各种情况下等效电路的正确性是解题

相关文档
最新文档